
Economics 204
Fall 2012
Problem Set 1 Suggested Solutions

1. Use induction to prove the following statements.

(a) The equality
∑n

i=1 i
3 = (

∑n
i=1 i)

2
holds for all n ∈ N;

(b) The inequality
∑n

i=1
1√
i
≥
√
n holds for all n ∈ N;

(c) The inequality (1 + x)n ≥ 1 + nx holds for all n ∈ N and all
x ∈ [−1,∞).

Solution:

(a) The base step n = 1 is straightforward - both sides of the equality
are equal to 1.

Induction step: Assume
∑n

i=1 i
3 = (

∑n
i=1 i)

2
holds for some

n ∈ N. Now consider the corresponding equality for n+1. Starting
from the right-hand side, we have:
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(
n+1∑
i=1

i

)2

=

(
n∑

i=1

i + (n + 1)

)2

=

(
n∑

i=1

i

)2

+ 2

(
n∑

i=1

i

)
(n + 1) + (n + 1)2

=
n∑

i=1

i3 + 2
(n + 1)n

2
(n + 1) + (n + 1)2

=
n∑

i=1

i3 + (n + 1)2n + (n + 1)2

=
n∑

i=1

i3 + (n + 1)2(n + 1)

=
n∑

i=1

i3 + (n + 1)3

=
n+1∑
i=1

i3,

where the third equality follows from the induction hypothesis and
from the fact that

∑n
i=1 i = (n+1)n

2
. So by mathematical induction,∑n

i=1 i
3 = (

∑n
i=1 i)

2
for all n ∈ N.

(b) Base step n = 1: both sides are equal to 1 (1/
√

1 = 1 and√
1 = 1) and, obviously, 1 ≥ 1.

Induction step: Assume
∑n

i=1
1√
i
≥
√
n holds for some n ∈ N.

Now consider the left-hand side of the inequality for n + 1:

n∑
i=1

1√
i

+
1√
n + 1

≥
√
n +

1√
n + 1

=

√
n(n + 1) + 1√

n + 1

≥
√
n2 + 1√
n + 1

=
n + 1√
n + 1

=
√
n + 1,

where the first inequality follows from the induction hypothesis.
So by mathematical induction,

∑n
i=1

1√
i
≥
√
n for all n ∈ N.
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(c) Base step n = 1: both sides are equal to 1 + x.

Induction step: Fix x ≥ −1 and assume that (1 + x)n ≥ 1 + nx
holds for some n ∈ N. Now consider the left-hand side of the
inequality for n + 1:

(1 + x)n+1 = (1 + x)n(1 + x) ≥ (1 + nx)(1 + x)

= 1 + nx + x + nx2

≥ 1 + (n + 1)x,

where the first inequality follows from the induction hypothesis
and the fact that 1 + x ≥ 0, while the second inequality follows
from the fact that nx2 ≥ 0. So by mathematical induction, (1 +
x)n ≥ 1 + nx for all n ∈ N and x ∈ [−1,∞).

2. Let A and B be subsets of R such that their complements are countably
infinite. Prove A ∩B 6= ∅.

Solution: Since R is uncountably infinite, the sets A and B must also
be uncountably infinite. To see that, note that if, say, the set A were
finite or countably infinite, then R = A∪AC would be the union of two
sets that are at most countably infinite and thus would be countably
infinite itself.

Now, toward contradiction, assume that A ∩ B = ∅. This is equiva-
lent to saying A ⊆ BC . This is a contradiction since A is uncountably
infinite, while B’s complement BC is countably infinite, and an un-
countably infinite set cannot be contained in a countably infinite one.

3. Prove that there are uncountably many infinite subsets (i.e. subsets
with infinitely many elements) of N. (If you need to, you can use the
fact that the countable union of countable sets is countable.)

Solution: In class we showed that N has uncountably many subsets.
Following the logic of the previous problem, it suffices to show that
there are countably many finite subsets of N.

Before continuing, let us quickly prove a useful auxiliary result. Namely,
we’ll show using induction that Nk is countable for all k ∈ N (i.e. the
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k-fold Cartesian product of N has the same cardinality as N). The base
step k = 1 is straightforward since N1 = N is countable by definition.
For the induction step, assume that Nk is countable and consider
Nk+1 = Nk × N = {(x, y) : x ∈ Nk, y ∈ N}. Since both Nk and N are
countable, Nk+1 is numerically equivalent to Q =

{
m
n

: m ∈ Z, n ∈ N
}

,
which is countable as we established in class.

Now fix some k ∈ N and consider all subsets of N with cardinality k
- let’s call those Pk(N). Note that there exist obvious mappings that
embed Pk(N) as a subset of Nk.1 Thus the cardinality of Pk(N) is no
larger than the cardinality of Nk. Hence Pk(N) is countably infinite.2

But all finite subsets of N are just
⋃

k∈NPk(N) and, as a countable
union of countable sets, it is countable. As noted above, this suffices
to prove the desired result.

4. A collection S of subsets of some fixed set X which has the properties

• ∅ ∈ S;

• A,B ∈ S ⇒ A ∩B ∈ S;

• A,B ∈ S, A ⊆ B ⇒ B \ A =
⋃n

k=1Ak for some pairwise disjoint
sets A1, . . . , An ∈ S

is called a semiring.3,4

Let X = Y × Z and let A and B be semirings of some sets Y and Z,
respectively. Let S = {A × B : A ∈ A, B ∈ B}. Prove that S is a
semiring of the set X.

Solution: First, ∅ = ∅×∅ ∈ S since the empty set is both in A and
B.

For intersections, we have

1For example, the function f : Pk(N) → Nk defined by f({a1, . . . , ak}) = (a1, . . . , ak)
would do just fine here.

2It is indeed infinite since it contains all sets of the form {n, n + 1, . . . , n + k − 1} for
all n ∈ N.

3B \ A is the set difference of B and A, denoted by B ∼ A in de la Fuente. More
specifically, B \A = {x ∈ X : x ∈ B, x /∈ A}.

4For example, the collection of all intervals on the real line of the form
[a, b], [a, b), (a, b], (a, b) for all a, b ∈ R is a semiring (where [a, a] = {a}).
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(A×B) ∩ (E × F ) = (A ∩ E)× (B ∩ F )

for any A,E ∈ A and B,F ∈ B. To see why the set equality above
holds, note that if (a, b) ∈ (A × B) ∩ (E × F ), then it follows that
a ∈ A ∩ E and b ∈ B ∩ F and therefore (a, b) ∈ (A ∩ E) × (B ∩ F ).
This establishes the inclusion

(A×B) ∩ (E × F ) ⊆ (A ∩ E)× (B ∩ F ).

The other inclusion is also straightforward: if (a, b) ∈ (A∩E)×(B∩F ),
then a ∈ A, a ∈ E, and, similarly, b ∈ B and b ∈ F . Thus (a, b) ∈ A×B
and (a, b) ∈ E ×F . Hence (a, b) is also in the intersection of these two
Cartesian products.

Since A ∩ E ∈ A and B ∩ F ∈ B by the second property of semirings,
then (A ∩ E)× (B ∩ F ) ∈ S and so (A×B) ∩ (E × F ) ∈ S.

For differences, choose sets A,E ∈ A and B,F ∈ B such that E×F ⊆
A×B or, equivalently, E ⊆ A and F ⊆ B. Now consider the difference

D = (A×B) \ (E × F ) = ((A \ E)×B) ∪ (E × (B \ F )).

To see that the set equality indeed holds, let (a, b) ∈ (A×B)\ (E×F ).
This means that (a, b) ∈ A × B but either a /∈ E or b /∈ F (or both).
If a /∈ E then (a, b) ∈ (A \ E) × B. If a ∈ E but b /∈ F then (a, b) ∈
E × (B \ F ). Thus (a, b) ∈ ((A \ E) × B) ∪ (E × (B \ F )), which
establishes the inclusion of the LHS of the equality in its RHS.

Conversely, if (a, b) ∈ ((A\E)×B)∪ (E× (B \F )) then it is clear that
(a, b) ∈ A×B. At least one of two things is also true: either a ∈ A \E
and hence a /∈ E or b ∈ B \F and hence b /∈ F . Either way, this means
(a, b) /∈ E × F and hence (a, b) ∈ (A×B) \ (E × F ), which establishes
the other inclusion and hence the equality.

As a next step, we can express the set difference D as follows

D = ((A \ E)×B) ∪ (E × (B \ F ))

=

(( ⋃
1≤j≤m

Gj

)
×B

)
∪

(
E ×

( ⋃
1≤k≤n

Hk

))
=

⋃
1≤j≤m

(Gj ×B) ∪
⋃

1≤k≤n

(E ×Hk)
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for some m,n ∈ N, pairwise disjoint sets Gj ∈ A, and disjoint Hk ∈ B.
Note that we can express the set difference A \E in this manner using
the third property of semirings because of the fact that A and E are
sets in the semiring A. (Similarly for B \ F .)

Since the Gj sets are pairwise disjoint, so are the sets of the form Gj×B.
By the way we’ve defined the Gj sets, we also have Gj ∩ E = ∅. So
the Gj × B sets and the E × Hk sets are pairwise disjoint. It is clear
that these sets also belong to S. This establishes that S satisfies the
third property of semirings and completes the proof.

5. Let f : R+ → R+ be a function with the following properties:

• f(x) = 0 if and only if x = 0;

• f is non-decreasing (i.e. x ≥ y ⇒ f(x) ≥ f(y));

• f(x + y) ≤ f(x) + f(y) for all x, y ≥ 0.

Show that if (X, d) is a metric space, then (X, f ◦ d) is also a metric
space.

Solution: To check that (X, f ◦ d) is indeed a metric space, we need
to verify that f ◦ d satisfies the three properties of a metric.

1. Since f maps into R+, we have (f ◦ d)(x, y) ≥ 0 for all x, y ∈ X.
Since d(x, y) = 0 iff x = y and f(z) = 0 iff z = 0, this implies
(f ◦ d)(x, y) = 0 iff x = y.

2. Since d(x, y) = d(y, x) for all x, y ∈ X, we have (f ◦ d)(x, y) =
(f ◦ d)(y, x).

3. Fix x, y, z ∈ X. Then

(f ◦ d)(x, z) = f(d(x, z))

≤ f(d(x, y) + d(y, z))

≤ f(d(x, y)) + f(d(y, z))

= (f ◦ d)(x, y) + (f ◦ d)(y, z),

where the first inequality follows from the fact that d satisfies the
triangle inequality (as a metric) and f is non-decreasing by assump-
tion, while the second inequality follows from f ’s third property.
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Hence f ◦ d satisfies the triangle inequality, which completes the
proof.

6. Let (X, d) be a metric space and let {xn} and {yn} be sequences in X
that converge to x and y respectively.

(a) Prove that the sequence {d(xn, yn)} converges to d(x, y).

(b) Let X = R and d be the usual metric on R. Define zn = max{xn, yn}
for all n ∈ N. Prove that the sequence {zn} converges to max{x, y}.

Solution:

(a) Fix ε > 0. Since {xn} converges to x, we can find some Nx ∈ N
such that for all n ≥ Nx we have d(xn, x) < ε/2. Similarly, let
Ny ∈ N be such that for all n ≥ Ny we have d(yn, y) < ε/2. Let
N = max{Nx, Ny}. Then the two inequalities above hold for all
n ≥ N . Using the triangle inequality we get

d(xn, yn) ≤ d(xn, x) + d(x, y) + d(y, yn)

< ε/2 + d(x, y) + ε/2 = d(x, y) + ε

⇒ d(xn, yn)− d(x, y) < ε

for all n ≥ N . Similarly:

d(x, y) ≤ d(x, xn) + d(xn, yn) + d(yn, y)

< ε/2 + d(xn, yn) + ε/2 = d(xn, yn) + ε

⇒ d(x, y)− d(xn, yn) < ε

for all n ≥ N . Combining the two inequalities, we get

|d(x, y)− d(xn, yn)| < ε

for all n ≥ N . Since ε was chosen arbitrarily, {d(xn, yn)} converges
to d(x, y).

(b) We consider two cases separately. First, assume that x = y =
max{x, y}. Then for any ε > 0 we have some Nx, Ny ∈ N such
that for all n ≥ Nx we have |xn − x| = |xn −max{x, y}| < ε and
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for all m ≥ Ny we have |ym−y| = |ym−max{x, y}| < ε. Therefore
for all n ≥ max{Nx, Ny} we have |zn − max{x, y}| < ε. Since ε
was chosen arbitrarily, {zn} converges to max{x, y}.
Now consider the case x 6= y. Assume without loss of generality
that x > y. Fix ε = x−y

2
and notice that x − ε = y + ε. There

are some Nx, Ny ∈ N such that for all n ≥ Nx we have xn ∈
(x − ε, x + ε) and for all m ≥ Ny we have ym ∈ (y − ε, y + ε) =
(y − ε, x − ε). Hence for all n ≥ max{Nx, Ny} we have xn > yn
and hence zn = xn. So the tail of the sequence {zn} coincides with
the tail of the sequence {xn} and therefore they both converge to
x = max{x, y}.
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