Economics 204
Fall 2012
Problem Set 1 Suggested Solutions

1. Use induction to prove the following statements.
(a) The equality $\sum_{i=1}^{n} i^{3}=\left(\sum_{i=1}^{n} i\right)^{2}$ holds for all $n \in \mathbb{N}$;
(b) The inequality $\sum_{i=1}^{n} \frac{1}{\sqrt{i}} \geq \sqrt{n}$ holds for all $n \in \mathbb{N}$;
(c) The inequality $(1+x)^{n} \geq 1+n x$ holds for all $n \in \mathbb{N}$ and all $x \in[-1, \infty)$.

Solution:

(a) The base step $n=1$ is straightforward - both sides of the equality are equal to 1 .
Induction step: Assume $\sum_{i=1}^{n} i^{3}=\left(\sum_{i=1}^{n} i\right)^{2}$ holds for some $n \in \mathbb{N}$. Now consider the corresponding equality for $n+1$. Starting from the right-hand side, we have:

$$
\begin{aligned}
\left(\sum_{i=1}^{n+1} i\right)^{2} & =\left(\sum_{i=1}^{n} i+(n+1)\right)^{2} \\
& =\left(\sum_{i=1}^{n} i\right)^{2}+2\left(\sum_{i=1}^{n} i\right)(n+1)+(n+1)^{2} \\
& =\sum_{i=1}^{n} i^{3}+2 \frac{(n+1) n}{2}(n+1)+(n+1)^{2} \\
& =\sum_{i=1}^{n} i^{3}+(n+1)^{2} n+(n+1)^{2} \\
& =\sum_{i=1}^{n} i^{3}+(n+1)^{2}(n+1) \\
& =\sum_{i=1}^{n} i^{3}+(n+1)^{3} \\
& =\sum_{i=1}^{n+1} i^{3},
\end{aligned}
$$

where the third equality follows from the induction hypothesis and from the fact that $\sum_{i=1}^{n} i=\frac{(n+1) n}{2}$. So by mathematical induction, $\sum_{i=1}^{n} i^{3}=\left(\sum_{i=1}^{n} i\right)^{2}$ for all $n \in \mathbb{N}$.
(b) Base step $n=1$: both sides are equal to $1(1 / \sqrt{1}=1$ and $\sqrt{1}=1$) and, obviously, $1 \geq 1$.
Induction step: Assume $\sum_{i=1}^{n} \frac{1}{\sqrt{i}} \geq \sqrt{n}$ holds for some $n \in \mathbb{N}$. Now consider the left-hand side of the inequality for $n+1$:

$$
\begin{aligned}
\sum_{i=1}^{n} \frac{1}{\sqrt{i}}+\frac{1}{\sqrt{n+1}} & \geq \sqrt{n}+\frac{1}{\sqrt{n+1}}=\frac{\sqrt{n(n+1)}+1}{\sqrt{n+1}} \\
& \geq \frac{\sqrt{n^{2}}+1}{\sqrt{n+1}}=\frac{n+1}{\sqrt{n+1}}=\sqrt{n+1}
\end{aligned}
$$

where the first inequality follows from the induction hypothesis. So by mathematical induction, $\sum_{i=1}^{n} \frac{1}{\sqrt{i}} \geq \sqrt{n}$ for all $n \in \mathbb{N}$.
(c) Base step $n=1$: both sides are equal to $1+x$.

Induction step: Fix $x \geq-1$ and assume that $(1+x)^{n} \geq 1+n x$ holds for some $n \in \mathbb{N}$. Now consider the left-hand side of the inequality for $n+1$:

$$
\begin{aligned}
(1+x)^{n+1}=(1+x)^{n}(1+x) & \geq(1+n x)(1+x) \\
& =1+n x+x+n x^{2} \\
& \geq 1+(n+1) x
\end{aligned}
$$

where the first inequality follows from the induction hypothesis and the fact that $1+x \geq 0$, while the second inequality follows from the fact that $n x^{2} \geq 0$. So by mathematical induction, ($1+$ $x)^{n} \geq 1+n x$ for all $n \in \mathbb{N}$ and $x \in[-1, \infty)$.
2. Let A and B be subsets of \mathbb{R} such that their complements are countably infinite. Prove $A \cap B \neq \varnothing$.

Solution: Since \mathbb{R} is uncountably infinite, the sets A and B must also be uncountably infinite. To see that, note that if, say, the set A were finite or countably infinite, then $\mathbb{R}=A \cup A^{C}$ would be the union of two sets that are at most countably infinite and thus would be countably infinite itself.

Now, toward contradiction, assume that $A \cap B=\varnothing$. This is equivalent to saying $A \subseteq B^{C}$. This is a contradiction since A is uncountably infinite, while B 's complement B^{C} is countably infinite, and an uncountably infinite set cannot be contained in a countably infinite one.
3. Prove that there are uncountably many infinite subsets (i.e. subsets with infinitely many elements) of \mathbb{N}. (If you need to, you can use the fact that the countable union of countable sets is countable.)

Solution: In class we showed that \mathbb{N} has uncountably many subsets. Following the logic of the previous problem, it suffices to show that there are countably many finite subsets of \mathbb{N}.

Before continuing, let us quickly prove a useful auxiliary result. Namely, we'll show using induction that \mathbb{N}^{k} is countable for all $k \in \mathbb{N}$ (i.e. the
k-fold Cartesian product of \mathbb{N} has the same cardinality as \mathbb{N}). The base step $k=1$ is straightforward since $\mathbb{N}^{1}=\mathbb{N}$ is countable by definition. For the induction step, assume that \mathbb{N}^{k} is countable and consider $\mathbb{N}^{k+1}=\mathbb{N}^{k} \times \mathbb{N}=\left\{(x, y): x \in \mathbb{N}^{k}, y \in \mathbb{N}\right\}$. Since both \mathbb{N}^{k} and \mathbb{N} are countable, \mathbb{N}^{k+1} is numerically equivalent to $\mathbb{Q}=\left\{\frac{m}{n}: m \in \mathbb{Z}, n \in \mathbb{N}\right\}$, which is countable as we established in class.
Now fix some $k \in \mathbb{N}$ and consider all subsets of \mathbb{N} with cardinality k - let's call those $\mathcal{P}^{k}(\mathbb{N})$. Note that there exist obvious mappings that embed $\mathcal{P}^{k}(\mathbb{N})$ as a subset of \mathbb{N}^{k}. ${ }^{1}$ Thus the cardinality of $\mathcal{P}^{k}(\mathbb{N})$ is no larger than the cardinality of \mathbb{N}^{k}. Hence $\mathcal{P}^{k}(\mathbb{N})$ is countably infinite. ${ }^{2}$ But all finite subsets of \mathbb{N} are just $\bigcup_{k \in \mathbb{N}} \mathcal{P}^{k}(\mathbb{N})$ and, as a countable union of countable sets, it is countable. As noted above, this suffices to prove the desired result.
4. A collection \mathcal{S} of subsets of some fixed set X which has the properties

- $\varnothing \in \mathcal{S}$;
- $A, B \in \mathcal{S} \Rightarrow A \cap B \in \mathcal{S}$;
- $A, B \in \mathcal{S}, A \subseteq B \Rightarrow B \backslash A=\bigcup_{k=1}^{n} A_{k}$ for some pairwise disjoint sets $A_{1}, \ldots, A_{n} \in \mathcal{S}$
is called a semiring. ${ }^{3,4}$
Let $X=Y \times Z$ and let \mathcal{A} and \mathcal{B} be semirings of some sets Y and Z, respectively. Let $\mathcal{S}=\{A \times B: A \in \mathcal{A}, B \in \mathcal{B}\}$. Prove that \mathcal{S} is a semiring of the set X.

Solution: First, $\varnothing=\varnothing \times \varnothing \in \mathcal{S}$ since the empty set is both in \mathcal{A} and \mathcal{B}.

For intersections, we have

[^0]$$
(A \times B) \cap(E \times F)=(A \cap E) \times(B \cap F)
$$
for any $A, E \in \mathcal{A}$ and $B, F \in \mathcal{B}$. To see why the set equality above holds, note that if $(a, b) \in(A \times B) \cap(E \times F)$, then it follows that $a \in A \cap E$ and $b \in B \cap F$ and therefore $(a, b) \in(A \cap E) \times(B \cap F)$. This establishes the inclusion
$$
(A \times B) \cap(E \times F) \subseteq(A \cap E) \times(B \cap F)
$$

The other inclusion is also straightforward: if $(a, b) \in(A \cap E) \times(B \cap F)$, then $a \in A, a \in E$, and, similarly, $b \in B$ and $b \in F$. Thus $(a, b) \in A \times B$ and $(a, b) \in E \times F$. Hence (a, b) is also in the intersection of these two Cartesian products.

Since $A \cap E \in \mathcal{A}$ and $B \cap F \in \mathcal{B}$ by the second property of semirings, then $(A \cap E) \times(B \cap F) \in \mathcal{S}$ and so $(A \times B) \cap(E \times F) \in \mathcal{S}$.
For differences, choose sets $A, E \in \mathcal{A}$ and $B, F \in \mathcal{B}$ such that $E \times F \subseteq$ $A \times B$ or, equivalently, $E \subseteq A$ and $F \subseteq B$. Now consider the difference

$$
D=(A \times B) \backslash(E \times F)=((A \backslash E) \times B) \cup(E \times(B \backslash F))
$$

To see that the set equality indeed holds, let $(a, b) \in(A \times B) \backslash(E \times F)$. This means that $(a, b) \in A \times B$ but either $a \notin E$ or $b \notin F$ (or both). If $a \notin E$ then $(a, b) \in(A \backslash E) \times B$. If $a \in E$ but $b \notin F$ then $(a, b) \in$ $E \times(B \backslash F)$. Thus $(a, b) \in((A \backslash E) \times B) \cup(E \times(B \backslash F))$, which establishes the inclusion of the LHS of the equality in its RHS.
Conversely, if $(a, b) \in((A \backslash E) \times B) \cup(E \times(B \backslash F))$ then it is clear that $(a, b) \in A \times B$. At least one of two things is also true: either $a \in A \backslash E$ and hence $a \notin E$ or $b \in B \backslash F$ and hence $b \notin F$. Either way, this means $(a, b) \notin E \times F$ and hence $(a, b) \in(A \times B) \backslash(E \times F)$, which establishes the other inclusion and hence the equality.

As a next step, we can express the set difference D as follows

$$
\begin{aligned}
D & =((A \backslash E) \times B) \cup(E \times(B \backslash F)) \\
& =\left(\left(\bigcup_{1 \leq j \leq m} G_{j}\right) \times B\right) \cup\left(E \times\left(\bigcup_{1 \leq k \leq n} H_{k}\right)\right) \\
& =\bigcup_{1 \leq j \leq m}\left(G_{j} \times B\right) \cup \bigcup_{1 \leq k \leq n}\left(E \times H_{k}\right)
\end{aligned}
$$

for some $m, n \in \mathbb{N}$, pairwise disjoint sets $G_{j} \in \mathcal{A}$, and disjoint $H_{k} \in \mathcal{B}$. Note that we can express the set difference $A \backslash E$ in this manner using the third property of semirings because of the fact that A and E are sets in the semiring \mathcal{A}. (Similarly for $B \backslash F$.)
Since the G_{j} sets are pairwise disjoint, so are the sets of the form $G_{j} \times B$. By the way we've defined the G_{j} sets, we also have $G_{j} \cap E=\varnothing$. So the $G_{j} \times B$ sets and the $E \times H_{k}$ sets are pairwise disjoint. It is clear that these sets also belong to \mathcal{S}. This establishes that \mathcal{S} satisfies the third property of semirings and completes the proof.
5. Let $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be a function with the following properties:

- $f(x)=0$ if and only if $x=0$;
- f is non-decreasing (i.e. $x \geq y \Rightarrow f(x) \geq f(y)$);
- $f(x+y) \leq f(x)+f(y)$ for all $x, y \geq 0$.

Show that if (X, d) is a metric space, then $(X, f \circ d)$ is also a metric space.

Solution: To check that $(X, f \circ d)$ is indeed a metric space, we need to verify that $f \circ d$ satisfies the three properties of a metric.

1. Since f maps into \mathbb{R}_{+}, we have $(f \circ d)(x, y) \geq 0$ for all $x, y \in X$. Since $d(x, y)=0$ iff $x=y$ and $f(z)=0$ iff $z=0$, this implies $(f \circ d)(x, y)=0$ iff $x=y$.
2. Since $d(x, y)=d(y, x)$ for all $x, y \in X$, we have $(f \circ d)(x, y)=$ $(f \circ d)(y, x)$.
3. Fix $x, y, z \in X$. Then

$$
\begin{aligned}
(f \circ d)(x, z) & =f(d(x, z)) \\
& \leq f(d(x, y)+d(y, z)) \\
& \leq f(d(x, y))+f(d(y, z)) \\
& =(f \circ d)(x, y)+(f \circ d)(y, z)
\end{aligned}
$$

where the first inequality follows from the fact that d satisfies the triangle inequality (as a metric) and f is non-decreasing by assumption, while the second inequality follows from f 's third property.

Hence $f \circ d$ satisfies the triangle inequality, which completes the proof.
6. Let (X, d) be a metric space and let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be sequences in X that converge to x and y respectively.
(a) Prove that the sequence $\left\{d\left(x_{n}, y_{n}\right)\right\}$ converges to $d(x, y)$.
(b) Let $X=\mathbb{R}$ and d be the usual metric on \mathbb{R}. Define $z_{n}=\max \left\{x_{n}, y_{n}\right\}$ for all $n \in \mathbb{N}$. Prove that the sequence $\left\{z_{n}\right\}$ converges to $\max \{x, y\}$.

Solution:

(a) Fix $\varepsilon>0$. Since $\left\{x_{n}\right\}$ converges to x, we can find some $N_{x} \in \mathbb{N}$ such that for all $n \geq N_{x}$ we have $d\left(x_{n}, x\right)<\varepsilon / 2$. Similarly, let $N_{y} \in \mathbb{N}$ be such that for all $n \geq N_{y}$ we have $d\left(y_{n}, y\right)<\varepsilon / 2$. Let $N=\max \left\{N_{x}, N_{y}\right\}$. Then the two inequalities above hold for all $n \geq N$. Using the triangle inequality we get

$$
\begin{aligned}
d\left(x_{n}, y_{n}\right) & \leq d\left(x_{n}, x\right)+d(x, y)+d\left(y, y_{n}\right) \\
& <\varepsilon / 2+d(x, y)+\varepsilon / 2=d(x, y)+\varepsilon \\
& \Rightarrow d\left(x_{n}, y_{n}\right)-d(x, y)<\varepsilon
\end{aligned}
$$

for all $n \geq N$. Similarly:

$$
\begin{aligned}
d(x, y) & \leq d\left(x, x_{n}\right)+d\left(x_{n}, y_{n}\right)+d\left(y_{n}, y\right) \\
& <\varepsilon / 2+d\left(x_{n}, y_{n}\right)+\varepsilon / 2=d\left(x_{n}, y_{n}\right)+\varepsilon \\
& \Rightarrow d(x, y)-d\left(x_{n}, y_{n}\right)<\varepsilon
\end{aligned}
$$

for all $n \geq N$. Combining the two inequalities, we get

$$
\left|d(x, y)-d\left(x_{n}, y_{n}\right)\right|<\varepsilon
$$

for all $n \geq N$. Since ε was chosen arbitrarily, $\left\{d\left(x_{n}, y_{n}\right)\right\}$ converges to $d(x, y)$.
(b) We consider two cases separately. First, assume that $x=y=$ $\max \{x, y\}$. Then for any $\varepsilon>0$ we have some $N_{x}, N_{y} \in \mathbb{N}$ such that for all $n \geq N_{x}$ we have $\left|x_{n}-x\right|=\left|x_{n}-\max \{x, y\}\right|<\varepsilon$ and
for all $m \geq N_{y}$ we have $\left|y_{m}-y\right|=\left|y_{m}-\max \{x, y\}\right|<\varepsilon$. Therefore for all $n \geq \max \left\{N_{x}, N_{y}\right\}$ we have $\left|z_{n}-\max \{x, y\}\right|<\varepsilon$. Since ε was chosen arbitrarily, $\left\{z_{n}\right\}$ converges to $\max \{x, y\}$.
Now consider the case $x \neq y$. Assume without loss of generality that $x>y$. Fix $\varepsilon=\frac{x-y}{2}$ and notice that $x-\varepsilon=y+\varepsilon$. There are some $N_{x}, N_{y} \in \mathbb{N}$ such that for all $n \geq N_{x}$ we have $x_{n} \in$ $(x-\varepsilon, x+\varepsilon)$ and for all $m \geq N_{y}$ we have $y_{m} \in(y-\varepsilon, y+\varepsilon)=$ $(y-\varepsilon, x-\varepsilon)$. Hence for all $n \geq \max \left\{N_{x}, N_{y}\right\}$ we have $x_{n}>y_{n}$ and hence $z_{n}=x_{n}$. So the tail of the sequence $\left\{z_{n}\right\}$ coincides with the tail of the sequence $\left\{x_{n}\right\}$ and therefore they both converge to $x=\max \{x, y\}$.

[^0]: ${ }^{1}$ For example, the function $f: \mathcal{P}^{k}(\mathbb{N}) \rightarrow \mathbb{N}^{k}$ defined by $f\left(\left\{a_{1}, \ldots, a_{k}\right\}\right)=\left(a_{1}, \ldots, a_{k}\right)$ would do just fine here.
 ${ }^{2}$ It is indeed infinite since it contains all sets of the form $\{n, n+1, \ldots, n+k-1\}$ for all $n \in \mathbb{N}$.
 ${ }^{3} B \backslash A$ is the set difference of B and A, denoted by $B \sim A$ in de la Fuente. More specifically, $B \backslash A=\{x \in X: x \in B, x \notin A\}$.
 ${ }^{4}$ For example, the collection of all intervals on the real line of the form $[a, b],[a, b),(a, b],(a, b)$ for all $a, b \in \mathbb{R}$ is a semiring (where $[a, a]=\{a\}$).

