
Economics 204
Fall 2013
Problem Set 1 Suggested Solutions

1. A number of students met to discuss 204 homework. Some of them shook each
other hands. Prove that the number of students who shook others’ hands odd
number of times is, in fact, even.

Solution. To begin, lets assume without any loss of generality that students
shook hands in turn rather then all at once. Also, lets call “odd” and “even”
students as those that made an “odd” or “even” number of handshakes.

Consider the base case. Note that when n = 0 or n = 1 (either no students or
only one student came to a meeting) no handshake took place and 0 is an even
number. Also, after first handshake its both participants became “odd,” (i.e.
they just made one handshake) and two is clearly an even number.

Now, lets make an induction hypothesis — n students shook others’ hands
odd number of times and n is even. When we consider the handshakes that
involve (n + 1)–th student, we have a number of possibilities. Clearly, new
handshakes could be made between “old” students and between “old” students
and a newcomer (note that since newcomer made no handshakes she or he is an
“even” student). Consider three possible cases:

Case 1. Handshake between two “even” students. After such handshake each
of them becomes an “odd” one, thus overall number of “odd” students
goes up by two.

Case 2. Handshake between two “odd” students. After such handshake each
of them becomes an “even” one, thus overall number of “odd” students
decreases by two.

Case 3. Handshake between “odd” and “even” students. Observe that in this
case, “odd” student becomes and “even” one and vise versa. Thus, the
overall number of “odd” students is unaffected. We are done.

As we can see, in each case the number of “odd” students remain even. We
have proven an induction hypothesis and, thus, we are done.

2. Determine whether this formula is always right or sometimes wrong. Prove it
if it is right. Otherwise, give a couter-example and state (and prove) the right
formula.

A ∩ (B \ C) = (A ∩B) \ C = (A ∩B) \ (A ∩ C)

Solution. This expression is correct. First, lets us prove that A∩(B\C) ⊂ (A∩
B)\(A∩C). So, fix x ∈ A∩(B\C). Thus, x ∈ A and x ∈ B\C. Therefore, x ∈ A
and x ∈ B and x /∈ C. Two former statements yield x ∈ A ∩ B. Besides x /∈ C
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implies that x /∈ A∩C. So, x ∈ A∩B and x /∈ A∩C =⇒ x ∈ (A∩B)\ (A∩C).
So, we have proved that A∩ (B \C) ⊂ (A∩B) \ (A∩C). Now, lets prove that
(A ∩ B) \ C ⊂ A ∩ (B \ C). We have x ∈ A and x ∈ B and x /∈ C. Therefore,
x ∈ A and x ∈ B \ C. Thus, x ∈ A ∩ (B \ C).

Finally, lets prove that (A∩B)\(A∩C) ⊂ (A∩B)\C. Let x ∈ (A∩B)\(A∩C).
Then we have that x ∈ A ∩ B and x /∈ A ∩ C, therefore, since x ∈ A ∩ B, we
have that x ∈ A and x ∈ B. x /∈ A ∩C implies that x /∈ C. Thus, we have that
x ∈ A ∩ B and x /∈ C which means that x ∈ (A ∩ B) \ C. Therefore, we have
proved that

(A ∩B) \ (A ∩ C) ⊂ (A ∩B) \ C ⊂ A ∩ (B \ C) ⊂ (A ∩B) \ (A ∩ C).

Clearly this implies that A ∩ (B \ C) = (A ∩ B) \ C = (A ∩ B) \ (A ∩ C). We
are done.

3. Certain subsets of a given set S are called A-sets and others are called B-sets.
Suppose that these subsets are chosen in such a way that the following properties
are satisfied:

• The union of any collection of A-sets is and A-set.

• The intersection of any finite number of A-sets is an A-set.

• The complement of an A-set is a B-set and the complement of a B-set is
an A-set.

Prove directly, without appealing to some general result, the following:

(a) The intersection of any collection of B-sets is a B-set.

(b) The union of any finite number of B-sets is a B-set.

Solution.
(a) Let I index BI , a collection of B-sets, and let x ∈

∩
i∈I Bi. Now x ∈

∩
i∈I Bi

if and only if x ∈ Bi ∀ i ∈ I, which is true if and only if x /∈ Bc
i for all i ∈ I,

which is true if and only if x /∈
∪

i∈I B
c
i . This means that

∩
i∈I Bi = (

∪
i∈I B

c
I)

c.
Because Bi is a B-set for all i, the complement Bc

i is an A-set. The union of
these A-sets is an A-set, and its complement is, in turn, a B-set. Thus

∩
i∈I Bi

is a B-set.

(b) Now let I be finite. x ∈
∪

i∈I Bi ⇐⇒ x ∈ Bi for some i ∈ I. This is true
if and only if x /∈ Bc

i for some i ∈ I which is true if and only if x /∈
∩

i∈I B
c
i .

Thus,
∪

i∈I Bi = (
∩

i∈I B
c
i )

c. Bc
i is an A-set for all i so the intersection of Bi is

also an A-set and the complement of this intersection is a B-set. Thus,
∪

i∈I Bi

is a B-set.
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4. Are there a, b ∈ R \Q such that

(a) a+ b ∈ Q

(b) a · b ∈ Q

(c) ab ∈ Q

If you claim that such a and b exist, please give an example, if not — prove
your assertion.

Solution. The answer is yes in all three cases. For sum, take a = 1−
√
2 and

b = 1 +
√
2, and for product, take a = 2

√
3/3 and b =

√
3. Now, for power

consider the following two pairs of numbers b1 = −1 −
√
5, b2 = −1 +

√
5 and

a1 = 21/b1 , a2 = 21/b2 . We have ab11 = ab22 = 2.
Clearly, in all those cases a, b ∈ R \Q, for sum and product it is immediate. It
just remains to convince ourselves that a1 and a2 are in R \Q. Notice, that at
least one of those numbers must be irrational, since if both were rationals, we
will not be able to obtain an equality

a1a2 =
√
2.

We are done.

5. Call a sequence x = {xn} finite if there exists N ∈ N such that xn = 0 for all
n > N. Let set S consists of all finite sequences that are constructed from some
countable set X. Prove that S is countable.

Solution. Lets denote by “length” of a finite sequence that N ∈ N such that
xn = 0 for all n > N and xn−1 ̸= 0. Let An be the set of all finite sequences with
lenght n and let A0 be set containing an empty sequence. Clearly, S =

∪∞
n=0An.

Note that if X is finite then each An will have at most finite number of elements
(more precisely, it would be |X| choose n, where |X| is the cardinality of X.)
Thus, if X is finite we are done because S is clearly countable for instance by
“Hilbert hotel” argument. Now, if S is not finite, then we will get the result
we desire if we can prove two facts: first, that each An is countable for every
n ∈ N, and, second, that a countable union of countable sets is countable.

Before we do so, lets prove two small lemmas.

Lemma 1. If f : A → N is an injection, then A must be countable.
Proof. Consider the set n(A) = {n ∈ N : ∃a ∈ A such that f(a) = n}.
If n(A) is finite then then we are done, so suppose it is infinite. We must
show it is countable.

set n0 = min{n ∈ n(A)}
set n1 = min{n ∈ n(A) \ {n0}}
set n2 = min{n ∈ n(A) \ {n0, n1}}

...

set nk = min{n ∈ n(A) \ {n0, n1, . . . , nk−1}}

3



Economics 204 Fall 2013 Problem Set 1 Solution

Since n(A) is infinite and f is 1 − 1, n1 < n2 < . . . and nk is well-defined
for each k.

Lemma 2. The n-fold Cartesian product of N has the same cardinality as N,
i.e. it is countable.
Proof. We show it by induction. Base step n = 1 is straightforward since
N1 = N is countable by definition. For the induction step, assume that Nn

is countable and consider Nn+1 = Nn × N = {(x, y) : x ∈ Nn, y ∈ N}.
Since both Nn and N are countable, Nn+1 is numerically equivalent to
Q =

{
m
n
: m ∈ N, n ∈ N

}
, which is countable as we established in class.

Lets start with the our first claim. Observe that since S is countable there is
a bijection between set of natural numbers N and S, thus, without any loss of
generality we can consider finite sequences of natural numbers. Having made
this observation, we immediately see that the structure of An sets is quite simple
because any finite sequence of natural numbers of length n can represented as
a subset of Nn. If so, there exists an obvious mappings that embed all finite
sequences of N of length n as a subset of Nn. An example of such mappings
would be the function f({k1, . . . , kn}) = (k1, . . . , kn), which is clearly injective.
Thus, by Lemma 1 and 2 An is countable and we can move on to proving our
second claim.

To show that a countable union of countable sets is countable, note that without
any loss of generality we can suppose that sets are all pairwise disjoint (in our
case, all An are by construction). Because each An is countably infinite, we can
enumerate them as An = {a1n, a2n, . . . , }. Again, we define a injective mapping
f : An → N2 by f(akn) = (n, k). By Lemma 1 and 2,

∪∞
n=1An is countable.

6. Let A and B be two sets of positive real numbers bounded above, and let
α = supA and β = supB. Let C be the set of all products of the form a · b,
where a ∈ A and b ∈ B. Prove that α · β = supC.

Solution. Let C = { a·b | a ∈ A, b ∈ B}. Lets consider an alternative definition
of supremum that you have seen in section. If γ = supC then for all ε > 0
∃c ∈ C : γ − ε < c. So, lets fix ε > 0 and show how to find such c ∈ C.

Lets construct a sequence {an} and {bn} such that for all n ∈ N : an ∈ A and
bn ∈ B. Moreover, by the alternative definition of supremum we can pick such
an and bn that α − 1/n < an and β − 1/n < bn (of course, a sequence can be
trivial after some n ∈ N). By construction an → α and bn → β as n → ∞ and,
therefore, an · bn → α · β by property of limits. Also, an · bn ∈ C for all n ∈ N.
Now note that product is a continuous function, therefore, given ε > 0 we can
find such a′n and b′n in a sufficiently small neighborhood of (α, β) ∈ R2

+ such
that |α · β − a′n · b′n| < ε. But that is exactly what we need to show since our
c = a′n · b′n for those sufficiently large n.
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7. LetX be any nonempty set. If a distance function d : X×X → R+ that satisfies
assumptions of (i) symmetry, (ii) triangle inequality and (iii) d(x, x) = 0 for all
x ∈ X, then we say that d is a semi-metric on X, and (X, d) is a semi-metric
space.
For any semi-metric space X, define the binary relation ≈ on X by x ≈ y
iff d(x, y) = 0. Now, define [x] = { y ∈ Y : x ≈ y} for all x ∈ X, and let
X = {[x] : x ∈ X} . Finally, define D : X × X → R+ by D([x], [y]) = d(x, y).

(a) Show that ≈ is an equivalence relation on X.

Solution.

Reflexivity and symmetry are immediate given the definition of a semi-
metric (assumptions (iii) and (i)).

Transitivity. We need to show that for all x, y, z ∈ X, (x ≈ y ∧ y ≈
z) =⇒ x ≈ z. Lets suppose we have x, y, z ∈ X such that above
condition holds. x ≈ y ⇐⇒ d(x, y) = 0 and y ≈ z ⇐⇒ d(y, z) = 0
immediately implies x ≈ z as we need, by the triangle inequality for
the norm d(x, z) ≤ d(x, y) + d(y, z).

(b) Prove that (X , D) is a metric space.

Solution. First, lets show that the distance functionD(·, ·) is well-defined.
Lets pick x ∈ [x], y ∈ [y] and x′ ∈ [x], y′ ∈ [y], such that x ̸= x′ and y ̸= y′.
We would like to show that D([x], [y]) = D([x′], [y′]), or, by definition of
D(·, ·), that d(x, y) = d(x′, y′). Applying triangle inequality twice we get

d(x, y) ≤ d(x, x′) + d(x′, y) ≤ d(x, x′) + d(x′, y′) + d(y′, y)

d(x′, y′) ≤ d(x′, x) + d(x, y′) ≤ d(x′, x) + d(x, y) + d(y, y′)

Noting that d(x, x′) = d(y, y′) because both x, x′ ∈ [x] and y, y′ ∈ [y] we
get d(x, y) ≤ d(x′, y′) and d(x, y) ≥ d(x′, y′). Thus, d(x, y) = d(x′, y′), and
D(·, ·) is, indeed, well-defined. Now, lets check whether D(·, ·) satisfies all
properties of the distance function.

D([x], [y]) = 0 ⇐⇒ [x] = [y]. Suppose D([x], [y]) = 0. By definition this
implies d(x, y) = 0 iff x ≈ y, or [x] = [y].

Symmetry. Follows directly because any semi-norm is symmetric.

Triangle Inequality. We need to show that for any three equivalence
classes [x], [y], [z] we have D([x], [z]) ≤ D([x], [y]) +D([y], [z]). So, fix
some x, y and z in X, such that [x] ̸= [y] ̸= [z]. It is easy to see
that triangle inequality for D(·, ·) follows immediately from triangle
inequality for d(·, ·) since d(x, z) ≤ d(x, y) + d(y, z).
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8. Let c00 be the space of all finite sequences.

(a) Show that for p ∈ [1,+∞) the real-valued operation ∥ · ∥p

∥x∥p =

(
∞∑
n=0

|xn|p
) 1

p

is a norm.

Solution. Note that given how ∥ · ∥p is defined, all properties of a norm
are immediate except for triangle inequality. For the latter, we prove the
Minkowski’s inequality, i.e. that for any xm, ym ∈ R∞ and 1 ≤ p < ∞(

∞∑
i=1

|xi + yi|p
) 1

p

≤

(
∞∑
i=1

|xi|p
) 1

p

+

(
∞∑
i=1

|yi|p
) 1

p

.

Take and xm, ym ∈ R∞ and fix any 1 ≤ p < ∞. If either
∑∞ |xi|p = ∞

or
∑∞ |yi|p = ∞, then Minkowski’s inequality is trivial, so we assume it

is not the case and (
∑∞ |xi|p)1/p and (

∑∞ |yi|p)1/p are some positive real
numbers, say α and β, respectively.
Define the real sequences x′

m and y′m by x′
m = 1

α
|xm| and y′m = 1

β
| ym|.

Notice that
∑∞ |x′

i|p =
∑∞ |y′i|p = 1. Using the triangle inequality for the

absolute value function and the fact that t → tp is an increasing map on
R+ we get

|xi+yi|p ≤ (| xi|+| yi|)p = (α| x′
i|+β| y′i|)p = (α+β)p

(
α

α + β
|x′

i|+
α

α + β
| y′i|
)p

.

for each i = 1, 2, . . . .
Since t → tp is a convex map on R+, we have(

α

α + β
|x′

i|+
β

α + β
| y′i|
)p

≤ α

α + β
|x′

i|p +
β

α + β
| y′i|p

and hence

|xi + yi|p ≤ (α+ β)p
(

α

α + β
| x′

i|p +
β

α+ β
| y′i|p

)
.

Summing over i we get

∞∑
i=1

|xi + yi|p ≤ (α + β)p

(
α

α + β

∞∑
i=1

| x′
i|p +

β

α + β

∞∑
i=1

| y′i|p
)

= (α + β)p
(

α

α + β
+

β

α + β

)
.

Thus,
∑∞

i=1 |xi + yi|p ≤ (α + β)p and we get the results we desire.
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(b) Are || · ||p equivalent to || · ||q on c00 for p ̸= q?

Solution. No they are not. In a few days you will learn about a basis of
a vector space and its dimensionality, but for now, lets just note that c00
is an infinite dimensional space. Because of that, it supports norms that
are not Lipschitz equivalent and this exercise is just an example for that.
(What would be a basis of c00?)

Lets fix p and q such that 1 ≤ p < q < ∞. Lets consider a sequence:

x
(n)
k =

{ (
1
k

) 1
p , k ≤ n

0, k > n

Note that such {x(n)} ∈ c00 for any finite n ∈ N. Also,
(

1
n1/p

)p
= 1

n
and(

1
n1/p

)q
= 1

nα where a power of α > 1. Therefore, limn→∞ ||x(n)||p = ∞ and

limn→∞ || x(n)||q < ∞ because of our assumption on p and q. Thus, we can
never find an m, M > 0 such that

m ≤ ||x(n)||p
|| x(n)||q

≤ M

as the ratio of the norms is unbounded.
Finally, observe that in our case, non-equivalence of norms gives us a con-
vergence with respect to one norm, but not the other. When norms are
Lipschitz equivalent, they must all generate the same type of convergence in
vector space, in other words, equivalent norms give rise the same topological
properties (because we can describe convergence properties equivalently in
terms of open neighborhoods.)
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