
Walker Ray Econ 204 – Problem Set 1 Suggested Solutions July 31, 2014

Problem 1.

Let A,B,C be sets. Prove the following statements:

(a) C \ (A ∪B) = (C \ A) ∩ (C \B)

(b) C \ (A ∩B) = (C \ A) ∪ (C \B)

Solution

To prove equality of sets you must show that the left-hand side (LHS) is contained in the
right-hand side (RHS) and vice-versa:

(a) LHS ⊆ RHS: Let x ∈ C\(A ∪ B). Then x ∈ C and x /∈ (A ∪ B). If x ∈ A or x ∈ B
then x ∈ (A ∪ B); hence we must have x /∈ A and x /∈ B (De Morgan’s Law). Then
x ∈ C and x /∈ A implies x ∈ C\A. Similarly x ∈ C and x /∈ B implies x ∈ C\B as
well. So x ∈ (C\A) ∩ (C\B).

RHS ⊆ LHS: Let x ∈ (C \A) ∩ (C \B). Then x ∈ C, x /∈ A and x /∈ B. If x ∈ A ∪B
then either x ∈ A or x ∈ B; hence we must have x /∈ (A ∪ B) (De Morgan’s Law
again). But x ∈ C and x /∈ (A ∪B) says that x ∈ C \ (A ∪B).

(b) LHS ⊆ RHS: Let x ∈ C\(A ∩ B). Then x ∈ C and x /∈ (A ∩ B). If x ∈ A and x ∈ B
then x ∈ (A ∩ B); hence we must have x /∈ A or x /∈ B. Then we have either x ∈ C
and x /∈ A, or we have x ∈ C and x /∈ B. So x ∈ (C\A) ∪ (C\B).

RHS ⊆ LHS: Let x ∈ (C\A) ∪ (C\B). Then either x ∈ C and x /∈ A, or x ∈ C and
x /∈ B. If x ∈ (A ∩ B) then x ∈ A and x ∈ B; hence we must have x /∈ (A ∩ B). But
x ∈ C and x /∈ (A ∩B) says that x ∈ C \ (A ∩B).

Remark: It’s ok to for example show part (b) as follows:

C \ (A ∩B) = C ∩ (A ∩B)c

= C ∩ (Ac ∪Bc)

= (C ∩ Ac) ∪ (C ∩Bc)

= (C \ A) ∪ (C \B)

But be sure you could prove any of those particular steps (first and last equalities are
definitions; the second is De Morgan’s law and the third uses the fact that intersection
distributes over union).
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Problem 2.

Use the principle of mathematical induction to prove the following statements:

(a) A set S with n elements has 2n subsets. (note: do not forget about the empty set)

(b)
∣∣∣∑N

n=1 xn

∣∣∣ ≤∑N
n=1 |xn|, for xn ∈ R

(c) Prove that any grid made up of 2n × 2n tiles can be covered except for one corner
tile by L-shaped triominoes (the triominoes may rotated). The figure below shows an
example of a 4 × 4 grid (left) where all of the non-shaded tiles must be covered by a
triomino (right). Note: Visual proofs of the base and inductive steps are fine.

Solution

(a) Base step (n = 0): The set containing 0 elements is the empty set. Since the only
subset of the empty set is itself, we have P(∅) = {∅}. Hence |P(S)| = 1 = 20. Thus
the claim holds for n = 0.

Inductive hypothesis (n = k): If |S| = k, then |P(S)| = 2k.

Inductive step: Take any set S such that |S| = k + 1. Fix some element of S (call
it sk+1) and consider the power set of S \ {sk+1}, which I denote X1 = P(S \ {sk+1}).
Note that A ⊂ S \ {sk+1} if and only if A ⊂ S and sn+1 /∈ A. In other words,
X1 = {A : A ⊂ S and sk+1 /∈ A}, so X1 ( P(S). By our induction hypothesis,
|X1| = 2k.

Now consider the (nonempty) set X2 = P(S) \ X1. We have A ⊂ S and A /∈ X1 if
and only if A ⊂ S and sn+1 ∈ A, so X2 = {A : A ⊂ S and sk+1 ∈ A}. Define the
following function f : X1 → X2 as follows: for any A ∈ X1, f(A) = A ∪ {sk+1}.
f is one-to-one, since if A 6= B and sk+1 is not an element of either A or B, then
A ∪ {sk+1} 6= B ∪ {sk+1}. f is also onto, since every element of X2 is of the form
A ∪ {sk+1} for some A ∈ X1 (including the empty set!). Hence we have defined a
bijection from X1 to X2, so |X1| = |X2|. Then since X1 and X2 are finite and partition
P(S), we have |P(S)| = |X1|+ |X2| = 2k + 2k = 2k+1.
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(b) Base step (n = 2): This just says |x1 + x2| ≤ |x1| + |x2|, which is the triangle
inequality. One proof:

|x1 + x2|2 = (x1 + x2)
2

= x2 + 2xy + y2

≤ |x|2 + 2|x||y|+ |y|2

= (|x|+ |y|)2

Since squaring preserves order (try to use the properties you proved in problem 5 to
show this), we have |x1 + x2| ≤ |x1|+ |x2|.

Inductive hypothesis (n = k):
∣∣∣∑k

i xi

∣∣∣ ≤∑k
i |xi|.

Inductive step: The triangle inequality gives us that
∣∣∣∑k+1

i xi

∣∣∣ =
∣∣∣∑k

i xi + xk+1

∣∣∣ ≤∣∣∣∑k
i xi

∣∣∣ + |xk+1|. So then from the inductive hypothesis we have
∣∣∣∑k

i xi

∣∣∣ + |xk+1| ≤∑k
i |xi|+ |xk+1| =

∑k+1
i |xi|.

Remark: Note that the statement holds trivially for n = 1, but the logic of the
inductive step only applies to n ≥ 2, so we need to prove directly the case of n = 2.

(c) Base step (n = 1): A single triomino placed on a 2× 2 grid works.

Inductive hypothesis (n = k): Any 2k×2k grid can be covered by triominoes, except
for one corner square.

Inductive step: Note that a 2k+1× 2k+1 is really just four different 2k × 2k grids. By
the inductive hypothesis, cover each of these grids by triominoes (except for a corner
square) and organize the blocks such that three of the uncovered corner squares are in
the center of the grid, while the fourth is on the corner of the larger 2k×2k grid. Then
we can cover the three center squares by one more triomino. See figure:
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Problem 3.

Let A and B be subsets of any uncountable set X such that their complements are countably
infinite. Prove that A ∩B 6= ∅.

Solution

Remember a set S is countably infinite if there exists a bijection f : N → S; and if S is
either finite or countably infinite, then S is countable. Otherwise we say S is uncountable.

Toward contradiction, assume that A ∩ B = ∅. This is equivalent to saying A ⊆ Bc.
But since A is a subset of a countably infinite set, A is also countable. To see why: first if A
is finite then we’re done. If instead A is infinite, then since Bc is countably infinite choose
some bijection f : N → Bc. Then define the following function g : N → A: g(1) = f(n1)
where n1 is the smallest natural number such that f(n1) ∈ S. Then given n1, . . . , nk−1, let
nk be the smallest natural number greater than nk−1 such that f(nk) ∈ S. Let g(k) = f(nk).
This defines a bijection from N into A.

Now I’ll show that A ∪ Ac is also countably infinite. If A is finite this is easy. So
instead suppose A is also countably infinite. So we can find bijections f : N → A and
g : N → Ac. Consider the following function h : N → A ∪ Ac, where h(n) = f(n

2
) if n is

even and h(n) = g(n+1
2

) if n is odd. Then h is one-to-one: if m 6= n then f(m) 6= f(n),
g(m) 6= g(n) (since f, g are bijections), and f(m) 6= g(n) (since f, g have disjoint codomains),
hence h(m) 6= h(n). And h is onto: for any x ∈ A ∪ Ac there exists an n such that either
f(n

2
) = x or g(n+1

2
) = x, so h(n) = x. Thus A ∪ Ac is countable.

But A ∪ AC = X and X is uncountable, a contradiction. Thus A ∩B 6= ∅.

Remark: There was nothing special about the sets A and Bc, so we have shown that
for any countable set T , if S ⊂ T then T is countable. Also we showed that the union of two
countable and disjoint sets is also countable; think about how you could adapt the proof to
show that the union of any two countable sets is countable. Then try to extend this to the
union of any finite collection of countable sets, or even to any countable union of countable
sets.
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Problem 4.

If x 6= 0 is rational and y is irrational, prove that x + y and x · y are irrational. If x 6= 0 is
instead irrational, does the statement still hold?

Solution

Since Q is a field, we have that the sum, product, additive inverse and multiplicative inverse
of any rational numbers are also rational.

Then towards contradiction, suppose x+y is rational. Since x is rational, −x is rational,
and the sum −x+ (x+ y) = (−x+ x) + y = 0 + y = y is also rational, a contradiction.

Now suppose x · y is rational. Since x is rational, x−1 is rational, and the product
x−1 · (x · y) = (x−1 · x) · y = 1 · y = y is rational, a contradiction.

However the sums and products of irrational numbers certainly may be rational. A con-
sequence of the uniqueness of additive and multiplicative inverses is that if y is irrational,
then −y and y−1 are also irrational (if not then −(−y) and (y−1)−1 would be rational!). But
−y + y = 0 ∈ Q and y−1 · y = 1 ∈ Q.

Remark: In the proof above I took as given that Q is a field, you should be able to
prove this is so. As an example, let’s show that for any r ∈ Q we have r−1 ∈ Q. Remember a
rational number can be written as the ratio of two integers, or more explicitly as the product
of an integer and the multiplicative inverse of an integer. So let r = m · n−1. Then

r +−(m · n−1) = m · n−1 +−(m · n−1)

= m · n−1 + ((−m) · n−1)

= (m−m) · n−1 = 0

So by the uniqueness of additive inverses, we have −r = −(m · n−1).
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Problem 5.

Recall the definition of an ordered field : a field F with a binary relation “≤” such that
∀x, y, z ∈ F , we have:

• Totality: x ≤ y or y ≤ x

• Antisymmetry: x ≤ y and y ≤ x =⇒ x = y

• Transitivity: x ≤ y and y ≤ z =⇒ x ≤ z

• The order complies with addition and multiplication: y ≤ z =⇒ x + y ≤ x + z and
x ≥ 0, y ≥ 0 =⇒ x · y ≥ 0

We define “x < y” as “x ≤ y” but not “y ≤ x”; similarly for x > y.

(a) Prove the following properties of any ordered field:

(i) x ≥ 0 =⇒ −x ≤ 0 and vice versa.

(ii) x ≥ 0 and y ≤ z =⇒ x · y ≤ x · z
(iii) x ≤ 0 and y ≤ z =⇒ x · y ≥ x · z
(iv) x 6= 0 =⇒ x2 > 0

(v) 0 < x < y =⇒ 0 < y−1 < x−1

(b) Using the above properties, prove that the complex field C cannot be made into an
ordered field.

Solution

(a) In section we showed (−x)y = −(xy) = x(−y) (call this property ?). Further, ? implies
that (−x)(−y) = −(x(−y)) = −(−(xy)) = xy, where the final equality follows from
the uniqueness of the additive inverse (call this property ??).

(i) If x ≥ 0 then 0 = −x+ x ≥ −x+ 0 = −x. The other direction is the same.

(ii) If z ≥ y then z − y ≥ y − y = 0. Then since x ≥ 0, we have x(z − y) ≥ 0. Then

xz = xz + (−xy + xy) = (xz − xy) + xy = x(z − y) + xy ≥ 0 + xy = xy (1)

(iii) Since x ≤ 0, (i) implies −x ≥ 0. Then from ?, −(x(z− y)) = −x(z− y) ≥ 0. But
then (i) implies x(z − y) ≤ 0. The same argument as in (1) now shows xz ≤ xy.

(iv) If x > 0 then x2 > 0. If x < 0 then −x > 0 so (−x)2 > 0. ?? gives that
(−x)2 = x2.

(v) Note that (iv) implies 1 > 0. Since y > 0 and y−1y = 1, we have y−1 > 0 (to
see why, suppose y−1 ≤ 0; then (iii) says 0 ≤ 1 =⇒ 0 = 0 · y−1 ≥ y−1y = 1).
Similarly x−1 > 0, so x−1y−1 > 0. Then x < y =⇒ (x−1y−1)x < (x−1y−1)y =⇒
y−1 < x−1.

(b) The complex number i satisfies i2 = −1. Since 1 > 0, −1 < 0. Hence any potential
order we could define over the complex field would fail property (iv).
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Problem 6.

Let A be a subet of R that is nonempty and bounded below. Define the set −A = {−a : a ∈
A}. Prove that inf A = − sup(−A).

Solution

Let β = inf A. So β ≤ a for every a ∈ A. From problem 5 we have that −β ≥ −a for
every a ∈ A, so −β is an upper bound of −A. Now we show that any upper bound of −A
is greater than −β. Choose some upper bound u of −A. That is to say, for every a ∈ A we
have u ≥ −a. But then −u ≤ a so −u is a lower bound of A. Hence −u ≤ β =⇒ u ≥ −β.
Since u was an arbitrary upper bound, we have that −β = sup−A.
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Problem 7.

Define the following distance function on the set of real numbers:

d(x, y) =

{
1 if x 6= y
0 if x = y

(a) Prove that (R, d) is a metric space.

(b) Identify the open (and closed) balls in the topology induced by this metric.

Solution

(a) To verify that d is a metric, you need to check that for all x, y, z ∈ R, (i) d(x, x) = 0,
(ii) d(x, y) = d(y, x), and (iii) d(x, y) + d(y, z) ≥ d(x, z). Requirements (i) and (ii) are
easily verified. To verify (iii) there are two cases to consider: x = z or x 6= z.

Case I: If x 6= z, then either x 6= y or y 6= z (why? x = y and y = z implies
x = z, so take the contrapositive). Thus either d(x, y) = 1 or d(y, z) = 1 and we have
d(x, y) + d(y, z) ≥ 1 = d(x, z).

Case II: If x = z then d(x, z) = 0 ≤ d(x, y) + d(y, z).

So (iii) holds and d is a metric.

(b) Given any point x consider the ball centered at x with radius ε. When ε ≤ 1 we have
Bε(x) = {y ∈ R : d(x, y) < ε} = {x} since d(x, y) < ε ≤ 1 =⇒ d(x, y) = 0 =⇒ x =
y. Similarly, when ε > 1 we obtain Bε(x) = {y ∈ R : d(x, y) < ε} = R since ∀y ∈ R
where y 6= x, then d(x, y) = 1 < ε. Therefore, the open balls in this space either look
like singleton points {x} or the entire space. For ε < 1, the closed ball coincides with
the open ball of radius ε. For ε ≥ 1, the closed ball is the entire space.

Remark: Note that the analysis above shows that points are open in this space. Since
arbitrary unions of open sets are open it follows that every subset of this space is open.
On the other hand, since a closed set is defined to be the complement of an open set,
every subset of this space is also closed. A space with such a topology (where every
point is both open and closed) is said to be discrete.
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