
Economics 204
Fall 2012
Problem Set 2
Due Tuesday, July 31 in Lecture

1. Let (Y, d) be a metric space. Call x a limit point of some set X ⊆ Y if every
open ball around x contains another element of X distinct from x.1 Suppose
that X ⊆ R be uncountable. Without invoking any compactness arguments,
prove that X has at least one limit point.2

2. Let (X, d) be a metric space, where X ⊆ R and d is a standard Euclidean
metric. Give an example of a non-trivial set in X which is both open and
closed.

3. Identify the set of interior points, limit points, isolated points, and boundary
points of the following sets. Assume the metric is Euclidean unless indicated
otherwise (no proofs necessary):

(a) {1, 1/2, 1/3, 1/4, ...} ∪ {−1, −1/2, −1/3, −1/4, ...} ∪ {0} ⊂ R (i.e. the
ambient space is R)

(b) N ⊂ R
(c) N ⊂ R with discrete metric3

(d) Q ⊂ R
(e) Q ⊂ R with discrete metric

(f) {x ∈ Q : x < π} ⊂ R
(g) {x ∈ Q : x < π} ⊂ Q

4. Show that any closed set in a metric space is an intersection of a decreasing
sequence of open sets. Show that any open set is a union of an increasing
sequence of closed sets.

1Notice that this is more restrictive than the definition of closure point, because now the inter-
section of X and Bε(x) cannot be just the point x itself. Points for which this is the case are called
isolated points. Hence, the union of those two sets, limit points and isolated points, is the closure
of the set X. You can read more about that in de la Fuente p. 41.

2You will have a chance to use compactness in showing this fact on problem set 3.
3Recall that we defined discrete metric as d(x, y) = 0 iff x = y and d(x, y) = 1 if x 6= y.
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5. Give an example of function f : R→ R which is

(a) nowhere continuous (i.e. discontinuous for all x ∈ R), but the absolute
value of which is, in fact, continuous. Please use standard Euclidean met-
ric, there is no need to be excessively creative.

(b) continuous at exactly one point? two points? n points?

6. Consider a real-valued continuous function f defined on interval [a, b] with a
property that f(a) = a and f(b) = b. Let g be any continuous function that
maps [a, b] into itself. Prove that there is x∗ ∈ [a, b] such that f(x∗) = g(x∗).
Will the statement hold if we just assume that g is a continuous function on
[a, b], but not necessarily maps [a, b] into itself? Prove or give counter-example.

7. Suppose that {fn} is a sequence of non-decreasing functions that map the unit
interval into itself. Suppose that

lim
n→+∞

fn(x) = f(x)

pointwise and f is a continuous function. Prove that the convergence of fn(x)
to f(x) is uniform, i.e. prove that4

∀ε > 0 ∃Nε : n > Nε |fn(x)− f(x)| < ε for all x ∈ [0, 1].

8. Let (X, d) be a metric space. Let {xn} and {yn} be two Cauchy sequences
in X. Call {xn} and {yn} Cauchy equivalent if x0, y0, x1, y1, . . . is a Cauchy
sequence itself.

(a) Prove that {xn} and {yn} are Cauchy equivalent iff limn→∞ d(xn, yn) = 0.

(b) Let {xn} and {yn} be two Cauchy equivalent sequences and {zn} another
Cauchy sequence. Prove that

lim
n→∞

d(xn, zn) = lim
n→∞

d(yn, zn).

(c) Show that equivalence of Cauchy sequences is an equivalence relation on
X.

(d) Let X∗ be a set of equivalence classes of Cauchy sequences in X. Prove
that the function

{xn}, {yn} → lim
n→∞

d(xn, yn)

defines a metric on X∗.

4Like with uniform continuity, same ε works for all x in uniform convergence, whereas in pointwise
convergence, ε will, in general, depend on the choice of x.
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