Economics 204
Fall 2012
Problem Set 2
Due Tuesday, July 31 in Lecture

- 1. Let (Y, d) be a metric space. Call x a limit point of some set $X \subseteq Y$ if every open ball around x contains another element of X distinct from x.¹ Suppose that $X \subseteq \mathbf{R}$ be uncountable. Without invoking any compactness arguments, prove that X has at least one limit point.²
- 2. Let (X, d) be a metric space, where $X \subseteq \mathbf{R}$ and d is a standard Euclidean metric. Give an example of a non-trivial set in X which is both open and closed.
- 3. Identify the set of interior points, limit points, isolated points, and boundary points of the following sets. Assume the metric is Euclidean unless indicated otherwise (no proofs necessary):
 - (a) $\{1, 1/2, 1/3, 1/4, ...\} \cup \{-1, -1/2, -1/3, -1/4, ...\} \cup \{0\} \subset \mathbb{R}$ (i.e. the ambient space is \mathbb{R})
 - (b) $\mathbb{N} \subset \mathbb{R}$
 - (c) $\mathbb{N} \subset \mathbb{R}$ with discrete metric³
 - (d) $\mathbb{Q} \subset \mathbb{R}$
 - (e) $\mathbb{Q} \subset \mathbb{R}$ with discrete metric
 - (f) $\{x \in \mathbb{Q} : x < \pi\} \subset \mathbb{R}$
 - (g) $\{x \in \mathbb{Q} : x < \pi\} \subset \mathbb{Q}$
- 4. Show that any closed set in a metric space is an intersection of a decreasing sequence of open sets. Show that any open set is a union of an increasing sequence of closed sets.

¹Notice that this is more restrictive than the definition of closure point, because now the intersection of X and $B_{\epsilon}(x)$ cannot be just the point x itself. Points for which this is the case are called *isolated* points. Hence, the union of those two sets, limit points and isolated points, is the closure of the set X. You can read more about that in de la Fuente p. 41.

²You will have a chance to use compactness in showing this fact on problem set 3.

³Recall that we defined discrete metric as d(x,y) = 0 iff x = y and d(x,y) = 1 if $x \neq y$.

- 5. Give an example of function $f: \mathbf{R} \to \mathbf{R}$ which is
 - (a) nowhere continuous (i.e. discontinuous for all $x \in \mathbf{R}$), but the absolute value of which is, in fact, continuous. Please use standard Euclidean metric, there is no need to be excessively creative.
 - (b) continuous at exactly one point? two points? n points?
- 6. Consider a real-valued continuous function f defined on interval [a, b] with a property that f(a) = a and f(b) = b. Let g be any continuous function that maps [a, b] into itself. Prove that there is $x^* \in [a, b]$ such that $f(x^*) = g(x^*)$. Will the statement hold if we just assume that g is a continuous function on [a, b], but not necessarily maps [a, b] into itself? Prove or give counter-example.
- 7. Suppose that $\{f_n\}$ is a sequence of non-decreasing functions that map the unit interval into itself. Suppose that

$$\lim_{n \to +\infty} f_n(x) = f(x)$$

pointwise and f is a continuous function. Prove that the convergence of $f_n(x)$ to f(x) is uniform, i.e. prove that⁴

$$\forall \epsilon > 0 \ \exists N_{\epsilon} : n > N_{\epsilon} \quad |f_n(x) - f(x)| < \epsilon \text{ for all } x \in [0, 1].$$

- 8. Let (X, d) be a metric space. Let $\{x_n\}$ and $\{y_n\}$ be two Cauchy sequences in X. Call $\{x_n\}$ and $\{y_n\}$ Cauchy equivalent if $x_0, y_0, x_1, y_1, \ldots$ is a Cauchy sequence itself.
 - (a) Prove that $\{x_n\}$ and $\{y_n\}$ are Cauchy equivalent iff $\lim_{n\to\infty} d(x_n, y_n) = 0$.
 - (b) Let $\{x_n\}$ and $\{y_n\}$ be two Cauchy equivalent sequences and $\{z_n\}$ another Cauchy sequence. Prove that

$$\lim_{n\to\infty} d(x_n, z_n) = \lim_{n\to\infty} d(y_n, z_n).$$

- (c) Show that equivalence of Cauchy sequences is an equivalence relation on X.
- (d) Let X^* be a set of equivalence classes of Cauchy sequences in X. Prove that the function

$$\{x_n\}, \{y_n\} \rightarrow \lim_{n \to \infty} d(x_n, y_n)$$

defines a metric on X^* .

⁴Like with uniform continuity, same ϵ works for all x in uniform convergence, whereas in pointwise convergence, ϵ will, in general, depend on the choice of x.