Economics 204
Fall 2013
Problem Set 2
Due Tuesday, August 6 in Lecture

- 1. Show that the sequence $\{x_n\}$ in a metric space X converges to x if and only if every subsequence has x as a cluster point.
- 2. Let $A \subset \mathbf{R}^n$ be uncountable. Prove that there is a sequence of distinct points in A converging to a point of A.
- 3. Some practice with "relative" openness.
 - (a) Given a metric space X, let Y be a metric subspace of X, and take any $A \subset Y$. Show that A is open in Y if and only if $A = O \cap Y$ for some open subset O of X, and is closed if $A = C \cap Y$ for some closed subset C of Y.
 - (b) Let Y be open in X, prove that

A is open in X iff A is open in Y.

- (c) Can you given a example of either side of the implication in (b) not holding when Y is not necessarily open in X?
- 4. Prove the following

$$\overline{\operatorname{Int}\overline{\operatorname{Int}A}} = \overline{\operatorname{Int}A}$$

- 5. How many pairwise disjoint sets can one obtain using operators of closure and interior?
- 6. Some practice with continuity
 - (a) Use the "pre-image of a closed set is closed" definition of continuity to show that $\{(x,y)|\ x^2+y^2\leq 1\}\subset \mathbf{R}^2$ is closed.
 - (b) Suppose that $f: X \to Y$ is continuous. If x is a limit point of $A \subset X$, is it necessarily true that f(x) is a limit point of f(A)? (Recall that a limit point of a set $A \subset X$ is defined as a point $x \in X$ such that $B_{\varepsilon}(x)$ contains some element of $A \setminus \{x\}$ for any $\epsilon > 0$.)
- 7. Let $f: \mathbf{R} \to \mathbf{R}$ be continuous function such that $|f(x) f(y)| \ge |x y|$ for all x and y. Prove that the range of f is all of \mathbf{R} .

- 8. Let (X, ρ) and (Y, σ) be metric spaces. Let $\{f_n\}$ be a sequence of bijective functions from X to Y and $\{g_n\}$ be the sequence of their uniformly continuous inverses. Prove that uniform convergence of $f_n \to f$ implies uniform convergence of $g_n \to g$, where g is a uniformly continuous inverse of f.
- 9. Show that if x_n and y_n are Cauchy sequences from a metric space X, then $d(x_n, y_n)$ converges.