Econ 204 – Problem Set 2

Due Tuesday, August 5

- 1. Prove that a convergent sequence in an arbitrary metric space (X, d) has exactly one cluster point.
- 2. The decimal expansion of $\frac{1}{7}$ is 0.142857142857142857... etc. repeating forever. Suppose we construct the sequence $\{x_n\}$ by, for each n, x_n is the n^{th} decimal place in the infinite expansion of $\frac{1}{7}$. Prove that every sequence made up of the elements from the set $Y = \{1; 4; 2; 8; 5; 7\}$ is a subsequence of $\{x_n\}$.
- 3. Show whether the following are open, closed, both, or neither:
 - (a) The interval (0,1) as a subset of \mathbb{R} .
 - (b) The interval (0,1) embedded in \mathbb{R}^2 as the subset $\{(x,0):x\in(0,1)\}$.
 - (c) \mathbb{R} as a subset of \mathbb{R} .
 - (d) \mathbb{R} embedded in \mathbb{R}^2 as the subset $\{(x,0): x \in \mathbb{R}\}.$
 - (e) $\{(x, y, z) : 0 \le x + y \le 1, z = 0\}$ as a subset of \mathbb{R}^3
 - (f) $\{(x,y): 0 < x + y < 1\}$ as a subset of \mathbb{R}^2
 - (g) $\{\frac{1}{n}: n \in \mathbb{N}\}$ as a subset of \mathbb{R}
 - (h) $\{\frac{1}{n}: n \in \mathbb{N}\}$ as a subset of the interval $(0, \infty)$
- 4. Let A be a subset of a metric space. Prove that int(int(A)) = int(A).
- 5. Let X denote the set of all bounded infinite sequences of real numbers $\{a_n\}_{n=1}^{\infty}$ (hereafter denoted simply as a_n). Define the "distance" between two sequences a_n and b_n to be: $d(a_n,b_n)=\sum_{n=1}^{\infty}\ 2^{-n}|a_n-b_n|$. Show that (X,d) is a metric space.