Econ 204 - Problem Set 2

Due Tuesday, August 5

1. Prove that a convergent sequence in an arbitrary metric space (X, d) has exactly one cluster point.
2. The decimal expansion of $\frac{1}{7}$ is $0.142857142857142857 \ldots$ etc. repeating forever. Suppose we construct the sequence $\left\{x_{n}\right\}$ by, for each n, x_{n} is the $n^{t h}$ decimal place in the infinite expansion of $\frac{1}{7}$. Prove that every sequence made up of the elements from the set $Y=\{1 ; 4 ; 2 ; 8 ; 5 ; 7\}$ is a subsequence of $\left\{x_{n}\right\}$.
3. Show whether the following are open, closed, both, or neither:
(a) The interval $(0,1)$ as a subset of \mathbb{R}.
(b) The interval $(0,1)$ embedded in \mathbb{R}^{2} as the subset $\{(x, 0): x \in(0,1)\}$.
(c) \mathbb{R} as a subset of \mathbb{R}.
(d) \mathbb{R} embedded in \mathbb{R}^{2} as the subset $\{(x, 0): x \in \mathbb{R}\}$.
(e) $\{(x, y, z): 0 \leq x+y \leq 1, z=0\}$ as a subset of \mathbb{R}^{3}
(f) $\{(x, y): 0<x+y<1\}\}$ as a subset of \mathbb{R}^{2}
(g) $\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$ as a subset of \mathbb{R}
(h) $\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$ as a subset of the interval $(0, \infty)$
4. Let A be a subset of a metric space. Prove that $\operatorname{int}(\operatorname{int}(A))=\operatorname{int}(A)$.
5. Let X denote the set of all bounded infinite sequences of real numbers $\left\{a_{n}\right\}_{n=1}^{\infty}$ (hereafter denoted simply as a_{n}). Define the "distance" between two sequences a_{n} and b_{n} to be: $d\left(a_{n}, b_{n}\right)=\sum_{n=1}^{\infty} 2^{-n}\left|a_{n}-b_{n}\right|$. Show that (X, d) is a metric space.
