
Economics 204
Fall 2013
Problem Set 2 Suggested Solutions

1. Show that the sequence {xn} in a metric space X converges to x if and only if
every subsequence has x as a cluster point.

Solution. Recall that x is a cluster point if and only if there is a subsequence
that converges to x (Theorem 2.4 in de la Fuente.) As such, it suffices to show
that xn → x if and only if every subsequence has in turn a subsequence that
converges to x.

(⇒) If the sequence converges to x, then clearly every subsequence converges
to x. To check this let xnk

be a subsequence. For any ϵ > 0 convergence of xn

tells us that ∃N(ϵ) such that n > N(ϵ) ⇒ d(xn, x) < ϵ. In particular, for all
nk > N(ϵ) we must have d(xnk

, x) < ϵ. Hence, the subsequence xnk
converges

to x. Now note that xnk
is a subsequence of itself and because it converges to

x we have found a subsequence of xnk
that converges to x.

(⇐) Assume every subsequence xnk
itself has a subsequence that converges

to x. We wish the show that this implies the convergence of the full sequence.
Proceeding by contradiction, assume not. Then, from the definition, there must
be some ϵ > 0 such that d(xn, x) > ϵ for infinitely many n. Define xnk

to then
be the (infinite) subsequence of xn for which this is true. It then follows that
xnk

itself has no subsequence that converges to x since every term of the full
sequence was chosen to be at least distance ϵ from x. Contradiction.

2. Let A ⊂ R be uncountable. Prove that there is a sequence of distinct points in
A converging to a point of A.

Solution. Lets prove this claim by contradiction. Suppose A ⊂ Rn contains
no sequence of distinct points, converging to a point in A. Then, it must be the
case that all points in A are “isolated,” i.e. for every a ∈ A there exist some
εa−neighbourhood, containing only the point itself Bεa ∩ A = {a}. Now, it is
possible that some open balls Bεa might “overlap,” so pick δa =

εa
2
and observe

that {Bδa} collection of balls is disjoint. In each ball we can pick a point with
a rational coordinates, therefore, we will have a injection between points of A
and N2n. By problem 5 of problem set 1 we know that A must be countable.
Contradiction.

3. Some practice with “relative” openness.

(a) Given a metric space X, let Y be a metric subspace of X, and take any
A ⊂ Y. Show that A is open in Y if and only if A = O ∩ Y for some open
subset O of X, and is closed in Y if and only if A = C ∩Y for some closed
subset C of X.
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Solution. “Open” (⇒) Let A be open as a subset of Y. If A = ∅ then
the problem is trivial and we have nothing to prove as A = ∅ ∩ Y and an
empty set is open subset of X. So suppose A is not empty and we need
to show that A is open. By definition of A being open we can construct
an open ball in Y for all a ∈ A, BY

ε (a) = { b ∈ Y : d(b, a) < ε} ⊂ A
(where ε > 0 clearly depends on point a, but we ignore that for the ease
of notation.) Lets take a union of those balls BY = ∪a∈XB

Y
ε (a) and note

that A = BY . Why? By construction, BY ⊂ A so lets show that A ⊂ BY .
Take any a ∈ A, there must be at least one ball containing it, thus it is in
union.

Now, lets expand all those ε balls to include also elements in X that
are no further away then ε from a ∈ A, i.e. lets define BX

ε (a) = { b ∈
X : d(a, b) < ε}. By construction, each BX

ε (a) is an open set in X, so
their union BX = ∪a∈XB

X
ε (a) is open in X as well. Finally, observe

that BY
ε (a) = BX

ε (a) ∩ Y implies that BY = BX ∩ Y because union and
intersection distribute. Thus, A = BX ∩Y, and we get the result we desire.

(⇐) Let A = O∩Y for some open subset O of X. Again, as before if A = ∅
then there is nothing to prove, so suppose A ̸= ∅. Pick any a ∈ A, and note
that a ∈ O ⊂ X, which implies that there exists an open ball BX

ε (a) ⊂ O
in X, because O is open. Lets define BY

ε (a) = { b ∈ Y : d(a, b) < ε} an
open ball in Y abound a and note that BY

ε (a) = BX
ε (a) ∩ Y by construc-

tion. Because BY
ε (a) ⊂ O ∩ Y again by construction, it must be the case

that BY
ε (a) ⊂ A, so A is, indeed, open.

“Closed.” (⇒) Let A be closed as a subset of Y. Consider an open set
Y \ A and note that arguments above imply Y \ A = O ∩ Y for some O
open in X. Observe that

A =Y \ (Y \ A) = Y \ (O ∩ Y ) = (Y \O) ∪ (Y \ Y ) =

= (Y \O) = (X \O) ∩ Y = C ∩ Y

and since C = Oc it is a closed set in X.

(⇐) Let A = C ∩ Y for some closed set C in X and lets show that
complement of A is open in Y . Observe that

Ac = Y \ A = Y \ (C ∩ Y ) = (Y \ C) ∪ (Y \ Y ) = (X \ C) ∩ Y

and because (X \ C) is open in X by arguments given above Ac is indeed
open in Y. We are done.

(b) Let Y be open in X, prove that

A is open in X iff A is open in Y.
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Solution.
(⇐) Let A be open in Y. By part (a) of this exercise, A = O ∩ Y for some
open set O in X. Thus, A is an intersection of two open sets in X, therefore
it must be open in X.

(⇒) Let A be open on inX. Since A ⊂ Y it must be the case that A = A∩Y
thus by part (a) of this exercise, A is open in Y.

(c) Can you given a example of either side of the implication in (b) not holding
when Y is not necessarily open in X?

Solution. Note that we did not really used openness of Y in the (⇒)
direction. However, for necessity it is crucial. For instance, (0, 1)× {0} is
an open subset of [0, 1] × {0}, but it is an open subset of [0, 1]2 (clearly,
because the [0, 1]× {0} is not open in [0, 1]2.)

4. Prove the following result

Int IntA = IntA

Solution. We prove it by two-way set inclusion, where one side follows imme-
diately

Int IntA ⊂ IntA.

To see this, note that Int IntA ⊂ IntA because IntB ⊂ B for any set B. Also,
by definition of closure A ⊂ B =⇒ A ⊂ B (the smallest closed set containing
a larger set can’t be smaller then the smallest closed set containing a smaller
set.) Therefore, we must have

Int IntA ⊂ IntA.

But the closure of the closure is a just closure itself, and we get the result we
desire.

Now, to prove the other direction of set inclusion, note that it suffices to prove
that Int IntA ⊃ IntA. Also, observe that we always have IntA ⊂ IntA. There-
fore, Int IntA ⊂ Int IntA, since by definition of interior A ⊂ B =⇒ IntA ⊂
IntB (the largest open set contained in larger set can’t be smaller then the
largest open set contained in smaller set) and Int IntA = IntA (the largest
open set of the largest open set contained in A is just the largest open set
contained in A.)

5. How many pairwise disjoint sets can one obtain using operators of closure and
interior?

Solution. At most two. For any set A we must have IntA ⊂ A ⊂ A. There-
fore, the only way to get disjoint sets is for set A to have an empty interior, e.g.
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Q ∈ R. Note that IntQ = ∅ and Q = R (and ∅ ̸∈ R).

Now, another interesting question might be how many pairwise distinct sets can
one obtain using only operators of closure and interior? Here the answer is six
(actually seven, if we include the set itself). Consider the following example

A = ((−1, 0) ∩Q) ∪ (0, 1) ∪ (1, 2) ∪ {3}.

Then we have

IntA =(0, 1) ∪ (1, 2)

IntA = [0, 2]

Int IntA =(0, 2)

A = [−1, 2] ∪ {3}
IntA =(−1, 2)

IntA = [−1, 2]

Why cannot we have more? We know that for any set A we must have A = A
and Int IntA = IntA, that is why, we just need to consider the sets that we get
from set A by alternating operations of closure and interior. But, from problem
4 we know that

Int IntA = IntA.

Moreover, we also claim that

Int Int IntA = IntA.

To see this, observe that IntA ⊂ Int IntA because for any set A we have IntA ⊂
A which implies IntA ⊂ IntA. Now, to see that IntA ⊃ Int IntA note that

A = A ⊃ IntA. Therefore, only following sets can be pairwise “distinct” (but,
clearly, not necessarily):

A, IntA, IntA, Int IntA, A, IntA, IntA.

The example of A = ∅ shows that all those sets can be equal. The example at
the beginning shows that the maximal number six can be achieved.

6. Some practice with continuity

(a) Use the “pre-image of a closed set is closed” definition of continuity to
show that S = {(x, y)| x2 + y2 ≤ 1} ⊂ R2 is closed.

Solution. Define the function f : R2 → R by f(x, y) = x2 + y2. Note
that f−1([0, 1]) = S and [0, 1] is closed in R. Furthermore, function f
is continuous because it is a sum of two real-valued continuous functions
f1(x, y) = x2 and f2(x, y) = y2, therefore S must be closed in R2.
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(b) Suppose that f : X → Y is continuous. If x is a limit point of A ⊂ X, is
it necessarily true that f(x) is a limit point of f(A)? (Recall that a limit
point of a set A ⊂ X is defined as a point x ∈ X such that Bε(x) contains
some element of A \ {x} for any ϵ > 0.)

Solution. Really, the answer depends on which textbook you consult. For
us, though, the correct answer — which depends crucially on the definition
of “limit point” — is no. A limit point of a set A ⊂ X is defined as a point
x ∈ X such that Bε(x) contains some element of A \ {x} for any ϵ > 0.
Notice that this excludes x itself. So if f is a constant function then f(x)
is the same, single point for all x ∈ A. Because there is no other point in
f(A), the set A \ {f(x)} is empty and it is impossible to satisfy the limit
point definition. Other texts allow isolated points in the definition of limit
point.

7. Let f : R → R be continuous function such that |f(x) − f(x′)| ≥ |x − x′| for
all x and x′. Prove that the range of f is all of R.

Solution. We prove the result by showing that range of f must be both open
and closed and, thus, range of f is is all of R.

First, lets show that range of f is open. Our inequality immediately implies that
f must be injective. Together with continuity of f, Intermediate Value Theorem
implies that f must be strictly monotonic (Can you see why? Hint: proof by
contradiction.) Strong monotonicity and continuity of f : R → R means that
f must map open sets to open sets (Why? You might want to use the fact that
intervals are the only connected sets in R and continuous function must map
connected set into connected set.) So we have just shown that range of f is open.

Now, lets show that range of f is closed by demonstrating that it contains all its
limit point. To this end, take a sequence {yn} = f(xn) in f(R) that converges
to some y ∈ R. Such {yn} must be Cauchy, and our inequality implies that
{xn} is Cauchy as well. Suppose that lim xn = x. By continuity of f we have
that

f(x) = f(limxn) = lim f(xn) = y

Thus, y is in the range of f and, therefore, f(R) is closed. We get the result
we desire.

8. Let (X, ρ) and (Y, σ) be metric spaces. Let { fn} be a sequence of bijective
functions from X to Y and { gn} be the sequence of their uniformly continuous
inverses. Prove that uniform convergence of fn → f implies uniform conver-
gence of gn → g, where g is a uniformly continuous inverse of f.

Solution. First, since uniform convergence of functions was not properly in-
troduced either in lecture or in section, lets say a few words about it here. Last
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couple of lectures examined thoroughly convergence for sequences of points in
metric spaces. This exercise is about convergence of sequences of functions
{fn(·)} from one metric space (X, ρ) to another (Y, σ). So what does it mean
for a sequence of functions to converge to a limiting function f : X → Y ?
There are several different concepts for convergence of functions with two most
important being pointwise and uniform convergence (among other types of con-
vergence are convergence in Lp-norm, convergence in measure, etc.)

The former, pointwise convergence, is perhaps the easiest to understand — it
is convergence at each point of a domain x0 ∈ X, i.e. fixing a point in domain
we obtain a sequence of points {fn(x0)} and we know how to work with those.
The problem is that this type of convergence is extremely weak, i.e. a lot of nice
properties of limits are not preserved by this type of convergence. The most
important example of that would be that the pointwise limit of continuous
functions need not be a continuous function itself, i.e. pointwise convergence
does not preserve continuity. For instance, take fn(x) = xn on a unit interval
(the limiting function f is zero except at x = 1.) Also, pointwise convergence
does not preserve either limits or integrals, for instance limits of sequences of
functions {fn(x)} and limits of points in domain {xn} can’t be interchanged.

With pointwise convergence being of a too week concept to be of much use, uni-
form convergence addresses most of those issues. The relation between pointwise
and uniform convergence is similar to one of continuity and uniform continuity.
In the latter, a single δε works for all points in domain, in the former, a single
Nε. To give a precise definition, we say that

A sequence of functions {fn(x)} from one metric space (X, ρ) to another (Y, σ)
converges uniformly to a function f : X → Y if for every ε > 0 there exists
Nε ∈ N such that σ(fn(x), f(x)) < ε for every n > Nε and x ∈ X. The function
f is the uniform limit of the sequence of functions {fn(x)}.

Note that uniform limit is frequently denoted {fn(x)} ⇒ f.

Now, lets prove our result. The key to solving this problem is to realize that
uniformly continuous maps preserve uniform convergence of function. Thus, to
prove our desired result we need to prove this claim and show that

σ(f(g(y)), f(gn(y))) ⇒ 0

as n → ∞ since g is uniformly continuous function by assumption. So, lets
proceed in two steps: firstly, we will prove that f(gn) converges uniformly, and,
secondly, we prove our claim that uniform convergence is preserved under uni-
formly continuous maps.

First step. Lets fix ε > 0, and note that since fn ⇒ f, there exists Nε ∈ N
such that σ(fn(x), f(x)) < ε for all n > Nε and x ∈ X. We want to show that
f(gn) ⇒ f(g) or, equivalently, since f(g) = idY that f(gn) ⇒ idY . So, recalling
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that f is bijective set x = gn(y) ⇐⇒ fn(x) = y, we have for n sufficiently large

σ(fn(gn(y)), f(gn(y))) < ε ⇐⇒ σ(y, f(gn(y))) < ε.

Since y ∈ Y was arbitrary, we have that f(gn) ⇒ idY .

Second step. Now, lets show that a uniformly continuous map preserves uniform
continuity, i.e. if g : Y → X is uniformly continuous map and {hn(x)} is any
sequence such that hn(x) ⇒ h(x), then g(hn(x)) ⇒ g(h(x)). To see this, fix an
ε > 0 and by uniform continuity of g get δε > 0 such that ρ(g(y1), g(y2)) < ε
whenever σ(y1, y2) < δε for all y1, y2 ∈ Y. Now, use uniform convergence of
{hn(x)} to pick nδ ∈ N sufficiently large to get ρ(hn(x), h(x)) < ε for any
x ∈ X. Therefore, it must be the case that ρ(g(hn(x)), g(h(x))) < ε and since
x was arbitrary, we get our result g(hn(x)) ⇒ g(h(x)).

Finally, setting h = f(gn) and by the reasoning given above we have

g(f(gn)) ⇒ g(f(g)) ⇐⇒ g ◦ (f ◦gn) ⇒ g ◦ (f ◦g) ⇐⇒ (g ◦f)◦gn ⇒ (g ◦f)◦g.

Thus, we get the result we desire that gn ⇒ g.

9. Show that if xn and yn are Cauchy sequences from a metric space X, then
d(xn, yn) converges.

Solution. Because X is not necessarily complete, we cannot rely on the con-
vergence of xn and yn. The fact that the sequences are Cauchy means that for
all ε > 0, there exists an Nx(ε) such that for all m,n ≥ Nx(ε) ⇒ d(xm, xn) < ϵ
and there exists an Ny(ε) such that for all m,n ≥ Ny)ε ⇒ d(ym, yn) < 0. We
will use this to show that the sequence d(xn, yn) is Cauchy, and because R is
complete it must converge.

First let us make note of two facts which come from repeated application of the
triangle inequality:

• d(xn, yn) ≤ d(xn, xm) + d(xm, ym) + d(ym, yn)

• d(xm, ym) ≤ d(xm, xn) + d(xn, yn) + d(yn, ym)

Rearranging these (by isolating the expression d(xm, ym)− d(xn, yn)) yields

−(d(xm, xn) + d(ym, yn)) ≤ d(xm, ym)− d(xn, yn) ≤ d(xm, xn) + d(ym, yn),

or |d(xm, ym) − d(xn, yn)| ≤ d(xm, xn) + d(ym, yn). Now given ε > 0, choose
N(ϵ) > max{Nx(

ε
2
), Ny(

ε
2
)}. Then n ≥ N(ε) ⇒ |d(xm, ym) − d(xn, yn)| ≤

d(xm, xn) + d(ym, yn) < ε
2
+ ε

2
= ε. So d(xn, yn) is Cauchy and consequently

converges.
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