
Econ 204 – Problem Set 2
Due Tuesday, August 5

1. Prove that a convergent sequence in an arbitrary metric space (X, d) has
exactly one cluster point.

Solution The limit of a convergent sequence is a cluster point so a con-
vergent sequence must have at least one cluster point. We will prove that
if c is a cluster point, the sequence cannot converge to a different point.
It follows then, that a sequence with more than one cluster point cannot
converge to any point, because each cluster point excludes all other points
from being the limit. Thus, a convergent sequence must have exactly one
cluster point.

Let {xn} be a convergent sequence in a metric space (X, d), let c be a
cluster point, and consider any x ∈ X such that d(x, c) > 0. We will
show that since c is a cluster point, there will always be an element of
{xn} within ǫ distance of c. However, since x and c are distinct, this point
cannot be arbitrarily close to x, so the sequence does not converge to x.
Given any ǫ > 0, ∀N ∈ N, ∃n > N such that d(c, xn) < ǫ, because c is a

cluster point. For ǫ <
d(c,x)

2 and any value of n that satisfies the above
inequality, we have

d(c, xn) < ǫ <
d(c, x)

2
or

d(c, xn) +
d(c, x)

2
< d(c, x).

Rearranging, we have

d(c, x)

2
< d(c, x)− d(c, xn)

and by construction and the triangle equality

ǫ <
d(P, x)

2
< d(c, x) − d(c, xn) ≤ d(c, xn).

So for any small ǫ and any N ∈ N, we can always find a point later than
N in the sequence within ǫ of c, which means that it is more than ǫ away
from x. Thus, {xn} cannot converge to x. This means that any sequence
that has more than one cluster point cannot converge to any point, so a
convergent sequence has exactly one cluster point.

2. The decimal expansion of 1
7 is 0.142857142857142857 . . . etc. repeating

forever. Suppose we construct the sequence {xn} by, for each n, xn is the
nth decimal place in the infinite expansion of 1

7 . Prove that every sequence
made up of the elements from the set Y = {1; 4; 2; 8; 5; 7} is a subsequence
of {xn}.
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Solution We will prove this by construction. In the sequence {xn}, each
y ∈ Y is repeated an infinite number of times. Put formally, ∀y ∈ Y ,
∀N ∈ N, ∃m > N such that xm = y.

Now let {yn} be a sequence of elements of Y . We will use induction to show
that there we can construct a strictly increasing function f : N → N such
that yn = xf(n). First, we know from above that for y1, ∃m > 1 such that
xm = y1 ∈ Y . So we can define f(1) = m and we have y1 = xm = xf(n).
Now suppose that we can define f(n) such that yn = xf(n). To show that
we can define f(n+1), we again refer to the fact that ∃m > f(n) such that
xm = yn+1 and we define f(n + 1) = m for such an m. This guarantees
that yn+1 = xm = fn+1.

Since f is strictly increasing and yn = xf(n) for all n ∈ N we know that
{yn} is a subsequence of {xn}.

3. Show whether the following are open, closed, both, or neither:

(a) The interval (0, 1) as a subset of R.

Solution Open, not closed eg. 1
n
→ 0.

(b) The interval (0, 1) imbedded in R
2 as the subset {(x, 0) : x ∈ (0, 1)}.

Solution Not open, since it’s boundary is not empty; and not closed,
since the origin is a limit point not in the set.

(c) R as a subset of R.

Solution Open and closed.

(d) R imbedded in R
2 as the subset {(x, 0) : x ∈ R}.

Solution Not open and closed, since R
2 \ R is open and not closed,

the origin is a limit point.

(e) {(x, y, z) : 0 ≤ x+ y ≤ 1, z = 0} as a subset of R3

Solution Not open, closed.

(f) {(x, y) : 0 < x+ y < 1}} as a subset of R2

Solution Open, not closed.
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(g) { 1
n
: n ∈ N} as a subset of R

Solution Not open, not closed.

(h) { 1
n
: n ∈ N} as a subset of the interval (0,∞)

Solution Not open, closed since there are no convergent sequences
in it.

4. Let A be a subset of a metric space. Prove that int(int(A)) = int(A).

Solution Couple of ways to do this one; one is the standard set-equality
proof: int(int(A)) is the largest open set contained within int(A). But
int(A) is itself open; after all, it’s the largest open set contained in A.
Thus int(int(A)) = int(A).

5. Let X denote the set of all bounded infinite sequences of real numbers
{an}

∞

n=1 (hereafter denoted simply as an). Define the “distance” between
two sequences an and bn to be: d(an, bn) =

∑
∞

n=1 2−n|an − bn|. Show
that (X, d) is a metric space.

Solution Elements ofX are sequences of numbers. Put {an}, {bn}, {cn} ∈
X . We check only the triangle inequality as the other two properties of a
metric are obviously satisfied: d({an}, {bn})+d({bn}, {cn}) =

∑
∞

n=1 2−n|an−
bn|+

∑
∞

n=1 2−n|bn−cn| =
∑

∞

n=1 2−n(|an−bn|+|bn−cn|) ≥
∑

∞

n=1 2−n|an−
cn| = d({an}, {cn}), where the last inequality follows from the usual tri-
angle inequality for the real numbers.
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