
Economics 204
Fall 2012
Problem Set 3 Suggested Solutions

1. Give an example of each of the following (and prove that your example
indeed works):

(a) A complete metric space that is bounded but not compact.

(b) A metric space none of whose closed balls are complete.

Solution:

(a) One example of a complete metric space that is bounded but not
compact is R with the discrete metric (i.e. d(x, y) = 1 if x 6= y and
d(x, y) = 0 if x = y). This metric space is complete because since
d(x, y) ∈ {0, 1} for all x, y ∈ R then any Cauchy sequence must
eventually be constant (if d(x, y) < 1 then x = y) and therefore
converges. The metric space is bounded since d(x, y) ≤ 1 for all
x, y ∈ R. Finally, to see that it is not compact consider the open
cover {B1/2(x)}x∈R. Each of these open balls contains only the
point it is centered on and therefore, since R is not finite, the
open cover does not have a finite subcover.

(b) One example of a metric space none of whose closed balls are
complete is Q with the usual Euclidean metric. To see that, start
by fixing arbitrary q ∈ Q and ε > 0. To differentiate between
balls in Q and in R, we’ll use the corresponding subscript. So
consider the closed ball BQ

ε [q] in Q. Note that BQ
ε [q] = BR

ε [q] ∩Q
and BQ

ε (q) = BR
ε (q) ∩Q.

We will take advantage of the fact that both the rational numbers
and the irrational numbers are dense on the real line. In particular,
we will use the well-known property that every open set in R
contains infinitely many rational and infinitely many irrational
numbers. This allows us to pick some irrational p ∈ BR

ε (q) ⊆
BQ
ε [q]. Notice that, as an irrational number, p is not in BQ

ε [q]. The
same property allows us to choose some rational qn ∈ BR

1/n(p) ∩
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BR
ε (q) for all n ∈ N. More specifically, we can do that because

both BR
1/n(p) and BR

ε (q) are open in R and so is their intersection.

Since qn is rational and, as noted above, BQ
ε (q) = BR

ε (q)∩Q, then
the sequence {qn} is entirely contained in BQ

ε (q) ⊆ BQ
ε [q]. This

sequence also converges in R. To see that, observe that for any
ε > 0 we can use the Archimedean property to find some N ∈ N
such that ε > 1/N . But by the way we chose {qn}, we know that
|qn − p| < 1/n ≤ 1/N < ε for all n ≥ N and hence {qn} → p.
Since this sequence converges, it is necessarily Cauchy with respect
to the Euclidean metric. Hence it is Cauchy in our metric space
counterexample (Q with the Euclidean metric). However, it does
not converge there since p - its limit in R - is not in BQ

ε [q]. Thus
the arbitrary closed ball BQ

ε [q] in our metric space is not complete.

2. Let (X, d) be a metric space.

(a) Suppose that for some ε > 0, every open ε-ball in X has compact
closure. Show that X is complete.

(b) Suppose that for each x ∈ X there exists some ε > 0 such that
Bε(x) has compact closure. Show that X need not be complete.

Solution:

(a) Let ε > 0 be such that every ε-ball in X has compact closure and
let {xn} be a Cauchy sequence in X. We know that there exists
some N such that for all m,n ≥ N we have d(xm, xn) < ε. Con-
sider Bε(xN) and its compact (by assumption) closure, Bε(xN).1

Since d(xN , xm) < ε for all m ≥ N we have xn ∈ Bε(xN) ⊂ Bε(xN)
for all n ≥ N . The subsequence of {xn} consisting of all xn such
that n ≥ N is itself clearly a Cauchy sequence and is contained en-
tirely in Bε(xN), which, by hypothesis, is compact. By sequential
compactness, a sequence in a compact set must have a convergent
subsequence, and Theorem 7.8 in de la Fuente establishes that a
Cauchy sequence with a convergent subsequence must itself con-
verge. Thus, the sequence contained in Bε(xN) must converge

1Despite appearance, the closure of an open ε-ball need not be the corresponding closed
ball.
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and therefore the Cauchy sequence {xn} must converge as well.
Therefore, X is complete.

(b) Let X = (0,∞). This set has the property that for each x there
exists an ε > 0 such that Bε(x) has compact closure. For example,
given some x ∈ X we can choose ε = x/2. Then the closure of
Bε(x) =

(
x
2
, 3x

2

)
is
[
x
2
, 3x

2

]
, which is a closed and bounded subset

of the reals and is therefore compact. However, this space is not
a complete metric space because the Cauchy sequence xn = 1/n
does not converge.

3. Show that a metric space (X, d) is compact if and only if every infinite
subset S ⊆ X has a limit point.2 Use the open-cover definition of
compactness to prove the ’only if’ part.

Solution: ⇒: Let (X, d) be a compact metric space. To show that all
its infinite subsets have a limit point, we will prove the contrapositive
- if A has no limit points, then A must be finite.

So suppose A has no limit points. We start by showing that this implies
that X \ A must be open. Since A doesn’t have any limit points, this
implies that for all x ∈ X \ A we can find some open ball Bx 3 x
such that Bx ∩ A = ∅ or, equivalently, Bx ⊆ X \ A. But then the set⋃
x∈X\ABx is also contained in X \ A, while it clearly contains every

x ∈ X \ A. So X \ A =
⋃
x∈X\ABx and thus X \ A must be open as a

union of open balls.

Additionally, since no a ∈ A is a limit point of A we can find open
balls {Ua}a∈A such that Ua ∩ A = {a} for all a ∈ A. Note that {X \
A} ∪ {Ua}a∈A must then be an open cover of X. Since X is compact,
that cover has a finite subcover which must clearly also cover A. Since
X \A is disjoint from A, this implies that A must be covered by finitely
many of the sets Ua. But each of these sets contains only one element
of A. Thus A is a finite set.

⇐: We will show that the property that every infinite set has a limit
point implies sequential compactness of X. Start with some sequence

2Recall from Problem Set 2 that x is a limit point of the set S in a metric space (X, d)
iff every open ball around x contains at least one element of S distinct from x. Note that
a limit point of a set need not be contained in the set itself!
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{xn} in X and consider the set A = {xn : n ∈ N} (i.e. A is the set of
all elements of the sequence {xn}). We want to show that {xn} has
a convergent subsequence. If A is finite, this would imply that there
is some x ∈ A such x = xn for infinitely many values of n. In such a
case, the sequence {xn} has a constant subsequence, which converges
trivially.

Assume instead that A is infinite. This implies that A has a limit point.
Let that be x. Notice that Bε(x) ∩ A must be infinite for all ε > 0. It
is non-empty, since x is a limit point of A. So if a1 ∈ Bε(x) ∩ A, then
we can find some a2 ∈ Bd(x,a1)(x)∩A ⊆ Bε(x)∩A that is different from
a1 since d(x, a2) < d(x, a1). In this manner, we can inductively find
infinitely many distinct elements of Bε(x) ∩ A.

Now let n1 be such that xn1 ∈ B1(x). Since B1/2(x)∩A is infinite by the
above, there must be some n2 > n1 such that xn2 ∈ B1/2(x). (If such
a n2 doesn’t exist, we would have B1/2(x) ∩ A ⊆ {x1, . . . , xn1}, which
contradicts the fact that B1/2(x)∩A is infinite.) In this manner we can
inductively construct a subsequence {xnk

} that converges to x (showing
that this subsequence indeed converges to x would be analogous to the
way we showed that the sequence {qn} converges to p in 1.(b)).

4. Prove or give a counter-example (you don’t need to prove that the sets
from your counterexamples are connected/disconnected) for each of the
following claims:

(a) The interior of a connected set is connected.

(b) The closure of a connected set is connected.

(c) The interior of a disconnected set (i.e. a set that is not connected)
is disconnected.

(d) The closure of a disconnected set is disconnected.

Solution:

(a) The interior of a connected set is not necessarily connected. Con-
sider the following subset of R2:

A = B1[(−1, 0)] ∪B1[(1, 0)].
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The set A is connected (the two closed balls are tangent at (0, 0))
but its interior is

Ao = B1((−1, 0)) ∪B1((1, 0)),

which is disconnected (you can verify that the two open balls in
this union are separated sets).

(b) The closure of a connected set is indeed connected. Let us prove
this by contraposition. Let S be a set with a disconnected clo-
sure. We will show that S must also be disconnected. Since S is
disconnected, we can express it as S = A∪B, where A and B are
separated. I.e. A ∩B = A ∩B = ∅.

Define A1 = A ∩ S and B1 = B ∩ S. Since S ⊆ S = A ∪ B, then
clearly S = A1 ∪ B1. To show that S is disconnected, it suffices
to show that A1 and B1 are separated. Notice that since A ⊆ A
and S ⊆ S, then A1 = A∩ S ⊆ A∩ S. But then A∩ S is a closed
set containing A1 and therefore it also contains A1.

Now note that since A1 ⊆ A ∩ S ⊆ A and B1 = B ∩ S ⊆ B, we
have

A1 ∩B1 ⊆ A ∩B = ∅

and therefore A1 ∩B1 = ∅. Analogously A1 ∩B1 = ∅. Therefore
A1 and B1 are separated and S is disconnected.

(c) The interior of a disconnected set is not necessarily disconnected.
Consider the following subset of R2:

B = B1((0, 0)) ∪ {(2, 2)}.

The set B is disconnected since B1((0, 0)) ∩ {(2, 2)} = {(2, 2)} ∩
B1((0, 0)) = ∅. However, the interior of B is

Bo = B1((0, 0)),

which is a connected set.

(d) The closure of a disconnected set is not necessarily disconnected.
Consider again the counterexample from part (a). The set Ao is
disconnected but its closure, the set A, is connected.
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5. Suppose Γ : X → 2Y is an upper hemicontinuous, compact-valued
correspondence, where X ⊆ Rn, Y ⊆ Rm for some n,m. Show directly
from the definition of upper hemicontinuity that Γ(K) =

⋃
x∈K Γ(x) is

a compact subset of Y for every compact subset K ⊆ X.

Solution: Let {Uλ}λ∈Λ be an open cover of Γ(K). The same collection,
{Uλ}λ∈Λ, is also an open cover for Γ(x) ⊆ Γ(K) for each x ∈ K. Since
Γ is compact-valued, there is a finite subcover {U1

x , . . . , U
nx
x } of Γ(x)

for each x ∈ K. Let Vx = U1
x ∪ · · · ∪Unx

x for each x ∈ K. Note that Vx
is open as the union of open sets.

Define Γ−1(Vx) = {y ∈ X : Γ(y) ⊆ Vx}. Since Γ is upper hemicontin-
uous and Vx is open, then we can find an open ball centered at y for
any y ∈ Γ−1(Vx) such that the ball is entirely contained in Γ−1(Vx).
(This is just a restatement of the definition of upper hemicontinuity.)
Therefore Γ−1(Vx) is open for all x ∈ K. Note that Γ(x) ⊆ Vx since Vx
is just the union of the elements of a cover of Γ(x). Thus x ∈ Γ−1(Vx)
for all x ∈ K and so {Γ−1(Vx)}x∈K is a cover of K.

But K is compact so {Γ−1(Vx)}x∈K has a finite subcover. Let that be
{Γ−1(Vx1), · · · ,Γ−1(Vxk)}. Now we’ll show that the sets U j

xi
for i ∈

{1, . . . , k} are a finite (sub)cover of Γ(K). Let z ∈ Γ(K). Then there
exists some x̃ ∈ K such that z ∈ Γ(x̃). But {Γ−1(Vx1), · · · ,Γ−1(Vxk)}
is a cover of K so by the definition of Γ−1 there exists some xi such
that Γ(x̃) ⊆ Vxi . Since z ∈ Γ(x̃) ⊆ Vxi = U1

x1
∪ · · · ∪ U

nx1
xi , z ∈ U j

xi
for

some j. This proves that the collection of U j
x sets for i ∈ {1, . . . , k} is

indeed a cover of Γ(K).

6. Prove that if the graph of a correspondence is open, then the corre-
spondence is lower hemicontinuous.

Solution: Assume that the correspondence Γ : X → 2Y (with X ⊆ Rn

and Y ⊆ Rm) has an open graph. Let V ⊆ X be an open set such that
for some x ∈ X we have Γ(x) ∩ V 6= ∅. Specifically, let y ∈ Γ(x) ∩ V .
Notice that (x, y) ∈ graph Γ and, since graph Γ is open, there exists
some ε > 0 such that Bε((x, y)) ⊆ graph Γ.

In the next step, we show that Bε(x) × {y} ⊆ Bε((x, y)).3 Indeed let

3Note that Bε(x) ⊆ X, while Bε((x, y)) ⊆ X × Y .
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x′ ∈ Bε(x). Then

‖(x′, y)− (x, y)‖ =
√

(x′1 − x1)2 + · · ·+ (x′n − xn)2 + (y1 − y1)2 + · · ·+ (ym − ym)2

=
√

(x′1 − x1)2 + · · ·+ (x′n − xn)2

= ‖x′ − x‖
< ε

Hence (x′, y) ∈ Bε(x, y) and Bε(x) × {y} ⊆ Bε((x, y)) ⊆ graph Γ. So
y ∈ Γ(x′) for all x′ ∈ Bε(x). Since y ∈ Γ(x) ∩ V ⊆ V we have
y ∈ Γ(x′) ∩ V 6= ∅ for all x′ ∈ Bε(x), proving that Γ is indeed lhc.
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