Problem 1.

Call a metric space (X, d) discrete if every subset $A \subset X$ is open. Prove or provide a counterexample: every discrete metric space is complete.

Solution

Counterexample: consider the metric space $X=\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$ with the usual absolute value metric. First, for every $x=\frac{1}{n} \in X$, if $\varepsilon<\frac{1}{2 n(n+1)}$ then $B_{\varepsilon}(x)=\{x\}$. Hence every singleton is open, and since every subset of X can be written as the union of singletons, every subset of X is open. So X is discrete. Further, the sequence $a_{n}=\frac{1}{n}$ is Cauchy in this metric space but is not convergent.

Remark: Using the same ambient space but the discrete metric induces the same topology (collection of open sets), but under the discrete metric the sequence defined above is not Cauchy!

Problem 2.

A function $f: X \rightarrow Y$ is open if for every open set $A \subset X$, its image $f(A)$ is also open. Show that any continuous open function from \mathbb{R} into \mathbb{R} (with the usual metric) is strictly monotonic.

Solution

A couple of points to note: first, for any $a<b \in \mathbb{R}$, compactness of $[a, b]$ and continuity of f gives us that $f([a, b])$ is compact. Denote the supremum and infimum as $M=\sup f([a, b])$ and $m=\inf f([a, b])$. The extreme value theorem gives us that $M, m \in f([a, b])$, i.e. we can find $p, q \in[a, b]$ such that $f(p)=M$ and $f(q)=n$.

Now, suppose the open mapping f is not strictly monotonic. So for some $a<c<b \in \mathbb{R}$, we have either (i) $f(a) \geq f(c) \leq f(b)$, or (ii) $f(a) \leq f(c) \geq f(b)$. In case (i), if $f(a)=M$ or $f(b)=M$, then $f(c)=M$. So $\sup f((a, b))=M$ as well. But then $f((a, b))$ is not open, since no open set of the entire real line can contain its own supremum. This is because every $B_{\varepsilon}(x)$ in the real number line contains elements both greater and less than x. This contradicts our assumption that f was an open mapping. Case (ii) is analogous. Hence f is strictly monotonic.

Problem 3.

Suppose f, g are continuous functions from metric spaces (X, d) into (Y, ρ). Let E be a dense subset of X (in a metric space, a set A is dense in B if $\bar{A} \supset B$, see correction!). Show that $f(E)$ is dense in $f(X)$. Further, if $f(x)=g(x)$ for every $x \in E$, then $f(x)=g(x)$ for every $x \in X$.

Solution

To show $f(E)$ is dense in $f(X)$, we need to show for every $y \in f(X)$, either $y \in f(E)$ or y is a limit point of E. So choose some $x \in X$ such that $f(x)=y$. Either $x \in E$ (in which case $f(x)=y \in f(E))$ or $x \in \bar{E} \backslash E$. In the latter case there exists a sequence $\left\{x_{n}\right\} \subset E$ such that $x_{n} \rightarrow x . x_{n} \in E \Longrightarrow f\left(x_{n}\right) \in f(E)$ and continuity of f implies $f\left(x_{n}\right) \rightarrow f(x)=y$. Hence y is a limit point of $f(E)$.

Now suppose $f(x)=g(x)$ for every $x \in E$. Choose $x^{\prime} \in X \backslash E$ and any sequence $\left\{x_{n}\right\} \subset E$ such that $x_{n} \rightarrow x^{\prime}$. Then continuity guarantees that $f\left(x_{n}\right) \rightarrow f\left(x^{\prime}\right)$ and $g\left(x_{n}\right) \rightarrow g\left(x^{\prime}\right)$. But since $g\left(x_{n}\right)=f\left(x_{n}\right)$ for every $n \in \mathbb{N}$, the limit must be the same. So $f\left(x^{\prime}\right)=g\left(x^{\prime}\right)$.

Remark: This says that a continuous function is entirely determined by its values on any dense subset of its domain.

Correction: I had originally written "in a metric space, E is dense in X if $\bar{E}=X$." While this is true when X is the ambient metric space, in general a set A is dense in a set B if every element of B is either an element of A or a limit point of A. As written then, the problem is false. A student gave me the following counterexample: let $X=[0,1] \cap \mathbb{Q}$, $Y=[0,1], E=[0,1] \cap \mathbb{Q}$, and let $f: X \rightarrow Y$ be the identity function. f is continuous on X, E is dense in X, and note $f(E)=f(X)=[0,1] \cap \mathbb{Q}$. But $\overline{f(E)}=[0,1] \supsetneq f(X)$.

Problem 4.

Let (X, d) be a metric space.
(a) Suppose that for some $\varepsilon>0$, every ε-ball in X has compact closure. Show that X is complete.
(b) Suppose that for each $x \in X$ there is an $\varepsilon>0$ such that $B_{\varepsilon}(x)$ has compact closure. Show by means of an example that X need not be complete.

Solution

(a) Let $\varepsilon>0$ be such that every ε-ball in X has compact closure and let $\left\{x_{n}\right\}$ be any Cauchy sequence in X. We know that there exists some N such that for all $m, n>N$ we have $d\left(x_{n}, x_{m}\right)<\varepsilon$. If we fix some $m>N$, for every $n>N$ this says that $\left.x_{n} \in B_{\varepsilon}\left(x_{m}\right) \subset \overline{B_{\varepsilon}\left(x_{m}\right)}\right]^{1}$ The subsequence of $\left\{x_{n}\right\}_{n>N}$ is itself clearly a Cauchy sequence and is contained entirely in $\overline{B_{\varepsilon}\left(x_{m}\right)}$. So by sequential compactness, we can find a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}_{n>N}$ such that $x_{n_{k}} \rightarrow x \in \overline{B_{\varepsilon}\left(x_{m}\right)}$. Recall that any Cauchy sequence with a convergent subsequence also converges to the same limit, so we have $x_{n} \rightarrow x \in \overline{B_{\varepsilon}\left(x_{m}\right)} \subset X$. Thus we have shown every Cauchy sequence has a limit contained in X.
(b) Let $X=(0, \infty)$ with the standard metric. Then for every $x \in X$, choose $\varepsilon=\frac{x}{2}$. Then $\overline{B_{\varepsilon}(x)}=\overline{\left(\frac{x}{2}, \frac{3 x}{2}\right)}=\left[\frac{x}{2}, \frac{3 x}{2}\right]$, which is a closed and bounded subset of the (strictly positive) reals and is therefore compact. However, this space is not a complete metric space because the Cauchy sequence $x_{n}=\frac{1}{n}$ does not converge.

[^0]
Problem 5.

Let (X, d) be a compact metric space and let $\Phi(x): X \rightarrow 2^{X}$ be a upper-hemicontinuous, compact-valued correspondence, such that $\Phi(x)$ is non-empty for every $x \in X$. Prove that there exists a compact non-empty subset K of X, such that $\Phi(K) \equiv \bigcup_{x \in K} \Phi(x)=K$.

Solution

There's a lot to show in this one. Let's start here:
Lemma. Let (X, d) be a metric space and let $\Psi(x): X \rightarrow 2^{X}$ be a upper-hemicontinuous, compact-valued and non-empty correspondence. If $K \subset X$ is compact, then $\Psi(K)$ is compact.

Proof. We will use the sequential characterization of upper-hemicontinuity and compactness. Choose any sequence $\left\{y_{n}\right\} \subset \Psi(K)$. So for every y_{n} we can find some x_{n} such that $y_{n} \in \Psi\left(x_{n}\right)$. Compactness of K means we can find a convergent subsequence $x_{n_{k}} \rightarrow x_{0} \in K$. Then consider the corresponding subsequence $\left\{y_{n_{k}}\right\}$. By the sequential characterization of compact-valued and upper-hemicontinuous correspondences we can find a convergent (sub)subsequence $y_{n_{k_{j}}} \rightarrow y_{0} \in \Psi\left(x_{0}\right)$. But this (sub)subsequence is itself a subsequence of $\left\{y_{n}\right\}$, and $x_{0} \in K \Longrightarrow \Psi\left(x_{0}\right) \subset \Psi(K)$. Hence for an arbitrary sequence in $\Psi(K)$ we can find a convergent subsequence whose limit lies in $\Psi(K)$. Thus the set is sequentially compact, hence compact.

Also, note that $A \subset B \Longrightarrow \Psi(A)=\bigcup_{a \in A} \Psi(a) \subset \bigcup_{b \in B} \Psi(b)=\Psi(B)$ for any correspondence Ψ. So let's construct the following sequence of sets:

$$
\begin{aligned}
& K_{0}=X \\
& K_{1}=\Phi\left(K_{0}\right) \\
& \vdots \\
& K_{n}=\Phi\left(K_{n-1}\right)
\end{aligned}
$$

Using our Lemma, we can see inductively that that K_{0}, K_{1}, \ldots are a sequence of nested, nonempty and compact sets. Then Cantor's intersection theorem tells us that $K=\bigcap_{n=0}^{\infty} K_{n}$ is non-empty. Since K is the intersection of closed sets, it is also closed. Then K is a closed subset of a compact metric space, so it is also compact ${ }^{2}$ Now I claim that $K=\Phi(K)$ otherwise why would I be doing all this?

First the easy direction: since $K \subset K_{n}$ for all n, we have $\Phi(K) \subset \Phi\left(K_{n}\right)=K_{n+1}$. Thus $\Phi(K) \subset K$. The other direction is more difficult, and the notation gets a bit cumbersome.

To show $K \subset \Phi(K)$, choose any $y_{0} \in K$. Note for every n, we have $y_{0} \in K_{n+1}=\Phi\left(K_{n}\right)$, so let's construct a sequence $\left\{x_{n}\right\}$ such that $x_{n} \in K_{n}$ and $y_{0} \in \Phi\left(x_{n}\right)$. Since $\left\{x_{n}\right\} \subset K_{0}$, by compactness we can find a convergent subsequence $\left\{x_{n_{j}}\right\}$ with limit x_{0}. From how we have constructed the sequence, $\left\{x_{n}\right\}_{n \geq N}$ is entirely contained in K_{N}. But then for every N we

[^1]can find some J such that $\left\{x_{n_{j}}\right\}_{j \geq J}$ is entirely contained in K_{N}. Hence x_{0} is a limit point of every $K_{N} \Longrightarrow x_{0} \in K_{N} \forall N \Longrightarrow x_{0} \in K$.

Now finally, we have $y_{0} \in \Phi\left(x_{n_{j}}\right)$ for every n_{j}. Then this defines a constant sequence $y_{n_{j}}=y_{0}$, which of course converges to y_{0} (along with all its subsequences). Using the sequential characterization of upper-hemicontinuous compact-valued correspondences, we know that $y_{0} \in \Phi\left(x_{0}\right)$. Since we showed that $x_{0} \in K$, we have $y_{0} \in \Phi(K)$. y_{0} was an arbitrary element of K, we have $K \subset \Phi(K)$.

Problem 6.

Define the correspondence $\Gamma:[0,1] \rightarrow 2^{[0,1]}$ by:

$$
\Gamma(x)= \begin{cases}{[0,1] \cap \mathbb{Q}} & \text { if } x \in[0,1] \backslash \mathbb{Q} \\ {[0,1] \backslash \mathbb{Q}} & \text { if } x \in[0,1] \cap \mathbb{Q}\end{cases}
$$

Show that Γ is not continuous, but it is lower-hemicontinuous. Is Γ upper-hemicontinuous at any rational? At any irrational? Does this correspondence have a closed graph?

Solution

Consider the open set $V=(0,1)$ which contains $\Gamma(q)=[0,1] \backslash \mathbb{Q}$ for every $q \in[0,1] \cap \mathbb{Q}$. Then any open set containing q will also contain an irrational number $x \in[0,1] \backslash \mathbb{Q}$, and $\Gamma(x)=[0,1] \cap \mathbb{Q} \not \subset V$. Hence Γ is not upper-hemicontinuous at any rational number.

Now fix some $y \in[0,1] \backslash \mathbb{Q}$ and consider the open set $V=(-1, y) \cup(y, 2)$. For any $x \in[0,1] \backslash \mathbb{Q}$ we have $\Gamma(x) \subset V$, but every open set containing x will also contain a rational number $q \in[0,1] \cap \mathbb{Q}$ and $\Gamma(q)=[0,1] \backslash \mathbb{Q} \not \subset V$. Thus Γ is nowhere upper-hemicontinuous and hence nowhere continuous.

Next, let V be any open set satisfying $V \cap[0,1] \neq \varnothing$. Then we have $V \cap([0,1] \cap \mathbb{Q}) \neq \varnothing$ and $V \cap([0,1] \backslash \mathbb{Q}) \neq \varnothing$, since every ε-ball in the reals contains both rational and irrational numbers. But then $\Gamma(x) \cap V \neq \varnothing$ for every x in the domain of Γ. This proves that Γ is lower-hemicontinuous.

The correspondence does not have a closed graph. Remember that $\operatorname{gr}(\Gamma)$ is a subset of $[0,1] \times[0,1]$. Fix some $y \in[0,1] \backslash \mathbb{Q}$ and take any sequence $\left\{q_{n}\right\} \subset[0,1] \cap \mathbb{Q}$ such that $q_{n} \rightarrow y$. Then the sequence $\left(q_{n}, y\right) \in \operatorname{gr}(\Gamma)$ but $(y, y) \notin \operatorname{gr}(\Gamma)$. Hence the graph is not closed.

[^0]: ${ }^{1}$ Despite appearance, the closure of an open ε-ball need not be the corresponding closed ball. Try to think of an example.

[^1]: ${ }^{2}$ In fact any closed subset of a compact set is compact.

