
Walker Ray Econ 204 – Problem Set 3 Suggested Solutions August 8, 2014

Problem 1.

Call a metric space (X, d) discrete if every subset A ⊂ X is open. Prove or provide a
counterexample: every discrete metric space is complete.

Solution

Counterexample: consider the metric space X = { 1
n

: n ∈ N} with the usual absolute value
metric. First, for every x = 1

n
∈ X, if ε < 1

2n(n+1)
then Bε(x) = {x}. Hence every singleton

is open, and since every subset of X can be written as the union of singletons, every subset
of X is open. So X is discrete. Further, the sequence an = 1

n
is Cauchy in this metric space

but is not convergent.

Remark: Using the same ambient space but the discrete metric induces the same topol-
ogy (collection of open sets), but under the discrete metric the sequence defined above is not
Cauchy!
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Problem 2.

A function f : X → Y is open if for every open set A ⊂ X, its image f(A) is also open.
Show that any continuous open function from R into R (with the usual metric) is strictly
monotonic.

Solution

A couple of points to note: first, for any a < b ∈ R, compactness of [a, b] and continuity of f
gives us that f([a, b]) is compact. Denote the supremum and infimum as M = sup f([a, b])
and m = inf f([a, b]). The extreme value theorem gives us that M,m ∈ f([a, b]), i.e. we can
find p, q ∈ [a, b] such that f(p) = M and f(q) = n.

Now, suppose the open mapping f is not strictly monotonic. So for some a < c < b ∈ R,
we have either (i) f(a) ≥ f(c) ≤ f(b), or (ii) f(a) ≤ f(c) ≥ f(b). In case (i), if f(a) = M
or f(b) = M , then f(c) = M . So sup f ((a, b)) = M as well. But then f ((a, b)) is not open,
since no open set of the entire real line can contain its own supremum. This is because
every Bε(x) in the real number line contains elements both greater and less than x. This
contradicts our assumption that f was an open mapping. Case (ii) is analogous. Hence f is
strictly monotonic.
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Problem 3.

Suppose f, g are continuous functions from metric spaces (X, d) into (Y, ρ). Let E be a dense
subset of X (in a metric space, a set A is dense in B if A ⊃ B, see correction!). Show that
f(E) is dense in f(X). Further, if f(x) = g(x) for every x ∈ E, then f(x) = g(x) for every
x ∈ X.

Solution

To show f(E) is dense in f(X), we need to show for every y ∈ f(X), either y ∈ f(E) or y is
a limit point of E. So choose some x ∈ X such that f(x) = y. Either x ∈ E (in which case
f(x) = y ∈ f(E)) or x ∈ E \ E. In the latter case there exists a sequence {xn} ⊂ E such
that xn → x. xn ∈ E =⇒ f(xn) ∈ f(E) and continuity of f implies f(xn) → f(x) = y.
Hence y is a limit point of f(E).

Now suppose f(x) = g(x) for every x ∈ E. Choose x′ ∈ X\E and any sequence {xn} ⊂ E
such that xn → x′. Then continuity guarantees that f(xn)→ f(x′) and g(xn)→ g(x′). But
since g(xn) = f(xn) for every n ∈ N, the limit must be the same. So f(x′) = g(x′).

Remark: This says that a continuous function is entirely determined by its values on
any dense subset of its domain.

Correction: I had originally written “in a metric space, E is dense in X if E = X.”
While this is true when X is the ambient metric space, in general a set A is dense in a set
B if every element of B is either an element of A or a limit point of A. As written then,
the problem is false. A student gave me the following counterexample: let X = [0, 1] ∩ Q,
Y = [0, 1], E = [0, 1] ∩ Q, and let f : X → Y be the identity function. f is continuous on
X, E is dense in X, and note f(E) = f(X) = [0, 1] ∩Q. But f(E) = [0, 1] ) f(X).
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Problem 4.

Let (X, d) be a metric space.

(a) Suppose that for some ε > 0, every ε-ball in X has compact closure. Show that X is
complete.

(b) Suppose that for each x ∈ X there is an ε > 0 such that Bε(x) has compact closure.
Show by means of an example that X need not be complete.

Solution

(a) Let ε > 0 be such that every ε-ball in X has compact closure and let {xn} be any
Cauchy sequence in X. We know that there exists some N such that for all m,n > N
we have d(xn, xm) < ε. If we fix some m > N , for every n > N this says that
xn ∈ Bε(xm) ⊂ Bε(xm).1 The subsequence of {xn}n>N is itself clearly a Cauchy
sequence and is contained entirely in Bε(xm). So by sequential compactness, we can
find a subsequence {xnk

} of {xn}n>N such that xnk
→ x ∈ Bε(xm). Recall that any

Cauchy sequence with a convergent subsequence also converges to the same limit, so
we have xn → x ∈ Bε(xm) ⊂ X. Thus we have shown every Cauchy sequence has a
limit contained in X.

(b) Let X = (0,∞) with the standard metric. Then for every x ∈ X, choose ε = x
2
.

Then Bε(x) =
(
x
2
, 3x

2

)
=
[
x
2
, 3x

2

]
, which is a closed and bounded subset of the (strictly

positive) reals and is therefore compact. However, this space is not a complete metric
space because the Cauchy sequence xn = 1

n
does not converge.

1Despite appearance, the closure of an open ε-ball need not be the corresponding closed ball. Try to
think of an example.
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Problem 5.

Let (X, d) be a compact metric space and let Φ(x) : X → 2X be a upper-hemicontinuous,
compact-valued correspondence, such that Φ(x) is non-empty for every x ∈ X. Prove that
there exists a compact non-empty subset K of X, such that Φ(K) ≡

⋃
x∈K Φ(x) = K.

Solution

There’s a lot to show in this one. Let’s start here:

Lemma. Let (X, d) be a metric space and let Ψ(x) : X → 2X be a upper-hemicontinuous,
compact-valued and non-empty correspondence. If K ⊂ X is compact, then Ψ(K) is compact.

Proof. We will use the sequential characterization of upper-hemicontinuity and compact-
ness. Choose any sequence {yn} ⊂ Ψ(K). So for every yn we can find some xn such that
yn ∈ Ψ(xn). Compactness of K means we can find a convergent subsequence xnk

→ x0 ∈ K.
Then consider the corresponding subsequence {ynk

}. By the sequential characterization
of compact-valued and upper-hemicontinuous correspondences we can find a convergent
(sub)subsequence ynkj

→ y0 ∈ Ψ(x0). But this (sub)subsequence is itself a subsequence

of {yn}, and x0 ∈ K =⇒ Ψ(x0) ⊂ Ψ(K). Hence for an arbitrary sequence in Ψ(K) we
can find a convergent subsequence whose limit lies in Ψ(K). Thus the set is sequentially
compact, hence compact.

Also, note that A ⊂ B =⇒ Ψ(A) =
⋃

a∈A Ψ(a) ⊂
⋃

b∈B Ψ(b) = Ψ(B) for any correspon-
dence Ψ. So let’s construct the following sequence of sets:

K0 = X

K1 = Φ(K0)

...

Kn = Φ(Kn−1)

...

Using our Lemma, we can see inductively that that K0, K1, . . . are a sequence of nested, non-
empty and compact sets. Then Cantor’s intersection theorem tells us that K =

⋂∞
n=0Kn is

non-empty. Since K is the intersection of closed sets, it is also closed. Then K is a closed
subset of a compact metric space, so it is also compact.2 Now I claim that K = Φ(K)
otherwise why would I be doing all this?

First the easy direction: since K ⊂ Kn for all n, we have Φ(K) ⊂ Φ(Kn) = Kn+1. Thus
Φ(K) ⊂ K. The other direction is more difficult, and the notation gets a bit cumbersome.

To show K ⊂ Φ(K), choose any y0 ∈ K. Note for every n, we have y0 ∈ Kn+1 = Φ(Kn),
so let’s construct a sequence {xn} such that xn ∈ Kn and y0 ∈ Φ(xn). Since {xn} ⊂ K0, by
compactness we can find a convergent subsequence {xnj

} with limit x0. From how we have
constructed the sequence, {xn}n≥N is entirely contained in KN . But then for every N we

2In fact any closed subset of a compact set is compact.
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can find some J such that {xnj
}j≥J is entirely contained in KN . Hence x0 is a limit point of

every KN =⇒ x0 ∈ KN ∀N =⇒ x0 ∈ K.
Now finally, we have y0 ∈ Φ(xnj

) for every nj. Then this defines a constant sequence
ynj

= y0, which of course converges to y0 (along with all its subsequences). Using the
sequential characterization of upper-hemicontinuous compact-valued correspondences, we
know that y0 ∈ Φ(x0). Since we showed that x0 ∈ K, we have y0 ∈ Φ(K). y0 was an
arbitrary element of K, we have K ⊂ Φ(K).
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Problem 6.

Define the correspondence Γ : [0, 1]→ 2[0,1] by:

Γ(x) =

{
[0, 1] ∩Q if x ∈ [0, 1]\Q
[0, 1]\Q if x ∈ [0, 1] ∩Q

.

Show that Γ is not continuous, but it is lower-hemicontinuous. Is Γ upper-hemicontinuous
at any rational? At any irrational? Does this correspondence have a closed graph?

Solution

Consider the open set V = (0, 1) which contains Γ(q) = [0, 1]\Q for every q ∈ [0, 1] ∩ Q.
Then any open set containing q will also contain an irrational number x ∈ [0, 1] \ Q, and
Γ(x) = [0, 1] ∩Q 6⊂ V . Hence Γ is not upper-hemicontinuous at any rational number.

Now fix some y ∈ [0, 1] \ Q and consider the open set V = (−1, y) ∪ (y, 2). For any
x ∈ [0, 1] \Q we have Γ(x) ⊂ V , but every open set containing x will also contain a rational
number q ∈ [0, 1] ∩ Q and Γ(q) = [0, 1] \ Q 6⊂ V . Thus Γ is nowhere upper-hemicontinuous
and hence nowhere continuous.

Next, let V be any open set satisfying V ∩ [0, 1] 6= ∅. Then we have V ∩ ([0, 1]∩Q) 6= ∅
and V ∩ ([0, 1] \Q) 6= ∅, since every ε-ball in the reals contains both rational and irrational
numbers. But then Γ(x) ∩ V 6= ∅ for every x in the domain of Γ. This proves that Γ is
lower-hemicontinuous.

The correspondence does not have a closed graph. Remember that gr(Γ) is a subset of
[0, 1] × [0, 1]. Fix some y ∈ [0, 1] \ Q and take any sequence {qn} ⊂ [0, 1] ∩ Q such that
qn → y. Then the sequence (qn, y) ∈ gr(Γ) but (y, y) /∈ gr(Γ). Hence the graph is not closed.
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