Economics 204

Fall 2011
Problem Set 4
Due Tuesday, August 7 in Lecture

1. Consider $\mathcal{C}^{n}([0,1])$, the vector space of real-valued n-times differentiable functions with a continuous n-th derivative on the unit interval, and equip it with a supremum norm ${ }^{1}$

$$
\|f\|_{\infty}=\sup _{x \in[0,1]}|f(x)|
$$

(a) Prove that it is a normed vector space. ${ }^{2}$
(b) Define $T_{n}: \mathcal{C}^{n}([0,1]) \rightarrow \mathcal{C}^{n-1}([0,1])$ by $T_{n}(f)=\frac{d^{n}}{d x^{n}}(f)$, i.e. the n-th derivative of f. Prove that T_{n} is a linear mapping.
(c) Find the dimension and provide a basis for ker T_{n}.
(d) Define $S_{1}: \mathcal{C}([0,1]) \rightarrow \mathcal{C}^{1}([0,1])$ by $S_{1}(f)(x)=\int_{0}^{x} f(t) d t$. Show that $T_{1} S_{1}$ is the identity map on $\mathcal{C}([0,1])$ despite the noninvertibility of T_{1}.
2. Show that for any subset U of the vector space, the span of the span equals to the span

$$
\operatorname{span}(S)=\operatorname{span}(\operatorname{span}(S))
$$

3. Let X be a vector space. Let $T: X \rightarrow X$ and $U: X \rightarrow X$ be linear transformations such that $\operatorname{ker} T$ and $\operatorname{ker} U$ are finite-dimensional and U is surjective, that is, $U(X)=X$.
(a) Verify directly that $\operatorname{ker}(T \circ U)$ is a vector subspace of X.
(b) Show that $\operatorname{ker}(T \circ U)$ is finite dimensional and that

$$
\operatorname{dim} \operatorname{ker}(T \circ U)=\operatorname{dim} \operatorname{ker} T+\operatorname{dim} \operatorname{ker} U .
$$

4. Let X and Y be finite-dimensional linear spaces with $\operatorname{dim} X=n$ and $\operatorname{dim} Y=$ m. Let $T: X \rightarrow Y$ be a linear transformation. Show that there are bases V and W such $\operatorname{Mtx}_{W, V}(T)$ is upper-triangular (that is, all elements with $i>j$ are zeros).

[^0]5. Let X be a finite-dimensional vector space with a basis V, and let $T: X \rightarrow X$ be linear transformation.
(a) Show that T is invertible if and only if $\operatorname{Mtx}_{V}(T)$ is invertible. (Hint: Use the commutative diagram.
(b) Show that $\operatorname{Mtx}_{V}\left(T^{-1}\right)=\left(M t x_{V}(T)\right)^{-1}$.
6. Let A, B be $n \times n$ matrices. Prove that $A B$ has the same eigenvalues as $B A$.
7. Similarity
(a) Does similarity constitutes an equivalence relation among square matrices?
(b) Show that similar matrices have the same determinant.
(c) Show that if A is similar to B and A is nonsingular then B is nonsingular and A^{-1} is similar to B^{-1}.
(d) Show that if A and B are similar and λ is a scalar then $A-\lambda I$ and $B-\lambda I$ are similar.

[^0]: ${ }^{1}$ By convention we set $\mathcal{C}^{0}([0,1])=\mathcal{C}([0,1])$, the space of all continuous functions on unit interval.
 ${ }^{2}$ You may take it as given that the set of all real-valued functions defined on $[a, b]$ is a vector space over \mathbf{R}.

