Economics 204
Fall 2011
Problem Set 4
Due Tuesday, August 7 in Lecture

1. Consider $C^n([0,1])$, the vector space of real-valued *n*-times differentiable functions with a continuous *n*-th derivative on the unit interval, and equip it with a supremum norm¹

$$||f||_{\infty} = \sup_{x \in [0,1]} |f(x)|$$

- (a) Prove that it is a normed vector space.²
- (b) Define $T_n: \mathcal{C}^n([0,1]) \to \mathcal{C}^{n-1}([0,1])$ by $T_n(f) = \frac{d^n}{dx^n}(f)$, i.e. the *n*-th derivative of f. Prove that T_n is a linear mapping.
- (c) Find the dimension and provide a basis for ker T_n .
- (d) Define $S_1: \mathcal{C}([0,1]) \to \mathcal{C}^1([0,1])$ by $S_1(f)(x) = \int_0^x f(t) dt$. Show that T_1S_1 is the identity map on $\mathcal{C}([0,1])$ despite the noninvertibility of T_1 .
- 2. Show that for any subset U of the vector space, the span of the span equals to the span

$$\operatorname{span}(S) = \operatorname{span}(\operatorname{span}(S)).$$

- 3. Let X be a vector space. Let $T: X \to X$ and $U: X \to X$ be linear transformations such that $\ker T$ and $\ker U$ are finite-dimensional and U is surjective, that is, U(X) = X.
 - (a) Verify directly that $\ker (T \circ U)$ is a vector subspace of X.
 - (b) Show that $\ker (T \circ U)$ is finite dimensional and that

$$\dim \ker (T \circ U) = \dim \ker T + \dim \ker U.$$

4. Let X and Y be finite-dimensional linear spaces with dim X = n and dim Y = m. Let $T: X \to Y$ be a linear transformation. Show that there are bases V and W such $Mtx_{W,V}(T)$ is upper-triangular (that is, all elements with i > j are zeros).

¹By convention we set $C^0([0,1]) = C([0,1])$, the space of all continuous functions on unit interval.

²You may take it as given that the set of all real-valued functions defined on [a, b] is a vector space over \mathbf{R} .

- 5. Let X be a finite-dimensional vector space with a basis V, and let $T: X \to X$ be linear transformation.
 - (a) Show that T is invertible if and only if $Mtx_V(T)$ is invertible. (Hint: Use the commutative diagram.
 - (b) Show that $Mtx_V(T^{-1}) = (Mtx_V(T))^{-1}$.
- 6. Let A, B be $n \times n$ matrices. Prove that AB has the same eigenvalues as BA.

7. Similarity

- (a) Does similarity constitutes an equivalence relation among square matrices?
- (b) Show that similar matrices have the same determinant.
- (c) Show that if A is similar to B and A is nonsingular then B is nonsingular and A^{-1} is similar to B^{-1} .
- (d) Show that if A and B are similar and λ is a scalar then $A \lambda I$ and $B \lambda I$ are similar.