Econ 204 - Problem Set 4

Due Tuesday, August 12

1. Similarly as it's defined in class, let $C([0,1])$ be the set of all continuous functions whose domain is the unit interval $[0,1]$ and range is \mathbb{R}. Let Φ be the subset consisting of all real polynomials (whose domain is restricted to the unit interval) of degree at most two:

$$
\Phi \equiv\left\{a+b x+c x^{2} \mid a, b, c \in \mathbb{R}\right\}
$$

Note that the set $C([0,1])$ is a vector space over the field of real numbers and the subset Φ is a proper subspace.
(a) Are the vectors $\left\{x,\left(x^{2}-1\right),\left(x^{2}+2 x+1\right)\right\}$ linearly independent over \mathbb{R} ?
(b) Find a Hamel basis for the subspace Φ.
(c) What is the dimension of Φ ? Show that $C([0,1])$ is not finite dimensional!
2. Let be λ a given eigenvalue of A. Let be the eigenspace corresponding to λ the set of the eigenvectors corresponding to λ. Prove that the eigenspace of A for a given eigenvalue is a vectorspace.
3. Let T be an invertible linear transformation. Prove that its inverse is a linear transformation.
4. Let V have finite dimension greater than 1. Prove whether or not the set of non-invertible operators is a subspace of $L(V, V)$.
5. Let A be an nxn matrix with n equal eigenvalues. Show that A is diagonalizable iff A is already diagonal.
6. Suppose that V is finite dimensional and $T, S \in L(V, V)$. Prove that $T S$ is invertible if and only if both T and S are invertible.
7. Prove that λ is an eigenvalue of a matrix A iff it is an eigenvalue of the transpose of A.

