1. Consider $C^n([0,1])$, the vector space of real-valued *n*-times differentiable functions with a continuous *n*-th derivative on the unit interval, and equip it with a supremum norm¹

$$||f||_{\infty} = \sup_{x \in [0,1]} |f(x)|$$

(a) Prove that it is a normed vector space.²

Solution. First, we must show that $C^n([0,1])$ is a vector space. As we already know that the set of all functions mapping [a,b] to \mathbf{R} is a vector space over \mathbf{R} , all we need to show is that $C^n([0,1])$ is a vector subspace of this set. Note that the sum of real-valued n-times differentiable functions with a continuous n-th derivative is real-valued n-times differentiable function with a continuous n-th derivative. Also, note that a scalar multiple of a real-valued n-times differentiable functions with a continuous n-th derivative is real-valued n-times differentiable functions with a continuous n-th derivative $C^n([0,1])$ is closed to vector addition and scalar multiplication, and is therefore a vector space.

Next, we must show that $||f||_{\infty}$ satisfies the properties of a norm. First, $||f||_{\infty}$ is clearly $\geq 0 \ \forall f \in \mathcal{C}^n([0,1])$ as a consequence of the absolute value operator. Second, it is also clear that $||f||_{\infty} = 0 \iff f(x) = 0 \ \forall x \in [0,1]$. Third, we must show that $||f||_{\infty}$ satisfies the triangle inequality. Using (f+g)(x) = f(x) + g(x), we have that

$$\sup_{x \in [0,1]} |f(x) + g(x)| \le \sup_{x \in [0,1]} f(x) + \sup_{x \in [0,1]} g(x)$$

because the right-hand side allows us to pick a different $x \in [0,1]$ for each part of the sum. Thus, the triangle inequality is satisfied, and $C^n([0,1])$ equipped with $||f||_{\infty}$ is a normed vector space.

(b) Define $T_n: \mathcal{C}^n([0,1]) \to \mathcal{C}([0,1])$ by $T_n(f) = \frac{d^n}{dx^n}(f)$, i.e. the *n*-th derivative of f. Prove that T_n is a linear mapping.

Solution. The statement of the problem has $T_n : \mathcal{C}^n([0,1]) \to \mathcal{C}^{n-1}([0,1])$ but it clearly should have been $T_n : \mathcal{C}^n([0,1]) \to \mathcal{C}([0,1])$ since T_n is defined as n-times differentiation. Sorry about that.

Now, the result follows immediately from the linearity of differentiation.

¹By convention we set $C^0([0,1]) = C([0,1])$, the space of all continuous functions on unit interval. ²You may take it as given that the set of all real-valued functions defined on [a, b] is a vector space over \mathbf{R} .

(c) Find the dimension and provide a basis for ker T_n .

Solution. A continuously differentiable function vanishes after taking n derivatives iff it is a polynomial of degree at most n-1 (this can be verified by taking the n-fold antiderivative of the 0 function and noting that antiderivatives are unique up to a constant). It follows that a basis for ker T_n is $\{1, x, x^2, \ldots, x^{n-1}\}$.

(d) Define $S_1: \mathcal{C}([0,1]) \to \mathcal{C}^1([0,1])$ by $S_1(f)(x) = \int_0^x f(t) dt$. Show that T_1S_1 is the identity map on $\mathcal{C}([0,1])$ despite the noninvertibility of T_1 .

Solution. The Fundamental Theorem of Calculus states that if f(x) is continuous on [0,1], then the function F defined by $F(0) = \alpha$, $F(x) - F(0) = \int_0^x f(t) dt$ is differentiable on [0,1], with derivative F'(x) = f(x). It follows that $T_1S_1f(x) = \frac{d}{dx} \left(\int_0^x f(t)dt \right) = f(x)$. T_1S_1 is thus the identity linear map.

2. Show that for any subset U of the vector space, the span of the span equals to the span

$$\operatorname{span}(S) = \operatorname{span}(\operatorname{span}(S)).$$

Solution. We show this by two-way set inclusion.

 $\operatorname{span}(\operatorname{span}(S)) \supseteq \operatorname{span}(S)$ containment follows immediately because for any subset A of some vector space, $\operatorname{span}(A) \subseteq A$.

span (span (S)) \subseteq span (S). Consider m vectors from span (S), namely $c_1^1 s_1^1 + \cdots + c_{n_1}^1 s_{n_1}^1, \ldots, c_1^m s_1^m + \ldots + c_{n_m}^m s_{n_m}^m$ (where superscript refers to the m-th vector and subscript to n-th vector in the linear combination of m-th vector in the span), and note that any linear combination of those

$$\alpha_1(c_1^1s_1^1 + \dots + c_{n_1}^1s_{n_1}^1) + \dots + \alpha_m(c_1^ms_1^m + \dots + c_{n_m}^ms_{n_m}^m)$$

is just a linear combination of elements in S

$$(\alpha_1 c_1^1) s_1^1 + (\alpha_1 c_{n_1}^1) s_{n_1}^1 + (\alpha_m c_1^m) s_1^m + (\alpha_m c_{n_m}^m) s_{n_m}^m$$

which means it is in the span (S).

- 3. Let X be a vector space. Let $T: X \to X$ and $U: X \to X$ be linear transformations such that $\ker T$ and $\ker U$ are finite-dimensional and U is surjective, that is, U(X) = X.
 - (a) Verify directly that $\ker (T \circ U)$ is a vector subspace of X.

Solution. We need to check that linear combination of elements from $\ker(T \circ U)$ belongs again to $\ker(T \circ U)$, but this is immediate given that composition of linear transformations $T \circ U$ is a linear transformation.

(b) Show that $\ker (T \circ U)$ is finite dimensional and that

$$\dim \ker(T \circ U) = \dim \ker T + \dim \ker U.$$

Solution. We know that both ker U and ker T are finite-dimensional, so let $\{v_1, v_2, \ldots, v_m\}$ and (w_1, w_2, \ldots, w_n) be their bases.

Observe that by definition $\ker U \subseteq \ker (T \circ U)$. Thus, dimension of the $\ker (T \circ U)$ have to be at least m, and, at the same time, it can't be greater then m+n, as $T \circ U$ is just a composition of two linear transformations, each with finite-dimensional kernel. Lets show that it equals exactly to m+n, and to this end, lets prove a claim that $\{v_1, v_2, \ldots, v_m\}$ and $\{u_1, u_2, \ldots, u_n\}$ form basis for $\ker (T \circ U)$, where $Uu_i = w_i$ for all $i = 1, \ldots, n$. Such u_i 's clearly exist because U is a surjective.

Firstly, note that $\{u_1, u_2, \ldots, u_n\}$ are clearly independent (follows immediately by applying U to a linear combination of u_i s and recalling that (w_1, w_2, \ldots, w_n) are linear independent. Lets show that $\{v_1, v_2, \ldots, v_m\}$ and $\{u_1, u_2, \ldots, u_n\}$ are linear independent collection of vectors in X. So, take non-zero scalars $\gamma_1, \gamma_2, \ldots, \gamma_n, \gamma_{n+1}, \ldots, \gamma_{m+n}$ and suppose that

$$\gamma_1 \cdot u_1 + \gamma_2 \cdot u_2 + \dots + \gamma_n \cdot u_n + \gamma_{n+1} \cdot v_1 + \dots + \gamma_{m+n} \cdot v_m = 0.$$

Applying U to this linear combination implies that $\gamma_i = 0$ for all $i = 1, \ldots, n$ because $\{u_1, u_2, \ldots, u_n\}$ are linearly independent. Also, $\gamma_i = 0$ for all $i = n + 1, \ldots, n + m$ is also immediate since $\{v_1, v_2, \ldots, v_m\}$ are the basis and we get the result we desire.

4. Let X and Y be finite-dimensional linear spaces with dim X = n and dim Y = m. Let $T: X \to Y$ be a linear transformation. Show that there are bases V and W such $Mtx_{W,V}(T)$ is upper-triangular (that is, all elements with i > j are zeros).

Solution. We will prove this result, also known as "Schur's triangulation," in following three steps.

Step 1. Let Z be a subspace of X and $V_Z = (v_1, \ldots, v_k)$ be a base for Z. Because Z is a subspace we can extend V_Z to V, where V is a basis of X, such that $V_Z \subseteq V$, i.e. $V = (v_1, \ldots, v_k, v_{k+1}, \ldots, v_n)$.

Now, let x be an arbitrary vector in Z then

$$crd_{V_Z}(x) = \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_k \end{pmatrix} \in \mathbf{R^k}$$

but when x viewed as an element of X it has following representation

$$crd_V(x) = \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_k \\ 0 \\ \vdots \\ 0 \end{pmatrix} \in \mathbf{R^n}.$$

Step 2. Lets consider a linear transformation $T: X \to Y$ along with its restriction $T|_Z: Z \to Y$. The rangespace of $T|_Z$ is a subspace of Y, so lets fix a basis $W_{T|_Z}$, which for ease of notation we will denote by U and then extend it to a basis W for Y.

Now, lets observe that

$$Mtx_{U,V_Z}(T|_Z) = \begin{pmatrix} \alpha_{1,1} & \dots & \alpha_{1,n} \\ \vdots & \ddots & \vdots \\ \alpha_{r,1} & \dots & \alpha_{r,n} \end{pmatrix}$$

and

$$Mtx_{W,V}(T) = \begin{pmatrix} \alpha_{1,1} & \dots & \alpha_{1,k} & \alpha_{1,k+1} & \dots & \alpha_{1,n} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \alpha_{r,1} & \dots & \alpha_{r,k} & \alpha_{r,k+1} & \dots & \alpha_{r,n} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & \alpha_{m,k+1} & \dots & \alpha_{m,n} \end{pmatrix}$$

because of the reasoning given in step 1.

Step 3. Lets $V = (v_1, \ldots, v_n)$ be a basis for X. Observe that the spans

$$\operatorname{span}(\{0\}) = \{0\} \subset \operatorname{span}(\{v_1\}) \subset \operatorname{span}(\{v_1, v_2\}) \subset \cdots \subset \operatorname{span}(V) = V$$

form a strictly increasing chain of subsets.

Now, take any linear map $T: X \to Y$ and note that if we take

$$Y_i = \operatorname{span}(\{T(v_1), \dots, T(v_i)\})$$

then Y_i will form an increasing chain of subsets of Y

$$Y_0 = \{0\} \subset Y_1 \subset \cdots \subset Y_m = Y$$

with a property that $T(\text{span}(\{v_1,\ldots,v_i\})) \subset Y_i$ for each i and the desired result follows immediately.

- 5. Let X be a finite-dimensional vector space with a basis V, and let $T: X \to X$ be linear transformation.
 - (a) Show that T is invertible if and only if $Mtx_V(T)$ is invertible. (Hint: Use the commutative diagram.)

Solution.

 (\Longrightarrow) Since T is invertible $TT^{-1}(x)=x$ for all $x\in X$. Using matrix representation of x with respect to V we get

$$crd_V(TT^{-1}(x)) = crd_V(x) \implies Mtx_V(T)Mtx_V(T^{-1})crd_V(x) = crd_V(x)$$

for all vectors of the form $crd_V(x)$.

Similarly, $T^{-1}T(x) = x$ implies

$$Mtx_V(T^{-1})Mtx_V(T)crd_V(x) = crd_V(x).$$

Therefore, $Mtx_V(T)$ is invertible.

 (\Leftarrow) Since $Mtx_V(T)$ is invertible lets define

$$S(x) = crd_V^{-1} \circ Mtx_V(T)^{-1} \circ crd_V(x),$$

which is clearly invertible. By the commutative diagram,

$$ST(x) = crd_V^{-1} \circ Mtx_V(T)^{-1} \circ crd_V(T(x)) = crd_V^{-1} \circ crd_V(x) = x$$

and

$$TS(x) = T(crd_V^{-1} \circ Mtx_V(T)^{-1} \circ crd_V(x)) = x$$

for every $x \in X$. Therefore, TS = ST = id and T is invertible.

(b) Show that $Mtx_V(T^{-1}) = (Mtx_V(T))^{-1}$.

Solution. If T invertible $TT^{-1}(x) = x$ for all $x \in X$. This implies directly

$$Mtx_V(T)Mtx_V(T^{-1}) = id.$$

Since $Mtx_V(T)$ is invertible we get $Mtx_V(T^{-1}) = (Mtx_V(T))^{-1}$.

6. Let A, B be $n \times n$ matrices. Prove that AB has the same eigenvalues as BA.

Solution. Let λ is an eigenvalue of AB, which means $ABx = \lambda x$ for some non-zero vector x. Let multiply both sides of inequality by B and consider y = Bx. There are two possible cases.

Case y = 0. Then $Ay = ABx = \lambda x = 0$, and since x was non-zero by assumption this means $\lambda = 0$. Thus we have

$$det(BA - \lambda I) = det(BA) = det(B) det(A) =$$

$$= det(A) det(B) = det(AB) = det(AB - \lambda I) = 0$$

and λ is an eigenvalue of BA.

Case $y \neq 0$. Then λ is clearly an eigenvalue of BA with y as an eigenvector and we are done.

7. Similarity

(a) Does similarity constitutes an equivalence relation among square matrices?

Solution. Yes, it is an equivalence relation. First, $I = I^{-1}$ and for every $n \times n$ matrix A, $A = AI = IAI = I^{-1}AI$, so A is similar to itself. Second, if $A = P^{-1}BP$, then $PAP^{-1} = PP^{-1}BPP^{-1} = B$, so if A is similar to B then B is similar to A.

Finally, suppose matrices A and B are similar, and that matrices B and C are similar. We must show that A and C are similar. Let $B = P^{-1}AP$, and let $C = Q^{-1}BQ$. Substituting, we have $C = Q^{-1}P^{-1}APQ$. Define R = PQ. By Theorem 4.12 in de la Fuente, R is invertible and $R^{-1} = Q^{-1}P^{-1}$. Thus, $C = R^{-1}AR$, and A is similar to C.

(b) Show that similar matrices have the same determinant.

Solution. The key to this proof is the fact that the determinant of the product of any matrices is equal to the product of the matrices' determinants. Start by letting A be similar to B, so that $A = P^{-1}BP$. Then $|A| = |P^{-1}||B||P|$. Then, because scalar multiplication is commutative, we have $|A| = |B||P^{-1}||P| = |B|$.

(c) Show that if A is similar to B and A is nonsingular then B is nonsingular and A^{-1} is similar to B^{-1} .

Solution. A is similar to B, so let $B = P^{-1}AP$. Post-multiplying both sides of this equality by $P^{-1}A^{-1}P$ (which we can do since both A and P are invertible), we find

$$B(P^{-1}A^{-1}P) = P^{-1}A^{-1}PP^{-1}AP = P^{-1}A^{-1}AP = P^{-1}P = I.$$

We have therefore found a matrix $Z = P^{-1}A^{-1}P$ such that BZ = I. Therefore, B is invertible and non-singular, and $B^{-1} = Z = P^{-1}A^{-1}P$, so that B^{-1} is similar to A^{-1} .

(d) Show that if A and B are similar and λ is a scalar then $A - \lambda I$ and $B - \lambda I$ are similar.

Solution. Let $A = P^{-1}BP$. Then $A - \lambda I = P^{-1}BP - \lambda I = P^{-1}BP - \lambda P^{-1}IP$, where the last equality follows from $P^{-1}IP = I$. Applying the distributive property of matrix multiplication, we therefore find that $A - \lambda I = P^{-1}(B - \lambda I)P$, so that $A - \lambda I$ and $B - \lambda I$ are similar.