
Economics 204
Fall 2012
Problem Set 4 Suggested Solutions

1. Consider Cn([0, 1]), the vector space of real-valued n-times differentiable func-
tions with a continuous n-th derivative on the unit interval, and equip it with
a supremum norm1

‖f‖∞ = sup
x∈[0,1]

|f(x)|

(a) Prove that it is a normed vector space.2

Solution. First, we must show that Cn([0, 1]) is a vector space. As we al-
ready know that the set of all functions mapping [a, b] to R is a vector space
over R, all we need to show is that Cn([0, 1]) is a vector subspace of this
set. Note that the sum of real-valued n-times differentiable functions with
a continuous n-th derivative is real-valued n-times differentiable function
with a continuous n-th derivative. Also, note that a scalar multiple of a
real-valued n-times differentiable functions with a continuous n-th deriva-
tive is real-valued n-times differentiable functions with a continuous n-th
derivative Cn([0, 1]) is closed to vector addition and scalar multiplication,
and is therefore a vector space.

Next, we must show that ||f ||∞ satisfies the properties of a norm. First,
||f ||∞ is clearly ≥ 0 ∀f ∈ Cn([0, 1]) as a consequence of the absolute value
operator. Second, it is also clear that ||f ||∞ = 0⇐⇒ f(x) = 0 ∀x ∈ [0, 1].
Third, we must show that ||f ||∞ satisfies the triangle inequality. Using
(f + g)(x) = f(x) + g(x), we have that

sup
x∈[0,1]

|f(x) + g(x)| ≤ sup
x∈[0,1]

f(x) + sup
x∈[0,1]

g(x)

because the right-hand side allows us to pick a different x ∈ [0, 1] for each
part of the sum. Thus, the triangle inequality is satisfied, and Cn([0, 1])
equipped with ||f ||∞ is a normed vector space.

(b) Define Tn : Cn([0, 1])→ C([0, 1]) by Tn(f) = dn

dxn (f), i.e. the n-th derivative
of f . Prove that Tn is a linear mapping.

Solution. The statement of the problem has Tn : Cn([0, 1])→ Cn−1([0, 1])
but it clearly should have been Tn : Cn([0, 1])→ C([0, 1]) since Tn is defined
as n-times differentiation. Sorry about that.

Now, the result follows immediately from the linearity of differentiation.

1By convention we set C0([0, 1]) = C([0, 1]), the space of all continuous functions on unit interval.
2You may take it as given that the set of all real-valued functions defined on [a, b] is a vector

space over R.
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(c) Find the dimension and provide a basis for ker Tn.

Solution. A continuously differentiable function vanishes after taking
n derivatives iff it is a polynomial of degree at most n − 1 (this can be
verified by taking the n-fold antiderivative of the 0 function and noting
that antiderivatives are unique up to a constant). It follows that a basis
for ker Tn is {1, x, x2, . . . , xn−1}.

(d) Define S1 : C([0, 1])→ C1([0, 1]) by S1(f)(x) =
∫ x

0
f(t) dt. Show that T1S1

is the identity map on C([0, 1]) despite the noninvertibility of T1.

Solution. The Fundamental Theorem of Calculus states that if f(x) is
continuous on [0, 1], then the function F defined by F (0) = α, F (x) −
F (0) =

∫ x

0
f(t) dt is differentiable on [0, 1], with derivative F ′(x) = f(x).

It follows that T1S1f(x) = d
dx

(∫ x

0
f(t)dt

)
= f(x). T1S1 is thus the identity

linear map.

2. Show that for any subset U of the vector space, the span of the span equals to
the span

span (S) = span ( span (S)).

Solution. We show this by two-way set inclusion.

span ( span (S)) ⊇ span (S) containment follows immediately because for any
subset A of some vector space, span (A) ⊆ A.

span ( span (S)) ⊆ span (S). Consider m vectors from span (S), namely c11s
1
1 +

· · · + c1n1
s1n1

, . . . , cm1 s
m
1 + . . . + cmnm

smnm
(where superscript refers to the m-th

vector and subscript to n-th vector in the linear combination of m-th vector in
the span), and note that any linear combination of those

α1(c
1
1s

1
1 + · · ·+ c1n1

s1n1
) + · · ·+ αm(cm1 s

m
1 + . . . + cmnm

smnm
)

is just a linear combination of elements in S

(α1c
1
1)s

1
1 + (α1c

1
n1

)s1n1
+ (αmc

m
1 )sm1 + (αmc

m
nm

)smnm

which means it is in the span (S).

3. Let X be a vector space. Let T : X → X and U : X → X be linear transforma-
tions such that kerT and kerU are finite-dimensional and U is surjective, that
is, U(X) = X.

(a) Verify directly that ker (T ◦ U) is a vector subspace of X.

Solution. We need to check that linear combination of elements from
ker (T ◦ U) belongs again to ker (T ◦ U), but this is immediate given that
composition of linear transformations T ◦ U is a linear transformation.
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(b) Show that ker (T ◦ U) is finite dimensional and that

dim ker(T ◦ U) = dim ker T + dim ker U.

Solution. We know that both kerU and kerT are finite-dimensional, so
let {v1, v2, . . . , vm} and (w1, w2, . . . , wn) be their bases.

Observe that by definition kerU ⊆ ker (T ◦ U). Thus, dimension of the
ker (T ◦ U) have to be at least m, and, at the same time, it can’t be
greater then m + n, as T ◦ U is just a composition of two linear trans-
formations, each with finite-dimensional kernel. Lets show that it equals
exactly to m+n, and to this end, lets prove a claim that {v1, v2, . . . , vm}
and {u1, u2, . . . , un} form basis for ker (T ◦ U), where Uui = wi for all
i = 1, . . . , n. Such ui’s clearly exist because U is a surjective.

Firstly, note that {u1, u2, . . . , un} are clearly independent (follows imme-
diately by applying U to a linear combination of uis and recalling that
(w1, w2, . . . , wn) are linear independent. Lets show that {v1, v2, . . . , vm}
and {u1, u2, . . . , un} are linear independent collection of vectors in X. So,
take non-zero scalars γ1, γ2, . . . , γn, γn+1, . . . , γm+n and suppose that

γ1 · u1 + γ2 · u2 + · · ·+ γn · un + γn+1 · v1 + · · ·+ γm+n · vm = 0.

Applying U to this linear combination implies that γi = 0 for all i =
1, . . . , n because {u1, u2, . . . , un} are linearly independent. Also, γi = 0
for all i = n + 1, . . . , n + m is also immediate since {v1, v2, . . . , vm} are
the basis and we get the result we desire.

4. Let X and Y be finite-dimensional linear spaces with dimX = n and dimY =
m. Let T : X → Y be a linear transformation. Show that there are bases V
and W such MtxW,V (T ) is upper-triangular (that is, all elements with i > j
are zeros).

Solution. We will prove this result, also known as “Schur’s triangulation,” in
following three steps.

Step 1. Let Z be a subspace of X and VZ = (v1, . . . , vk) be a base for Z.
Because Z is a subspace we can extend VZ to V, where V is a basis of X, such
that VZ ⊆ V, i.e. V = (v1, . . . , vk, vk+1, . . . , vn).

Now, let x be an arbitrary vector in Z then

crdVZ
(x) =

 β1
...
βk

 ∈ Rk
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but when x viewed as an element of X it has following representation

crdV (x) =



β1
...
βk
0
...
0


∈ Rn.

Step 2. Lets consider a linear transformation T : X → Y along with its
restriction T |Z : Z → Y. The rangespace of T |Z is a subspace of Y, so lets fix a
basis WT |Z , which for ease of notation we will denote by U and then extend it
to a basis W for Y.

Now, lets observe that

MtxU, VZ
(T |Z) =

 α1,1 . . . α1,n
...

. . .
...

αr,1 . . . αr,n


and

MtxW,V (T ) =


α1,1 . . . α1,k α1,k+1 . . . α1,n

...
. . .

...
...

. . .
...

αr,1 . . . αr,k αr,k+1 . . . αr,n
...

. . .
...

...
. . .

...
0 . . . 0 αm,k+1 . . . αm,n


because of the reasoning given in step 1.

Step 3. Lets V = (v1, . . . , vn) be a basis for X. Observe that the spans

span ({0}) = {0} ⊂ span ({v1}) ⊂ span ({v1, v2}) ⊂ · · · ⊂ span (V ) = V

form a strictly increasing chain of subsets.

Now, take any linear map T : X → Y and note that if we take

Yi = span ({T (v1), . . . , T (vi)})

then Yi will form an increasing chain of subsets of Y

Y0 = {0} ⊆ Y1 ⊆ · · · ⊆ Ym = Y

with a property that T (span ({v1, . . . , vi})) ⊂ Yi for each i and the desired result
follows immediately.
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5. Let X be a finite-dimensional vector space with a basis V , and let T : X → X
be linear transformation.

(a) Show that T is invertible if and only if MtxV (T ) is invertible. (Hint: Use
the commutative diagram.)

Solution.
(=⇒) Since T is invertible TT−1(x) = x for all x ∈ X. Using matrix
representation of x with respect to V we get

crdV (TT−1(x)) = crdV (x) =⇒
MtxV (T )MtxV (T−1)crdV (x) = crdV (x)

for all vectors of the form crdV (x).

Similarly, T−1T (x) = x implies

MtxV (T−1)MtxV (T )crdV (x) = crdV (x).

Therefore, MtxV (T ) is invertible.

(⇐=) Since MtxV (T ) is invertible lets define

S(x) = crd−1V ◦MtxV (T )−1 ◦ crdV (x),

which is clearly invertible. By the commutative diagram,

ST (x) = crd−1V ◦MtxV (T )−1 ◦ crdV (T (x)) = crd−1V ◦ crdV (x) = x

and
TS(x) = T (crd−1V ◦MtxV (T )−1 ◦ crdV (x)) = x

for every x ∈ X. Therefore, TS = ST = id and T is invertible.

(b) Show that MtxV (T−1) = (MtxV (T ))−1.

Solution. If T invertible TT−1(x) = x for all x ∈ X. This implies directly

MtxV (T )MtxV (T−1) = id.

Since MtxV (T ) is invertible we get MtxV (T−1) = (MtxV (T ))−1.

6. Let A, B be n× n matrices. Prove that AB has the same eigenvalues as BA.

Solution. Let λ is an eigenvalue of AB, which means ABx = λx for some
non-zero vector x. Let multiply both sides of inequality by B and consider
y = Bx. There are two possible cases.

Case y = 0. Then Ay = ABx = λx = 0, and since x was non-zero by assumption
this means λ = 0. Thus we have

det(BA− λI) = det(BA) = det(B) det(A) =

= det(A) det(B) = det(AB) = det(AB − λI) = 0

5
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and λ is an eigenvalue of BA.

Case y 6= 0. Then λ is clearly an eigenvalue of BA with y as an eigenvector and
we are done.

7. Similarity

(a) Does similarity constitutes an equivalence relation among square matrices?

Solution. Yes, it is an equivalence relation. First, I = I−1 and for every
n×n matrix A, A = AI = IAI = I−1AI, so A is similar to itself. Second,
if A = P−1BP , then PAP−1 = PP−1BPP−1 = B, so if A is similar to B
then B is similar to A.

Finally, suppose matrices A and B are similar, and that matrices B and
C are similar. We must show that A and C are similar. Let B = P−1AP ,
and let C = Q−1BQ. Substituting, we have C = Q−1P−1APQ. Define
R = PQ. By Theorem 4.12 in de la Fuente, R is invertible and R−1 =
Q−1P−1. Thus, C = R−1AR, and A is similar to C.

(b) Show that similar matrices have the same determinant.

Solution. The key to this proof is the fact that the determinant of the
product of any matrices is equal to the product of the matrices’ determi-
nants. Start by letting A be similar to B, so that A = P−1BP . Then
|A| = |P−1||B||P |. Then, because scalar multiplication is commutative,
we have |A| = |B||P−1||P | = |B|.

(c) Show that if A is similar to B and A is nonsingular then B is nonsingular
and A−1 is similar to B−1.

Solution. A is similar to B, so let B = P−1AP . Post-multiplying both
sides of this equality by P−1A−1P (which we can do since both A and P
are invertible), we find

B(P−1A−1P ) = P−1A−1PP−1AP = P−1A−1AP = P−1P = I.

We have therefore found a matrix Z = P−1A−1P such that BZ = I.
Therefore, B is invertible and non-singular, and B−1 = Z = P−1A−1P , so
that B−1 is similar to A−1.

(d) Show that if A and B are similar and λ is a scalar then A−λI and B−λI
are similar.

Solution. Let A = P−1BP . Then A − λI = P−1BP − λI = P−1BP −
λP−1IP , where the last equality follows from P−1IP = I. Applying the
distributive property of matrix multiplication, we therefore find that A−
λI = P−1(B − λI)P , so that A− λI and B − λI are similar.
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