
Economics 204
Fall 2013
Problem Set 4 Suggested Solutions

1. Suppose that V is finite dimensional and U is a subspace of V such that dimU =
dimV. Prove that U = V.

Solution. Let {u1, . . . , un} be a basis of U . Thus, n = dimU, and by hy-
pothesis we also have n = dimV. Therefore, {u1, . . . , un} is linear independent
collection of vectors in V. Theorem 9 in Lecture Notes 8 on page 4 states that
{u1, . . . , un} is a basis of V. In particular, every vector in V is a linear combi-
nation of {u1, . . . , un}. Because for all i we have ui ∈ U, it must be the case
that U = V. We are done.

2. T : M2×3 → M2×2 is defined by

T

(
a11 a12 a13
a21 a22 a23

)
=

(
2a11 − a12 a13 + 2a12

0 0

)
Determine ker(T ), dim ker(T ) and rank(T ). Is T one-to-one, onto, or neither?

Solution. We start by noting that

ker(T ) = {m ∈ M3×2 : 0}

=

{(
a11 a12 a13
a21 a22 a23

)
: a12 = 2a11, a13 = −4a11

}
.

It is easy to see that kerT is a linear subspace and its dimension is 4, an example
of the basis of kerT for instance is a following set of vectors{(

1 2 −4
0 0 0

)
,

(
0 0 0
1 0 0

)
,

(
0 0 0
0 1 0

)
,

(
0 0 0
0 0 1

)}
,

where linear independence of those vectors and spanning property follow imme-
diately. By the Rank-Nullity Theorem Rank(T ) = 2. Note, since ker(T ) ̸= {⃗0}
T is not one-to-one, or, alternatively, note that the basis for ker(T ) given above
comprises of all distinct vectors but they all map into 0⃗.

Since Rank(T ) = 2 < dim(M2×2) T is not onto. Alternatively, there are no

m ∈ M2×2 of the form

(
0 0
r 0

)
for some r ̸= 0.
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3. Prove the Theorem 1 in Lecture 9, that is, if dimX < ∞ then for any subspace
W of X we must have

dimW + dim(X�W ) = dimX

by, first, showing that a basis {w1, w2, . . . , wm} of W can be extended to the
basis {w1, w2, . . . , wn} of X, and then proving that {[wm+1], [wm+2], . . . , [wn]}
is the basis of X�W.

Solution. We will follow suggestion given in the problem.

Step 1. Given a basis {w1, ..., wm} of W, lets show that it can be extended it
to a basis {w1, ..., wn} of X. So, let dimW = m, dimX = n. If m = n then
we’re done, since then the linearly independent set of vectors {w1, ..., wm} will
be a basis for X.

Now, if m < n then {w1, ..., wm} is not a basis of X, and hence span{w1, ..., wm}
is not all of X. That is, there exists a vector in X but not span{w1, ..., wm}; call
it wm+1. We claim that {w1, ..., wm+1} is still linearly independent; the proof
(by contradiction) is short and is left as an exercise. Now if m+1 = n then we
are done, but if m+ 1 < n then repeat this same argument and add a wm+2 to
the set. We can repeat this argument at most n−m times and the basis of X
that we wind up with will have {w1, ..., wm} as its first m vectors.

Step 2. Lets show that {[wm+1], ..., [wn]} is a basis of X/W , by showing first
that its a linearly independent set. Let αm+1, . . . , αn be scalars such that∑n

j=m+1 αj[wj] = [0]; [0] is the zero vector in X/W , and is, in fact, equal to W .

Now
∑n

j=m+1 αj[wj] =
[∑n

j=m+1 αjwj

]
= [0] implies that

∑n
j=m+1 αjwj ∈ W ,

but unless each αj = 0 this is a contradiction since wm+1, . . . , wn are by con-
struction elements not in the span of a basis of W, and hence neither of linear
combinations of wm+1, . . . , wn. Therefore, {[wm+1], . . . , [wn]} is linearly inde-
pendent.

Next, lets show that it spans X/W . Let [x] ∈ X/W . We have two cases to
consider. First, if x ∈ W then we have 0[wm+1] + · · · + 0[wn] = [0] = [x].
Second, if x ̸∈ W , then note that we can certainly write x =

∑n
j=1 αjwj for

some α1, . . . , αn. Now
∑m

j=1 αjwj ∈ W , so
∑n

j=m+1 αjwj ∈ [x], and as you

should verify, a ∈ [b] ⇔ [a] = [b]. Therefore
[∑n

j=m+1 αjwj

]
= [x], yielding∑n

j=m+1 αj [wj] = [x] as desired and we are done.

4. Derive a transformation, T : R2 → R2, which reflects a point across the line
y = 5x.

(a) First, calculate the action of T on the points (1, 5) and (−5, 1).

Solution. Since (1, 5) lies on the line y = 5x it is unchanged by T so we
know that T (1, 5) = (1, 5). The slope of the line y = 5x is 5 and the slope
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of the vector (−5, 1) is −1/5. Because the vector is perpendicular with the
line, reflecting it across the line takes is to (5,−1), so T (−5, 1) = (5,−1).

(b) Next, write the matrix representation of T using these two vectors as a
basis.

Solution. Let

V = {v1, v2} =

{(
1
5

)
,

(
−5
1

)}
.

From the first question we know that T (v1) = v1 = 1 · v1 + 0 · v2 and
T (v2) = −v2 = 0 · v1 − 1 · v2. So we write

P = MtxV (T ) =

(
1 0
0 −1

)
.

(c) Find S and S−1, the matrices that change coordinates under this basis to
standard coordinates and back again.

Solution. We can easily find S, the matrix that changes coordinates in V
to coordinates under the standard basis, E, because we already expressed
the basis vectors v1 and v2 in terms of standard basis coordinates. We
have

S = MtxE,V (id) = ( v1 v2 ) =

(
1 −5
5 1

)
.

The matrix that changes coordinates from E to V is simply the inverse of
S, thus

S−1 = MtxV,E(id) =
1

26

(
1 5
−5 1

)
=

(
1/26 5/26
−5/26 1/26

)
.

(d) Write the matrix representation of T in the standard basis.

Solution. One way to find MtxE(T ) would be to calculate T (e1) and
T (e2) put the coordinates of these vectors in the columns of MtxE(T ).
However, since we are not given a formula for T—just a description of
its action—it takes a little work to find T (e1) and T (e2). (The reason
we use V as a basis is because it the action of T on these basis vectors
is straightforward.) Instead, we will apply the commutative diagram by
changing coordinates to V , applying T , and changing back to E. In other
words,

MtxE(T ) = MtxE,V (id) ·MtxV (T ) ·MtxV,E(id) = SPS−1
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and this equals(
1 −5
5 1

)(
1 0
0 −1

)(
1/26 5/26
−5/26 1/26

)
=

(
−24/26 10/26
10/26 24/26

)
.

(e) Use the point (−5, 1) to verify the commutative diagram.

Solution. We established in (a) that T (−5, 1) = (5,−1) so now we will
verify that multiplying SPS−1(−5, 1)⊤ yields the same result. Writing out
this computation, we have

SPS−1(−5, 1)⊤ = (SP )(S−1(−5, 1)⊤) =

= (SP )(0, 1)⊤ = S(P (0, 1)⊤) = S(0,−1)⊤,

and this equals (
1 −5
5 1

)(
0
−1

)
= (5,−1)⊤.

5. Prove the following useful facts about eigenvalues:

(a) Eigenvalues of any upper or lower triangular matrix A are the diagonal
entries of A

Solution. Let us denote the diagonal elements ofA by {a11, a22, a33, . . . , ann}.
Using induction on the size of the matrix, it is easy to show by directly
computing the determinant through Laplace expansion that the determi-
nant of any triangular (or diagonal) matrix is the product of its diagonal
elements. Thus the characteristic polynomial for A is:

det(A− λI) = (a11 − λ)(a22 − λ) · · · (ann − λ),

so the eigenvalues are the aii’s.

(b) Show that if λ is an eigenvalue of A then λk is an eigenvalue of Ak for
k ∈ N

Solution. We use induction to show not only that λk is an eigenvalue of
Ak, but also that any eigenvector v corresponding to the eigenvalue λ for
A also corresponds to λk for Ak. The base step (k = 1) is trivial. For the
induction step, assume Av = λv and Akv = λkv. Now consider Ak+1v:

Ak+1v = Ak(Av) = Ak(λv) = λ(Akv) = λ(λkv) = λk+1v

(c) Show that if λ is an eigenvalue of the invertible matrix A then 1/λ is an
eigenvalue of A−1.

Solution. Av = λv. Premultiply both sides by A−1:

A−1Av = A−1λv ⇒ v = λA−1v ⇒ A−1v = (1/λ)v
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6. Let A be the n × n matrix which has zeros on the main diagonal and ones
everywhere else. Find the eigenvalues and eigenspaces of A and compute det(A).

Solution. Let denote i the n−dimensional column vector of 1s. Note that
matrix A has a very simple representation in terms of i A = i � i⊤ − I, where I
is n × n identity matrix and · � · denotes an inner product of two vectors. To
find eigenvalues and eigenvectors of A set Ax = λx for some non-zero vector x.
We have

i � i⊤ x− x = (i⊤x)i− x = λx

which yields (i⊤x)i = (λ − 1)x. Because (i⊤x) is just a number, eigenvector x
must be either perpendicular or parallel to i. In the latter case, without any
loss of generality, we can assume that x = i, thus, i � i⊤ i = (λ − 1)i, which
implies that λ = n − 1. This gives a 1− dimensional eigenspace, spanned by i
with eigenvalue λ = n− 1.

In the former case, since x is perpendicular to i, we have i � x = 0 and x must
be in the (n− 1)−dimensional null space of rank one matrix of ones, i � i⊤. thus

Ax = (i � i⊤ − I)x = −Ix = −x.

Thus, it is easy to see that the eigenvalue associated with this eigenspace is
−1 and its multiplicity is n − 1. Finally, determinant is just the product of
eigenvalues, so we have det(A) = (−1)n−1(n− 1).

7. The Supremum Norm on L(Rk, Rk)

(a) Compute the norms of the following matrices:

A =

[
1 2
2 1

]
, B =

[
1 1
1 1

]
, AB =

[
3 3
3 3

]
Solution. There are multiple ways to find the norm of a matrix. In
this example, the most straightforward approach is to use the fact that
||A|| is equal to the square root of the largest eigenvalue of ATA. In fact,
things get even better: since each of these matrices is symmetric, we know
that ATA = A2, and also from problem right above we know that for any
eigenvalue λ of A, λ2 is an eigenvalue of ATA. So all we really need to
do is find the eigenvalues of A is pick the one with the largest absolute
value. Doing this either by inspection or by finding the characteristic
polynomial yields that the absolute value of the largest eigenvalue of A is
3. So ||A|| = 3. Using the same approach, the largest eigenvalue of B is 2.
So ||B|| = 2.

Finally notice that C = 3B =⇒ ||C|| = 3||B|| =⇒ ||C|| = 6.
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(b) Prove that for any A,B ∈ L(Rk, Rk) we have the following inequality:

∥AB∥ ≤ ∥A∥ ∥B∥

Show that non-strict inequality is really what we need by finding a pair
of matrices such that the inequality is strict, and another pair of nonzero
matrices such that equality holds.

Solution. First note that, if ||B|| = 0, then B is the zero matrix and
the weak inequality holds trivially (with equality). Otherwise, the proof
follows below. The “trick” to get from line 4 to line 5 takes advantage of
the fact that B maps elements of Rk back into Rk, so any vector in the
image of B must also be in Rk; thus, we have

sup
Bx ̸=0

||A(Bx)||
||Bx||

≤ sup
x̸=0

||Ax||
||x||

Now,

||AB|| = sup
{x ̸=0}

||AB(x)||
||x||

= sup
{x:Bx ̸=0}

||ABx||
||x||

· ||Bx||
||Bx||

= sup
{x:Bx ̸=0}

||ABx||
||Bx||

· ||Bx||
||x||

≤ sup
{x:Bx ̸=0}

||A(Bx)||
||Bx||

· sup
{x ̸=0}

||Bx||
||x||

≤ sup
{x ̸=0}

||Ax||
||x||

· sup
{x ̸=0}

||Bx||
||x||

≤ ||A|| ||B||.

For the second part of the question, the following matrices generate the
strict inequality:

A =

[
1 1
0 1

]
, B =

[
3 1
1 3

]
.

Omitting the work, we can find that ||A|| =
√

3+
√
5

2
and ||B|| = 4.

Thus,

AB =

[
4 4
1 3

]
and ||AB|| =

√
7 +

√
17

2
,

and we have ||AB|| < ||A|| · ||B||.
For an example of equality, simply let A be the identity matrix, and B be
any non-zero matrix of the same dimension as A. ||A|| = 1 and AB = B,
so ||AB|| = ||B|| and the equality holds.
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(c) Prove that the subset of L(Rk, Rk) consisting of all invertible linear op-
erators is open under the topology induced by the supremum norm. You
may want to employ the following steps:

i. Step 1: Let A,B ∈ L(Rk, Rk). Show that if A is invertible and B
satisfies:

∥B − A∥ ∥A−1∥ < 1

Then B is one-to-one.

Solution. All of the hard work here is in step 1. First, choose some
invertible operator A ∈ L(Rk,Rk) and observe that:

||A−1|| = sup
{y ̸=0}

||A−1y||
||y||

= sup
{Ax ̸=0}

||A−1Ax||
||Ax||

≥ ||A−1Ax||
||Ax||

∀x ∈Rk

Note that the y can be interchanged with the Ax without decreasing
the supremum since A is an invertible matrix, so given any y, ∃x such
that Ax = y. Now, because for any vector x, ||x|| = ||A−1Ax||, it
follows that: ||x|| ≤ ||A−1|| · ||Ax||. Using this fact, for any operator
B satisfying the inequality in the hypothesis, we may write

||x|| ≤ ||A−1|| ||Ax||
≤ ||A−1|| ||(A−B +B)x||
≤ ||A−1|| (||(A−B)x||+ ||Bx||)

For the last inequality we have merely used the triangle inequality
for the Euclidean norm. Next, we apply the fact that ||(A − B)x|| ≤
||A−B|| · ||x||. Using the above string of inequalities, this then implies

||x|| − ||A−1||·||(A−B)x|| ≤ ||A−1||·||Bx||
||x|| − ||A−1||·||A−B||·||x|| ≤ ||A−1||·||Bx||

⇒ ||x||·1− ||A−1||·||A−B||
||A−1||

≤ ||Bx||

By hypothesis, 1 > ||A−1|| · ||A − B||. Hence, the left-hand side of
the above inequality is strictly greater than 0, whenever x ̸= 0. This
implies that ||Bx|| > 0, if x ̸= 0. Hence, ker(B) = {0} and B is a
one-to-one linear map, completing step 1.

ii. Step 2: Show that if B is one-to-one, then B is onto (and hence
invertible).

Solution. Next, since B : Rk → Rk, we know by the rank-nullity
theorem that dim(ker(B)) + rank(B) = k. Since ker(B) = {0},⇒
rank(B) = k. Thus, B is also onto, and B is an invertible linear map.
This completes step 2.
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iii. Step 3: Show that there is a ball with center at A comprised entirely
of invertible operators.

Solution. We may now restate our hypothesis as follows: Given some
invertible A ∈ L(Rk,Rk), we have that ∀B ∈ L(Rk,Rk) such that
||B−A|| < 1

||A−1|| , B is also invertible. It follows that the ball of radius

1/||A−1|| around an invertible linear map A consists entirely of invert-
ible linear maps. Hence, for all invertible operators A ∈ L(Rk,Rk),
we can find an ε > 0 (specifically, ε = 1/||A−1||), such that the ε-ball
around A contains only invertible operators. Therefore, the space of
all invertible linear maps from Rk to Rk is an open subspace of the
space L(Rk,Rk).
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