Econ 204 - Problem Set 4

Due Tuesday, August 12

1. Similarly as it's defined in class, let $C([0,1])$ be the set of all continuous functions whose domain is the unit interval $[0,1]$ and range is \mathbb{R}. Let Φ be the subset consisting of all real polynomials (whose domain is restricted to the unit interval) of degree at most two:

$$
\Phi \equiv\left\{a+b x+c x^{2} \mid a, b, c \in \mathbb{R}\right\}
$$

Note that the set $C([0,1])$ is a vector space over the field of real numbers and the subset Φ is a proper subspace.
(a) Are the vectors $\left\{x,\left(x^{2}-1\right),\left(x^{2}+2 x+1\right)\right\}$ linearly independent over \mathbb{R} ?
Solution Apply the usual test for independence of vectors. Solve for A, B, and C such that

$$
A x+B\left(x^{2}-1\right)+C\left(x^{2}+2 x+1\right)=0
$$

Equating like powers of x we obtain the following system in the three unknowns:

$$
\begin{gathered}
B+C=0 \\
A+2 C=0 \\
C-B=0
\end{gathered}
$$

$\Rightarrow C=B=-B \Rightarrow C=B=0 \Rightarrow A=0$.
Thus, the three vectors are linearly independent over \mathbb{R}.
(b) Find a Hamel basis for the subspace Φ.

Solution Clearly, $\left\{1, x, x^{2}\right\}$ is linearly independent and spans Φ, so it is a Hamel basis and $\operatorname{dim} \Phi=3$. Also, since the set of vectors in (a) is linearly independent and contains three elements, it is a basis.

What is the dimension of Φ ? Show that $C([0,1])$ is not finite dimensional!

Solution The dimensions are three and ∞, respectively. To see that the dimension of Θ is infinite note that the set of vectors $\left\{1, x, x^{2}, x^{3}, \ldots\right\}$ form a linearly independent set over \mathbb{R}. Since Θ contains an infinite linearly indpendent set of vectors and the number of linearly independent elements of a vector space cannot exceed the dimension, the dimension of Θ must be infinite.
2. Let be λ a given eigenvalue of A. Let be the eigenspace corresponding to λ the set of the eigenvectors corresponding to λ. Prove that the eigenspace of A for a given eigenvalue is a vectorspace.
Solution Given A and an eigenvalue for A, λ, the eigenspace of A is the set of all vectors v such that $A v=\lambda v$. Call this set V, and consider $x, y \in V$, and $\alpha \in \mathbb{R}$. We need to show that $x+y \in V$, and that $\alpha x \in V$. First, consider $A(x+y)=A x+A y=\lambda x+\lambda y=\lambda(x+y)$. So $A(x+y)=$ $\lambda(x+y)$, and $x+y \in V$.
Next, consider $A(\alpha x)=\alpha A x=\alpha \lambda x=\lambda \alpha x$. So $A(\alpha x)=\lambda(\alpha x)$, and $\alpha x \in V$.
3. Let T be an invertible linear transformation. Prove that its inverse is a linear transformation.

Solution Let be $T: X \rightarrow Y$ and $y_{1}, y_{2} \in Y, S$ the inverse of T. Need to show that $S\left(\alpha y_{1}+\beta y_{2}\right)=\alpha S\left(y_{1}\right)+\beta S\left(y_{2}\right)$. Note that since T is invertible there exists some $x_{1}, x_{2} \in X$ such that $T\left(x_{1}\right)=y_{1}$ and $T\left(x_{2}\right)=y_{2}$, hence $S\left(y_{1}\right)=x_{1}$ and $S\left(y_{2}\right)=x_{2}$. Then using that T is linear

$$
\begin{aligned}
S\left(\alpha y_{1}+\beta y_{2}\right) & =S\left(\alpha T\left(x_{1}\right)+\beta T\left(x_{2}\right)\right)= \\
& =S\left(T\left(\alpha x_{1}\right)+T\left(\beta x_{2}\right)\right)= \\
& =S\left(T\left(\alpha x_{1}+\beta x_{2}\right)\right)= \\
& =\alpha x_{1}+\beta x_{2}= \\
& =\alpha S\left(y_{1}\right)+\beta S\left(y_{2}\right)
\end{aligned}
$$

4. Let V have finite dimension greater than 1 . Prove whether or not the set of non-invertible operators is a subspace of $L(V, V)$.
Solution Nope, not a subspace. Fix $\operatorname{dim}(V)=n$, let $v=\left(v_{1}, \ldots, v_{n}\right)$ be in V , and define T and S by $T v=\left(v_{1}, \ldots, v_{n-1}, 0\right), S v=\left(0, \ldots, 0, v_{n}\right)$. Then both T and S are non-invertible but $T+S$ has $(T+S) v=T v+S v=$ $\left(v_{1}, \ldots, v_{n-1}, 0\right)+\left(0, \ldots, 0, v_{n}\right)=\left(v_{1}, \ldots, v_{n}\right)=v$. Thus $T+S$ is the identity mapping, which is invertible, and hence the set in question is not closed under addition.
5. Let A be an nxn matrix with n equal eigenvalues. Show that A is diagonalizable iff A is already diagonal.
Solution Since $A \cdot \lambda I_{n x n}=\lambda I_{n x n} \cdot A$. If A is diagonalizable, there exists an S such that: $A=S^{-1} \cdot \lambda I_{n x n} \cdot S$, where λ is the one eigenvalue (with multiplicity n) of A. But then $\lambda I_{n x n}$ is scalar, hence $A=S^{-1} \cdot \lambda I_{n x n} \cdot S=$ $S^{-1} S \cdot \lambda I_{n x n}=\lambda I_{n x n}$.
6. Suppose that V is finite dimensional and $T, S \in L(V, V)$. Prove that $T S$ is invertible if and only if both T and S are invertible.
Solution Assume that $T S$ is invertible. We will first check that S is invertible. Note that by the Rank-Nullity Theorem it suffices to check
that $\operatorname{Ker}(S)=0$. If $\exists w \in V, w \neq 0$, then we find: $T S(w)=T(0)=0$. Hence, $T S$ has non-zero kernel, a contradiction. Thus, S is invertible. If T is not invertible put $v \in V$ with $T v=0(v \neq 0)$. Since S is invertible, it is surjective. Thus, we can find a $w \in V$ such that $S(w)=v$, which implies that $T S(w)=T(v)=0$. This, again, contradicts the invertibility of $T S$. We now prove the converse. Assuming that T, S are both invertible we wish to check that $T S$ is invertible. We again check the sufficient condition that $\operatorname{Ker}(T S)=0$. To see that this is the case, we note that if $w \in \operatorname{Ker}(T S) \Rightarrow S(w)=0$ or, putting $v=S(w) \neq 0, T(v)=0$. Thus, if both $\operatorname{Ker}(T)$ and $\operatorname{Ker}(S)=0$, then $\operatorname{Ker}(T S)=0$.
7. Prove that λ is an eigenvalue of a matrix A iff it is an eigenvalue of the transpose of A.
Solution This is the result of the facts that first A and A^{T} has the same rank. And second that $(A-\lambda I)^{T}=A^{T}-\lambda A^{T}$ then $\operatorname{det}(A-\lambda I)=0$ iff $\operatorname{det}\left(A^{T}-\lambda I^{T}\right)=0$.
