
Econ 204 – Problem Set 4
Due Tuesday, August 12

1. Similarly as it’s defined in class, let C([0, 1]) be the set of all continuous
functions whose domain is the unit interval [0, 1] and range is R. Let Φ be
the subset consisting of all real polynomials (whose domain is restricted
to the unit interval) of degree at most two:

Φ ≡ { a+ bx+ cx2 | a, b, c ∈ R}

Note that the set C([0, 1]) is a vector space over the field of real numbers
and the subset Φ is a proper subspace.

(a) Are the vectors { x, (x2−1), (x2+2x+1) } linearly independent over
R ?

Solution Apply the usual test for independence of vectors. Solve for
A,B, andC such that

Ax+B(x2 − 1) + C(x2 + 2x+ 1) = 0

Equating like powers of x we obtain the following system in the three
unknowns:

B + C = 0

A+ 2C = 0

C −B = 0

⇒ C = B = −B ⇒ C = B = 0 ⇒ A = 0.
Thus, the three vectors are linearly independent over R.

(b) Find a Hamel basis for the subspace Φ.

Solution Clearly, {1, x, x2} is linearly independent and spans Φ, so
it is a Hamel basis and dimΦ = 3. Also, since the set of vectors in
(a) is linearly independent and contains three elements, it is a basis.

What is the dimension of Φ ? Show that C([0, 1]) is not finite dimen-
sional!

Solution The dimensions are three and ∞, respectively. To see that
the dimension of Θ is infinite note that the set of vectors {1, x, x2, x3, ...}
form a linearly independent set over R. Since Θ contains an infinite
linearly indpendent set of vectors and the number of linearly inde-
pendent elements of a vector space cannot exceed the dimension, the
dimension of Θ must be infinite.
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2. Let be λ a given eigenvalue of A. Let be the eigenspace corresponding to λ

the set of the eigenvectors corresponding to λ. Prove that the eigenspace
of A for a given eigenvalue is a vectorspace.

Solution Given A and an eigenvalue for A, λ, the eigenspace of A is the
set of all vectors v such that Av = λv. Call this set V , and consider
x, y ∈ V, and α ∈ R. We need to show that x+ y ∈ V , and that αx ∈ V .

First, consider A(x+ y) = Ax+Ay = λx+λy = λ(x+ y). So A(x+ y) =
λ(x + y), and x+ y ∈ V .

Next, consider A(αx) = αAx = αλx = λαx. So A(αx) = λ(αx), and
αx ∈ V .

3. Let T be an invertible linear transformation. Prove that its inverse is a
linear transformation.

Solution Let be T : X → Y and y1, y2 ∈ Y , S the inverse of T . Need to
show that S(αy1+βy2) = αS(y1)+βS(y2). Note that since T is invertible
there exists some x1, x2 ∈ X such that T (x1) = y1 and T (x2) = y2, hence
S(y1) = x1 and S(y2) = x2. Then using that T is linear

S(αy1 + βy2) = S(αT (x1) + βT (x2)) =

= S(T (αx1) + T (βx2)) =

= S(T (αx1 + βx2)) =

= αx1 + βx2 =

= αS(y1) + βS(y2)

4. Let V have finite dimension greater than 1. Prove whether or not the set
of non-invertible operators is a subspace of L(V, V ).

Solution Nope, not a subspace. Fix dim(V ) = n, let v = (v1, ..., vn) be in
V, and define T and S by Tv = (v1, ..., vn−1, 0), Sv = (0, ..., 0, vn). Then
both T and S are non-invertible but T + S has (T + S)v = Tv + Sv =
(v1, ..., vn−1, 0)+(0, ..., 0, vn) = (v1, ..., vn) = v. Thus T +S is the identity
mapping, which is invertible, and hence the set in question is not closed
under addition.

5. Let A be an nxn matrix with n equal eigenvalues. Show that A is diago-
nalizable iff A is already diagonal.

Solution Since A·λInxn = λInxn·A. If A is diagonalizable, there exists
an S such that: A = S−1·λInxn·S, where λ is the one eigenvalue (with
multiplicity n) of A. But then λInxn is scalar, hence A = S−1·λInxn·S =
S−1S·λInxn = λInxn.

6. Suppose that V is finite dimensional and T, S ∈ L(V, V ). Prove that TS
is invertible if and only if both T and S are invertible.

Solution Assume that TS is invertible. We will first check that S is
invertible. Note that by the Rank-Nullity Theorem it suffices to check
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that Ker(S) = 0. If ∃w ∈ V,w 6= 0, then we find: TS(w) = T (0) = 0.
Hence, TS has non-zero kernel, a contradiction. Thus, S is invertible. If T
is not invertible put v ∈ V with Tv = 0 (v 6= 0). Since S is invertible, it is
surjective. Thus, we can find a w ∈ V such that S(w) = v, which implies
that TS(w) = T (v) = 0. This, again, contradicts the invertibility of
TS. We now prove the converse. Assuming that T, S are both invertible
we wish to check that TS is invertible. We again check the sufficient
condition that Ker(TS) = 0. To see that this is the case, we note that if
w ∈ Ker(TS) ⇒ S(w) = 0 or, putting v = S(w) 6= 0, T (v) = 0. Thus, if
both Ker(T ) and Ker(S) = 0, then Ker(TS) = 0.

7. Prove that λ is an eigenvalue of a matrix A iff it is an eigenvalue of the
transpose of A.

Solution This is the result of the facts that first A and AT has the same
rank. And second that (A − λI)T = AT − λAT then det(A − λI) = 0 iff
det(AT − λIT ) = 0.
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