1. Let A and B be $n \times n$ matrices such that $A^{2}=A$ and $B^{2}=B$. Suppose that A and B have the same rank. Prove that A and B are similar.
2. Identify which of the following matrices can be diagonalized and provide the diagonalization. If you claim that a diagnoalization does not exist, prove it.

$$
\left[\begin{array}{ll}
2 & -3 \\
2 & -5
\end{array}\right],\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right],\left[\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 3 \\
1 & 1 & -1
\end{array}\right],\left[\begin{array}{ccc}
3 & -1 & -2 \\
2 & 0 & -2 \\
2 & -1 & -1
\end{array}\right]
$$

3. Let A and B be $n \times n$ matrices. Prove or disprove each of the following statements:
(a) If A and B are diagonalizable, so is $A+B$.
(b) If A and B are diagonalizable, so is $A \cdot B$.
(c) If $A^{2}=A$ then A is diagonalizable.
4. Prove that if $f: \mathbf{R} \rightarrow \mathbf{R}$ is differentiable, then $\operatorname{Im}\left(f^{\prime}\right)$ is an interval (possibly a singleton).
5. Some practice with implicit function theorem
(a) Define $f: \mathbf{R}^{3} \rightarrow \mathbf{R}$ by

$$
f\left(x, y_{1}, y_{2}\right)=x^{2} y_{1}+e^{x}+y_{2} .
$$

Show that $f(0,1,-1)=0$ and $D_{1} f(0,1,-1) \neq 0$. Thus, there exists a differentiable function g in some neighborhood of $(1,-1)$ of \mathbf{R}^{2}, such that $g(1,-1)=0$ and

$$
f\left(g\left(y_{1}, y_{2}\right), y_{1}, y_{2}\right)=0
$$

Compute $\operatorname{Dg}(1,-1)$.
(b) Let $x=x(y, z), y=y(x, z)$ and $z=z(x, y)$ be functions that are implicitly defined by equation $F(x, y, z)=0$. Prove that

$$
\frac{\partial x}{\partial y} \frac{\partial y}{\partial z} \frac{\partial z}{\partial x}=-1
$$

6. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be \mathcal{C}^{1} function and let

$$
\begin{aligned}
& u=f(x) \\
& v=-y+x f(x) .
\end{aligned}
$$

If $f^{\prime}\left(x_{0}\right) \neq 0$, show that this transformation is locally invertible in the neighborhood of $\left(x_{0}, y_{0}\right)$ and that the inverse has the form

$$
\begin{aligned}
x & =g(u) \\
y & =-v+u g(u) .
\end{aligned}
$$

7. Using Taylor's formula approximate following two functions

$$
f(x, y)=(1+x)^{m}(1+y)^{n} \quad \text { and } \quad f(x, y)=\frac{\cos x}{\sin y} .
$$

up to the second order terms. Estimate approximation error.

