Econ 204 – Problem Set 5

Due Friday, August 15, 2014

1. Let A_1, A_2, \ldots and L be square matrices from $\mathbb{R}^{n \times n}$. We say that $\{A_k\}$ converges to L if

$$\lim_{k \to \infty} (A_k)_{ij} = L_{ij} \ \forall 1 \le i \le n, 1 \le j \le n$$

i.e. each element $(A_k)_{ij}$ converges to L_{ij} . Prove or provide a counterexample to the following:

- a) If $\lim_{m\to\infty} A^m$ exists, then every eigenvalue of A satisfies $-1 < \lambda \le 1$.
- b) If A is diagonalizable and every eigenvalue of A satisfies $-1<\lambda\leq 1,$ then $\lim_{m\to\infty}A^m$ exists.
- c) If every eigenvalue of A satisfies $-1 < \lambda \le 1$, then $\lim_{m \to \infty} A^m$ exists.
- 2. In section we saw that the set of invertible matrices, $\Omega(\mathbb{R}^{n\times n}) = \{A \in \mathbb{R}^{n\times n} : A^{-1} \text{ exists}\}$, is an open subset of $\mathbb{R}^{n\times n}$. Prove that $\Omega(\mathbb{R}^{n\times n})$ is dense in $\mathbb{R}^{n\times n}$.
- 3. For the following functions, determine at what points the derivative exists, and if the derivative function is continuous (you may use that the derivative of $\sin x$ is $\cos x$):

$$f(x) = \begin{cases} x \cdot \sin\left(\frac{1}{x}\right) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}, \quad g(x) = \begin{cases} x^2 \cdot \sin\left(\frac{1}{x}\right) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$

- 4. Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function. Prove that $f'(\mathbb{R})$, the image of the derivative function, is an interval (possibly a singleton).
- 5. If $a_0 + \frac{1}{2}a_1 + \cdots + \frac{1}{n}a_{n-1} + \frac{1}{n+1}a_n = 0$, where a_0, \ldots, a_n are real constants, prove that the equation

$$a_0 + a_1 x + \dots + a_{n-1} x^{n-1} + a_n x^n = 0$$

has at least one real root between 0 and 1.

6. Assume that $f:[0,\infty)\to\mathbb{R}$ is differentiable for all x>0, and $f'(x)\to0$ as $x\to\infty.$ Prove

$$\lim_{x \to \infty} [f(x+1) - f(x)] \to 0.$$