Econ 204 - Problem Set 5

Due Friday, August 15, 2014

1. Let A_{1}, A_{2}, \ldots and L be square matrices from $\mathbb{R}^{n \times n}$. We say that $\left\{A_{k}\right\}$ converges to L if

$$
\lim _{k \rightarrow \infty}\left(A_{k}\right)_{i j}=L_{i j} \forall 1 \leq i \leq n, 1 \leq j \leq n
$$

i.e. each element $\left(A_{k}\right)_{i j}$ converges to $L_{i j}$. Prove or provide a counterexample to the following:
a) If $\lim _{m \rightarrow \infty} A^{m}$ exists, then every eigenvalue of A satisfies $-1<\lambda \leq 1$.
b) If A is diagonalizable and every eigenvalue of A satisfies $-1<\lambda \leq 1$, then $\lim _{m \rightarrow \infty} A^{m}$ exists.
c) If every eigenvalue of A satisfies $-1<\lambda \leq 1$, then $\lim _{m \rightarrow \infty} A^{m}$ exists.
2. In section we saw that the set of invertible matrices, $\Omega\left(\mathbb{R}^{n \times n}\right)=\{A \in$ $\mathbb{R}^{n \times n}: A^{-1}$ exists $\}$, is an open subset of $\mathbb{R}^{n \times n}$. Prove that $\Omega\left(\mathbb{R}^{n \times n}\right)$ is dense in $\mathbb{R}^{n \times n}$.
3. For the following functions, determine at what points the derivative exists, and if the derivative function is continuous (you may use that the derivative of $\sin x$ is $\cos x$):

$$
f(x)=\left\{\begin{array}{ll}
x \cdot \sin \left(\frac{1}{x}\right) & \text { if } x \neq 0 \\
0 & \text { if } x=0
\end{array}, \quad g(x)= \begin{cases}x^{2} \cdot \sin \left(\frac{1}{x}\right) & \text { if } x \neq 0 \\
0 & \text { if } x=0\end{cases}\right.
$$

4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function. Prove that $f^{\prime}(\mathbb{R})$, the image of the derivative function, is an interval (possibly a singleton).
5. If $a_{0}+\frac{1}{2} a_{1}+\cdots+\frac{1}{n} a_{n-1}+\frac{1}{n+1} a_{n}=0$, where a_{0}, \ldots, a_{n} are real constants, prove that the equation

$$
a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}+a_{n} x^{n}=0
$$

has at least one real root between 0 and 1 .
6. Assume that $f:[0, \infty) \rightarrow \mathbb{R}$ is differentiable for all $x>0$, and $f^{\prime}(x) \rightarrow 0$ as $x \rightarrow \infty$. Prove

$$
\lim _{x \rightarrow \infty}[f(x+1)-f(x)] \rightarrow 0
$$

