Economics 204
Fall 2012
Problem Set 5 Suggested Solutions

1. (a) Let f be defined for all real z, and suppose that

(@) = fy)] < (z —y)°

for all z,y € R. Prove that f is constant.

(b) Let the real-valued function f on the open subset U of R be
differentiable at the point zg € U. If o, 8 € R, compute

lim f(wo +ah) — f(zo + 5’1)'
h—0 h

Solution:

(a) We know |f(z) — f(y)| < (z — y)? = |z — y|?>. Therefore for all
x # y we have

‘f(x) - f(y)’ [f(z) — f(y)]
z—y

= < |z —yl.
|z =y

Fix some y € R. Then, letting x — y we get

0 < lim f(a:)—f(y)‘ < lim |z —y| = 0.
=y =y T—Y
So limg—y ‘%ﬁ@)’ = 0 and therefore limx%y%g(y) = 0.

This implies f'(y) =0 for all y € R.

But this means that f is a constant function. To see that, note
that the existence of the derivative of f at all points of its domain
means that we can apply the mean value theorem to get f(b) —
f(a) = f'(¢)(b—a) for all a,b € R and some ¢ between them. But
f'(c) =0 and so f(a) = f(b).



lim f(zo +ah) — f(zo + Bh)

h—0 h
i f(xo + ah) — f(x0) + f(z0) — f(w0 + Bh)
0 h
i <f(ﬂco +ah) — f(zo)  f(zo+ Bh) — f(ﬂﬂo))
h—0 h h
L f(@o + ah) — f(zo)  ,f(zo+ Bh) — f(z0)
= pm (O‘ ah -p h )

. (f(xo + ah) — f(z0) . (f(zo+ Bh) — f(x0)
:O‘}ﬂ%( : ah 0)‘%5’%( : h 0)
=af'(x0) — Bf'(wo)
=(a = B)f'(x0),

where the penultimate equality follows from the fact that h — 0
implies ah — 0 and Sh — O.

(a) If
ai Gn—1 Qn
ap+ — +---+ + =0,
077 n o on+l
where ag, ..., a, are real constants, prove that the equation

ap + a1 + -+ ap_12" 1t + ayaz™ =0

has at least one real root between 0 and 1.

(b) Assume that f : [0,00) — R is differentiable for all x > 0, and
f'(x) = 0 as © — oo. Prove

lim [f(z+1) — f(x)] — 0.

T—00

Solution:

(a) Let f(z) = aow + Ga® + - + ;222" +1. This function is clearly
differentiable everywhere and so, applying the mean value theo-
rem we have f(1)—f(0) = f’(¢)(1-0) for some ¢ € (0,1). Clearly
f(0) = 0 and by the given equation we also have f(1) = 0. Thus

we must have f/(¢) = 0. Note that
flle)=ap+arc+ -+ an_1" "+ anc,

which implies that ¢ is a root of the equation.



(b) Fix g(z) = f(z + 1) — f(z). Since f is differentiable for all
x > 0 we can apply the mean value theorem. It states that for
all z > 0 there exists some ¢; € (z,z + 1) such that g(z) =
flex)(x+1—2) = f(eg). But we have lim.,o f'(c) = 0. So,
since ¢; > =, we have

lim g(x) = lim f(c,) = lim f'(c) =0,

T—>00 Cc— 00
which is what we wanted to show.
(a) Find the fourth-order Taylor expansion of

_1733

flw) = 14z

around —2.

(b) Find the second-order Taylor expansion of
gzy) =Tey —y? —4a® + 2 — 2y +1

around (z,y) = (—1/2,1/3).

(c¢) Find the second-order Taylor expansion of
hz,y) = yln(zy) + e

around (1,1).

Solution:
(a)
f@) = o = f(-2) = 3
Py =" D80 o e = 2
F'@) = G = 12 =
f(x) = a fmyl F"(=2) = —12
FO@) = s = 10(-2) = 8



Then the fourth-order expansion is
Fla) = F(-2) + 72 +2) + 37" (-2)(x +2)

+ é (=2)(x +2)° + i FO(=2)(x +2)*

= -3-2x+2)—2x+2)?2-2x+2)> -2z +2)*
= -3-2x+2+2%+ 4z + 44 2° + 622

+ 122 4 8 + z* + 823 + 2422 + 32z + 16)

= —3 — 2(z* + 923 + 3122 + 49z + 30)

= 63 — 98z — 6222 — 1823 — 22

(b) The function ¢ is a second-degree polynomial. Therefore its
second-order Taylor expansion at any point is g itself.

(c)

h( y) =yln(zy) + e = h(1,1) =e
:( —+ye Y ln(a:y)—k:cyx—y—kxexy)
= (y/z +ye™¥ In(zy) + 1+ ze™)
= Dh(1,1) ( +e 1—|—€)
< —y/z? + yPe™ 1/x+exy+xyexy>
1/x + e™ + xye™ 1/y + z2e™
:wmm=(iz]ﬁf)

Then the second-order expansion is

h(z,y) = h(1,1) + Dh(1, 1)( _})+;(x—1 y—1) D*h(1,1) (5:1)

+(1+e 1+e) <‘;:i>
pG- v (50 ) (600
+(1+e)z—1)+1Q+e)(y—1)

+ %[(e Dz -1 4+2(1+2e)(z - Dy —1)+ 1 +e)(y — 1)
= e;1x2+(2e+1)zy+%y2+(1 —2e)z — (2e + 1)y + (2e — 1)




4. z can be implicitly defined as a function of x and y by the equation
23 —2xz +y = 0 with z(1,1) = 1. Find the second-degree Taylor
expansion of z around (xo,y0) = (1,1).

Solution: Let (z0,y0,20) = (1,1,1). Since the function F(z,y,z) =
23 — 2xz 4+ y is C, F(xo,y0,20) = 0, and det(D.F(zo,v0,20)) =
32'(2) —2x9 = 1 # 0, we can apply the Implicit Function Theorem.
In particular, we can compute the derivative of z(z,y) at (xo,y0) to
be

Dz(wo,y0) = —[D-F (20, Y0, 20)] " [Dz ) F (0, 10, 20)]
1
=—— (-2 1).
323 — 2x¢ ( “0 )
Plugging in (z¢, y0,20) = (1,1,1), we get Dz(xo,yo) = (2 —1). No-
tice that this implies % = 2 and %@’yﬂ) = —1. Let’s denote
these two partial derivatives by z, and z, respectively. We can then
compute the Hessian of z(z,y) at (xo,y0) to be

224(323—2w0) —220(62020 —2)  22y(322 —2m0) —220(6202y)

D*z(z0,y0) = (358_2%2)2 By amo)”
20%x — 202y
(322 —2m0)2 (322 —20)2

_(-16 10

10 -6/
Then the second-order Taylor expansion of z(x,y) around (zg,y9) =
(1,1) becomes

-
T — xg 1 (x—xg 9 T — X

z(x, + Dz(xo, + = D7 z(xo,

(o, o) <0y0)<y—yo> 2<y—yo> (°y°)<y—yo

e () (o) (8560
=142x—1)—(y—1) =8z —1)* +10(x — 1)(y — 1) — 3(y — 1)*.

5. Let f : R? = R be a C! function, with f(2, —1) = —1. Set G(z,y,u) =
f(z,y) +u? and H(z,y,u) = ux + 3y> + u3. The equations

G('CU? y? u) = 0’
H(z,y,u)=0

have a solution (zg, yo,uo) = (2,—1,1).



(a) What conditions on D f(x,y) ensure that there are C! functions
x = ¢g(y) and u = h(y) (defined on an open set in R that contains
yo = —1) which satisfy both equations, such that g(—1) = 2 and
h(—1) =17

(b) Under the conditions of part (a), and assuming that D f(2, —1) =
(1,-3), find ¢’(—1) and A/(—-1).

Solution:
(a) Consider the function J : R® — R? given by

J(xa y?“) = (G(:c,y, u)? H(xa y?“))'

Because G and H are C! functions, it follows that J is a C!
function that satisfies J(2, —1,1) = (0,0). Therefore, the Implicit
Function Theorem implies that as long as

det Doy (2, —1,1) = det (Dxf(f’ -1 ?) = 5D, f(2,—1)—2 # 0,

there is an open neighborhood A C R of the point yg = —1 and
C* functions g : R — R and h : R — R (this follows because a
function is O if and only if its component functions are C'!) such
that g(—1) = 2, h(—1) = 1 and J(g9(y),y, h(y)) = (0,0) for all
y € A. Of course, this is equivalent to both G(g(y),y,h(y)) =0
and H(g(y),y,h(y)) =0 for all y € A.

(b) Assuming that Df(2,—1) = (1, —3), the Implicit Function The-
orem implies that

(§421) = 1P -1 (D, -1 1)
-3 20
- (1)
so that ¢/(—1) = 11 and I/(—1) = —4.

6. Use the Implicit Function Theorem to prove the Inverse Function The-
orem (i.e. take the assumptions of the Inverse Function Theorem as



given, relate them to the assumptions of the Implicit Function The-
orem and use the conclusions of the Implicit Function Theorem to
derive the conclusions of the Inverse Function Theorem).

Solution: Suppose the assumptions of the Inverse Function Theorem
hold: i.e. suppose X C R" is open, f: X - R"is Cl on X, 29 € X
and det D f(zo) # 0.

Define a function F' : X x R" — R"™ by F(x,y) = f(z) — y so that
F(zo, f(x0)) = f(zo) — f(x0) = 0. Notice that D F(z,y) = D f(x) so
that det D, F(xo, f(z0)) # 0. Finally, both X and R™ are open subsets
of R™. So we can apply the Implicit Function Theorem to the function

F to conclude that there exists some open neighborhoods U’ of xy and
V of f(z¢) such that:

e For all y € V there is unique x € U’ such that F(x,y) = 0 or,
in other words, f(z) —y =0 < f(zr) = y. So we can construct
a function ¢ : V. — U’, which is C' by the Implicit Function
Theorem.

Let U = U'n fP1(V) (where we denote the preimage of f by ¥/
to avoid confusion with f’s inverse). Since f is continuous and V'
is open, U is also open as the intersection of open sets. It is clear
that g(V) C U since for all y € V we have g(y) € U’ and, since
g(y) = z so that f(z) =y, g(y) € fF1(V). Conversely, U C g(V)
since x € U implies x € fF/(V) and hence there is some y € V
such that f(z) =y and so g(y) = z. So g(V) = U and it follows
that g : V — U is onto.

Additionally, g : V' — U is also one-to-one since if g(y) = g(v')
then y = f(g(y)) = f(9(y')) = ¢/, which implies y = 3. Finally,
note that g is clearly f’s (local) inverse: if z € U and f(z) =y
then, since g is one-to-one and onto, y € V and so g(y) = x. Since
g is one-to-one and onto and is the inverse of f, then f:U — V
is one-to-one and onto as well.

e By the Implicit Function Theorem, we also have

Df~!(f(x0)) = Dg(f(w0)) = —[DaF (w0, f(x0))] " [DyF (0, f(x0))]
= —[Df(x)] 7' (1)
= [Df(x0)] ",

where the second line follows from our construction of F'.



e Finally, if f is C*, it is clear by F’s construction that so is F.
Hence by the Implicit Function Theorem f’s inverse g is also C*.



