
Economics 204
Fall 2012
Problem Set 5 Suggested Solutions

1. (a) Let f be defined for all real x, and suppose that

|f(x)− f(y)| ≤ (x− y)2

for all x, y ∈ R. Prove that f is constant.

(b) Let the real-valued function f on the open subset U of R be
differentiable at the point x0 ∈ U . If α, β ∈ R, compute

lim
h→0

f(x0 + αh)− f(x0 + βh)

h
.

Solution:

(a) We know |f(x) − f(y)| ≤ (x − y)2 = |x − y|2. Therefore for all
x 6= y we have∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣ =
|f(x)− f(y)|
|x− y|

≤ |x− y|.

Fix some y ∈ R. Then, letting x→ y we get

0 ≤ lim
x→y

∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣ ≤ lim
x→y
|x− y| = 0.

So limx→y

∣∣∣f(x)−f(y)x−y

∣∣∣ = 0 and therefore limx→y
f(x)−f(y)

x−y = 0.

This implies f ′(y) = 0 for all y ∈ R.

But this means that f is a constant function. To see that, note
that the existence of the derivative of f at all points of its domain
means that we can apply the mean value theorem to get f(b) −
f(a) = f ′(c)(b−a) for all a, b ∈ R and some c between them. But
f ′(c) = 0 and so f(a) = f(b).
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(b)

lim
h→0

f(x0 + αh)− f(x0 + βh)

h

= lim
h→0

f(x0 + αh)− f(x0) + f(x0)− f(x0 + βh)

h

= lim
h→0

(
f(x0 + αh)− f(x0)

h
− f(x0 + βh)− f(x0)

h

)
= lim

h→0

(
α
f(x0 + αh)− f(x0)

αh
− β f(x0 + βh)− f(x0)

βh

)
=α lim

h→0

(
f(x0 + αh)− f(x0)

αh

)
− β lim

h→0

(
f(x0 + βh)− f(x0)

βh

)
=αf ′(x0)− βf ′(x0)
=(α− β)f ′(x0),

where the penultimate equality follows from the fact that h→ 0
implies αh→ 0 and βh→ 0.

2. (a) If

a0 +
a1
2

+ · · ·+ an−1
n

+
an
n+ 1

= 0,

where a0, . . . , an are real constants, prove that the equation

a0 + a1x+ · · ·+ an−1x
n−1 + anx

n = 0

has at least one real root between 0 and 1.

(b) Assume that f : [0,∞) → R is differentiable for all x > 0, and
f ′(x)→ 0 as x→∞. Prove

lim
x→∞

[f(x+ 1)− f(x)]→ 0.

Solution:

(a) Let f(x) = a0x+ a1
2 x

2 + · · ·+ an
n+1x

n+1. This function is clearly
differentiable everywhere and so, applying the mean value theo-
rem we have f(1)−f(0) = f ′(c)(1−0) for some c ∈ (0, 1). Clearly
f(0) = 0 and by the given equation we also have f(1) = 0. Thus
we must have f ′(c) = 0. Note that

f ′(c) = a0 + a1c+ · · ·+ an−1c
n−1 + anc

n,

which implies that c is a root of the equation.
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(b) Fix g(x) = f(x + 1) − f(x). Since f is differentiable for all
x > 0 we can apply the mean value theorem. It states that for
all x > 0 there exists some cx ∈ (x, x + 1) such that g(x) =
f ′(cx)(x + 1 − x) = f ′(cx). But we have limc→∞ f

′(c) = 0. So,
since cx > x, we have

lim
x→∞

g(x) = lim
x→∞

f ′(cx) = lim
c→∞

f ′(c) = 0,

which is what we wanted to show.

3. (a) Find the fourth-order Taylor expansion of

f(x) =
1− x
1 + x

around −2.

(b) Find the second-order Taylor expansion of

g(x, y) = 7xy − y2 − 4x2 + x− 2y + 1

around (x, y) = (−1/2, 1/3).

(c) Find the second-order Taylor expansion of

h(x, y) = y ln(xy) + exy

around (1, 1).

Solution:

(a)

f(x) =
1− x
1 + x

⇒ f(−2) = −3

f ′(x) =
−(1 + x)− (1− x)

(1 + x)2
= − 2

(1 + x)2
⇒ f ′(−2) = −2

f ′′(x) =
4

(1 + x)3
⇒ f ′′(−2) = −4

f ′′′(x) = − 12

(1 + x)4
⇒ f ′′′(−2) = −12

f (4)(x) =
48

(1 + x)5
⇒ f (4)(−2) = −48.
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Then the fourth-order expansion is

f(x) = f(−2) + f ′(−2)(x+ 2) +
1

2
f ′′(−2)(x+ 2)2

+
1

6
f ′′′(−2)(x+ 2)3 +

1

24
f (4)(−2)(x+ 2)4

= −3− 2(x+ 2)− 2(x+ 2)2 − 2(x+ 2)3 − 2(x+ 2)4

= −3− 2(x+ 2 + x2 + 4x+ 4 + x3 + 6x2

+ 12x+ 8 + x4 + 8x3 + 24x2 + 32x+ 16)

= −3− 2(x4 + 9x3 + 31x2 + 49x+ 30)

= 63− 98x− 62x2 − 18x3 − 2x4.

(b) The function g is a second-degree polynomial. Therefore its
second-order Taylor expansion at any point is g itself.

(c)

h(x, y) = y ln(xy) + exy ⇒ h(1, 1) = e

Dh(x, y) =
(
y2 1

xy + yexy ln(xy) + xy 1
xy + xexy

)
=
(
y/x+ yexy ln(xy) + 1 + xexy

)
⇒ Dh(1, 1) =

(
1 + e 1 + e

)
D2h(x, y) =

(
−y/x2 + y2exy 1/x+ exy + xyexy

1/x+ exy + xyexy 1/y + x2exy

)
⇒ D2h(1, 1) =

(
−1 + e 1 + 2e
1 + 2e 1 + e

)
Then the second-order expansion is

h(x, y) = h(1, 1) +Dh(1, 1)

(
x− 1
y − 1

)
+

1

2

(
x− 1 y − 1

)
D2h(1, 1)

(
x− 1
y − 1

)
= e+

(
1 + e 1 + e

)(x− 1
y − 1

)
+

1

2

(
x− 1 y − 1

)(−1 + e 1 + 2e
1 + 2e 1 + e

)(
x− 1
y − 1

)
= e+ (1 + e)(x− 1) + (1 + e)(y − 1)

+
1

2
[(e− 1)(x− 1)2 + 2(1 + 2e)(x− 1)(y − 1) + (1 + e)(y − 1)2]

=
e− 1

2
x2 + (2e+ 1)xy +

e+ 1

2
y2 + (1− 2e)x− (2e+ 1)y + (2e− 1)
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4. z can be implicitly defined as a function of x and y by the equation
z3 − 2xz + y = 0 with z(1, 1) = 1. Find the second-degree Taylor
expansion of z around (x0, y0) = (1, 1).

Solution: Let (x0, y0, z0) = (1, 1, 1). Since the function F (x, y, z) =
z3 − 2xz + y is C1, F (x0, y0, z0) = 0, and det(DzF (x0, y0, z0)) =
3z20 − 2x0 = 1 6= 0, we can apply the Implicit Function Theorem.
In particular, we can compute the derivative of z(x, y) at (x0, y0) to
be

Dz(x0, y0) = −[DzF (x0, y0, z0)]
−1[D(x,y)F (x0, y0, z0)]

= − 1

3z20 − 2x0

(
−2z0 1

)
.

Plugging in (x0, y0, z0) = (1, 1, 1), we get Dz(x0, y0) =
(
2 −1

)
. No-

tice that this implies ∂z(x0,y0)
∂x = 2 and ∂z(x0,y0)

∂y = −1. Let’s denote
these two partial derivatives by zx and zy respectively. We can then
compute the Hessian of z(x, y) at (x0, y0) to be

D2z(x0, y0) =

2zx(3z20−2x0)−2z0(6z0zx−2)
(3z20−2x0)2

2zy(3z20−2x0)−2z0(6z0zy)
(3z20−2x0)2

6z0zx−2
(3z20−2x0)2

6z0zy
(3z20−2x0)2


=

(
−16 10
10 −6

)
.

Then the second-order Taylor expansion of z(x, y) around (x0, y0) =
(1, 1) becomes

z(x0, y0) +Dz(x0, y0)

(
x− x0
y − y0

)
+

1

2

(
x− x0
y − y0

)>
D2z(x0, y0)

(
x− x0
y − y0

)
=1 +

(
2 −1

)(x− 1
y − 1

)
+

1

2

(
x− 1
y − 1

)>(−16 10
10 −6

)(
x− 1
y − 1

)
=1 + 2(x− 1)− (y − 1)− 8(x− 1)2 + 10(x− 1)(y − 1)− 3(y − 1)2.

5. Let f : R2 → R be a C1 function, with f(2,−1) = −1. Set G(x, y, u) =
f(x, y) + u2 and H(x, y, u) = ux+ 3y3 + u3. The equations

G(x, y, u) = 0,

H(x, y, u) = 0

have a solution (x0, y0, u0) = (2,−1, 1).
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(a) What conditions on Df(x, y) ensure that there are C1 functions
x = g(y) and u = h(y) (defined on an open set in R that contains
y0 = −1) which satisfy both equations, such that g(−1) = 2 and
h(−1) = 1?

(b) Under the conditions of part (a), and assuming that Df(2,−1) =
(1,−3), find g′(−1) and h′(−1).

Solution:

(a) Consider the function J : R3 → R2 given by

J(x, y, u) = (G(x, y, u), H(x, y, u)).

Because G and H are C1 functions, it follows that J is a C1

function that satisfies J(2,−1, 1) = (0, 0). Therefore, the Implicit
Function Theorem implies that as long as

detD(x,u)J(2,−1, 1) = det

(
Dxf(2,−1) 2

1 5

)
= 5Dxf(2,−1)−2 6= 0,

there is an open neighborhood A ⊂ R of the point y0 = −1 and
C1 functions g : R → R and h : R → R (this follows because a
function is C1 if and only if its component functions are C1) such
that g(−1) = 2, h(−1) = 1 and J(g(y), y, h(y)) = (0, 0) for all
y ∈ A. Of course, this is equivalent to both G(g(y), y, h(y)) = 0
and H(g(y), y, h(y)) = 0 for all y ∈ A.

(b) Assuming that Df(2,−1) = (1,−3), the Implicit Function The-
orem implies that(

g′(−1)
h′(−1)

)
= −[D(x,u)J(2,−1, 1)]−1[DyJ(2,−1, 1)]

=
1

3

(
−5 2
1 −1

)(
−3
9

)
=

(
11
−4

)
,

so that g′(−1) = 11 and h′(−1) = −4.

6. Use the Implicit Function Theorem to prove the Inverse Function The-
orem (i.e. take the assumptions of the Inverse Function Theorem as
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given, relate them to the assumptions of the Implicit Function The-
orem and use the conclusions of the Implicit Function Theorem to
derive the conclusions of the Inverse Function Theorem).

Solution: Suppose the assumptions of the Inverse Function Theorem
hold: i.e. suppose X ⊆ Rn is open, f : X → Rn is C1 on X, x0 ∈ X
and detDf(x0) 6= 0.

Define a function F : X × Rn → Rn by F (x, y) = f(x) − y so that
F (x0, f(x0)) = f(x0)− f(x0) = 0. Notice that DxF (x, y) = Df(x) so
that detDxF (x0, f(x0)) 6= 0. Finally, both X and Rn are open subsets
of Rn. So we can apply the Implicit Function Theorem to the function
F to conclude that there exists some open neighborhoods U ′ of x0 and
V of f(x0) such that:

• For all y ∈ V there is unique x ∈ U ′ such that F (x, y) = 0 or,
in other words, f(x) − y = 0 ⇔ f(x) = y. So we can construct
a function g : V → U ′, which is C1 by the Implicit Function
Theorem.

Let U = U ′∩ fPI(V ) (where we denote the preimage of f by fPI

to avoid confusion with f ’s inverse). Since f is continuous and V
is open, U is also open as the intersection of open sets. It is clear
that g(V ) ⊂ U since for all y ∈ V we have g(y) ∈ U ′ and, since
g(y) = x so that f(x) = y, g(y) ∈ fPI(V ). Conversely, U ⊂ g(V )
since x ∈ U implies x ∈ fPI(V ) and hence there is some y ∈ V
such that f(x) = y and so g(y) = x. So g(V ) = U and it follows
that g : V → U is onto.

Additionally, g : V → U is also one-to-one since if g(y) = g(y′)
then y = f(g(y)) = f(g(y′)) = y′, which implies y = y′. Finally,
note that g is clearly f ’s (local) inverse: if x ∈ U and f(x) = y
then, since g is one-to-one and onto, y ∈ V and so g(y) = x. Since
g is one-to-one and onto and is the inverse of f , then f : U → V
is one-to-one and onto as well.

• By the Implicit Function Theorem, we also have

Df−1(f(x0)) = Dg(f(x0)) = −[DxF (x0, f(x0))]
−1[DyF (x0, f(x0))]

= −[Df(x0)]
−1(−1)

= [Df(x0)]
−1,

where the second line follows from our construction of F .
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• Finally, if f is Ck, it is clear by F ’s construction that so is F .
Hence by the Implicit Function Theorem f ’s inverse g is also Ck.
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