Problem 1.

Let A_{1}, A_{2}, \ldots and L be square matrices from $\mathbb{R}^{n \times n}$. We say that $\left\{A_{k}\right\}$ converges to L if

$$
\lim _{k \rightarrow \infty}\left(A_{k}\right)_{i j}=L_{i j} \forall 1 \leq i \leq n, 1 \leq j \leq n
$$

i.e. each element $\left(A_{k}\right)_{i j}$ converges to $L_{i j}$. Prove or provide a counterexample to the following:
a) If $\lim _{m \rightarrow \infty} A^{m}$ exists, then every eigenvalue of A satisfies $|\lambda|<1$ or $\lambda=1$.
b) If A is diagonalizable and every eigenvalue of A satisfies $|\lambda|<1$ or $\lambda=1$, then $\lim _{m \rightarrow \infty} A^{m}$ exists.
c) If every eigenvalue of A satisfies $|\lambda|<1$ or $\lambda=1$, then $\lim _{m \rightarrow \infty} A^{m}$ exists.

Solution

First we prove the following:
Theorem. If $\lim _{m \rightarrow \infty} A^{m}=L$ exists, then $\lim _{m \rightarrow \infty} P A^{m}=P L$ and $\lim _{m \rightarrow \infty} A^{m} Q=L Q$.
Proof. Take the $i j^{\text {th }}$ element:

$$
\begin{aligned}
\lim _{m \rightarrow \infty}\left(P A^{m}\right)_{i j} & =\lim _{m \rightarrow \infty}\left(\sum_{k=1}^{n} P_{i k}\left(A_{m}\right)_{k j}\right) \\
& =\sum_{k=1}^{n} P_{i k} \lim _{m \rightarrow \infty}\left(A_{m}\right)_{k j} \\
& =\sum_{k=1}^{n} P_{i k} L_{k j}=(P L)_{i j}
\end{aligned}
$$

The other direction is the same.
a) True. Let $L=\lim _{m \rightarrow \infty} A^{m}$. If λ is an eigenvalue and v a corresponding eigenvector of A then inductively we have $A^{m} v=A^{m-1} A v=A^{m-1}(\lambda v)=\ldots=\lambda^{m} v$. Hence λ^{m} is an eigenvalue and v a corresponding eigenvector of A^{m}. Then from the above theorem, $L v=\lim _{m \rightarrow \infty}\left(A^{m} v\right)=\lim _{m \rightarrow \infty}\left(\lambda^{m} v\right)=\left(\lim _{m \rightarrow \infty} \lambda^{m}\right) v$, which exists iff $|\lambda|<1$ or $\lambda=1$.
b) True. If A is diagonalizable then $A=Q^{-1} \Lambda Q$ where Λ is a diagonal matrix of eigenvalues, and

$$
A^{m}=\left(Q^{-1} \Lambda Q\right) \cdots\left(Q^{-1} \Lambda Q\right)=Q^{-1} \Lambda^{m} Q
$$

Since $|\lambda|<1$ or $\lambda=1, \lim _{m \rightarrow \infty} \lambda_{i}^{m}$ exists for $i=1 \ldots, n$. Hence $\lim _{m \rightarrow \infty} \Lambda^{m}$ exists, and from the above theorem (applied twice) we have $\lim _{m \rightarrow \infty} A^{m}$ exists.
c) False. Consider $B=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$. Then $B^{m}=\left(\begin{array}{cc}1 & m \\ 0 & 1\end{array}\right)$.

Correction: Originally I wrote "every eigenvalue satisfies $-1<\lambda \leq 1$ " however realvalued matrices can still have complex eigenvalues; as originally written, (a) is false.

Problem 2.

In section we saw that the set of invertible matrices, $\Omega\left(\mathbb{R}^{n \times n}\right)=\left\{A \in \mathbb{R}^{n \times n}: A^{-1}\right.$ exists $\}$, is an open subset of $\mathbb{R}^{n \times n}$. Prove that $\Omega\left(\mathbb{R}^{n \times n}\right)$ is dense in $\mathbb{R}^{n \times n}$.

Solution

What we want to show is that every singular matrix A is a limit point of the set of all invertible matrices. So fix some singular matrix A and consider the the characteristic polynomial of $A: g(t)=\operatorname{det}(A-t I)$. From what we saw in section, g is a continuous function, and we know that g is zero only at eigenvalues: $g\left(\lambda_{i}\right)=0$ for $i=1 \ldots, n$ (not necessarily distinct). Since $\operatorname{det}(A)=0$ we have that 0 is an eigenvalue, so choose $\lambda=\operatorname{argmin}\left(\left|\lambda_{i}\right|: \lambda_{i} \neq 0\right)$. Then take the sequence $t_{n}=\frac{1}{n}$. We can find some N such that $n>N$ implies $t_{n}<|\lambda|$, so $g\left(t_{n}\right) \neq 0$. But this says the matrix $A-t_{n} I$ is invertible. Further, using the metric d induced by the norm defined on the space of all $n \times n$ matrices:

$$
\begin{aligned}
d\left(A, A-t_{n} I\right) & =\left\|A-\left(A-t_{n} I\right)\right\| \\
& =\left\|t_{n} I\right\| \\
& =\left|t_{n}\right| \rightarrow 0
\end{aligned}
$$

Hence $A-t_{n} I$ is a sequence of invertible matrices that approaches A. So A is a limit point of the set of all invertible matrices.

Remark: Note that the above holds for any norm we can define on the space of all $n \times n$ matrices.

Problem 3.

For the following functions, determine at what points the derivative exists, and if the derivative function is continuous (you may use that the derivative of $\sin x$ is $\cos x$):

$$
f(x)=\left\{\begin{array}{ll}
x \cdot \sin \left(\frac{1}{x}\right) & \text { if } x \neq 0 \\
0 & \text { if } x=0
\end{array}, \quad g(x)= \begin{cases}x^{2} \cdot \sin \left(\frac{1}{x}\right) & \text { if } x \neq 0 \\
0 & \text { if } x=0\end{cases}\right.
$$

Solution

For $x \neq 0$ we can find the derivatives of f and g using the simple properties of derivatives:

$$
f^{\prime}(x)=\sin \frac{1}{x}-\frac{1}{x} \cos \frac{1}{x}, \quad g^{\prime}(x)=2 x \sin \frac{1}{x}-\cos \frac{1}{x}
$$

At $x=0$ we use directly the definition of the derivative. Note that for $h \neq 0$ we have

$$
\frac{f(h)-f(0)}{h}=\sin \frac{1}{h}, \quad \frac{g(h)-g(0)}{h}=h \sin \frac{1}{h}
$$

Since $\lim _{h \rightarrow 0} \sin \frac{1}{h}$ is not defined, $f^{\prime}(0)$ is not defined. However, note $\left|h \sin \frac{1}{h}\right| \leq|h|$ so $g^{\prime}(0)=0$ and the derivative of g exists everywhere. But $\lim _{x \rightarrow 0} \cos \frac{1}{x}$ is not defined, so $\lim _{x \rightarrow 0} g^{\prime}(x) \neq g^{\prime}(0)$, ie g^{\prime} is not continuous at $x=0$.

Problem 4.

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function. Prove that $f^{\prime}(\mathbb{R})$, the image of the derivative function, is an interval (possibly a singleton).

Solution

To prove the claim it suffices to show that for any $a, b \in f^{\prime}(\mathbb{R})$ with $a<b$, and any $c \in(a, b)$, we have $c \in f^{\prime}(\mathbb{R})$. Note that if there are no two distinct values, since f is differentiable we have $f^{\prime}(\mathbb{R}) \neq \varnothing$; so $f^{\prime}(\mathbb{R})=\{c\}$ and we're done (this occurs if f is a constant function).

Choose x_{1}, x_{2} such that $f^{\prime}\left(x_{1}\right)=a, f^{\prime}\left(x_{2}\right)=b$, and assume without loss of generality that $x_{1}<x_{2}$. Define the function $g: \mathbb{R} \rightarrow \mathbb{R}$ where $g(x)=f(x)-c x . g$ is also a differentiable function with $g^{\prime}(x)=f^{\prime}(x)-x$. This implies that g is continuous, hence by the Extreme Value Theorem g attains its minimum (and maximum) on the closed interval [x_{1}, x_{2}].

Now note that $g^{\prime}\left(x_{1}\right)=a-c<0$, which says

$$
\lim _{h \rightarrow 0} \frac{g\left(x_{1}+h\right)-g\left(x_{1}\right)}{h}<0
$$

So for some $h^{\prime}>0$ we have that for every $0<\varepsilon<h^{\prime}, \frac{g\left(x_{1}+\varepsilon\right)-g\left(x_{1}\right)}{\varepsilon}<0 \Longrightarrow g\left(x_{1}+\varepsilon\right)-g\left(x_{1}\right)<$ $0 \Longrightarrow g\left(x_{1}+\varepsilon\right)<g\left(x_{1}\right)$, so $g\left(x_{1}\right)$ is not a minimum of $g\left(\left[x_{1}, x_{2}\right]\right)$. A similar argument shows that since $g^{\prime}\left(x_{2}\right)=b-c>0, g\left(x_{2}\right)$ is not a minimum either. So g attains its minimum at some $x_{0} \in\left(x_{1}, x_{2}\right)$, and the same argument implies that $g^{\prime}\left(x_{0}\right)=0$. Thus we have $f^{\prime}\left(x_{0}\right)=c \Longleftrightarrow c \in f^{\prime}(\mathbb{R})$.

Remark: Note that we can't use the Intermediate Value Theorem since we can't assume f^{\prime} is a continuous function.

Problem 5.

If $a_{0}+\frac{1}{2} a_{1}+\cdots+\frac{1}{n} a_{n-1}+\frac{1}{n+1} a_{n}=0$, where a_{0}, \ldots, a_{n} are real constants, prove that the equation

$$
a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}+a_{n} x^{n}=0
$$

has at least one real root between 0 and 1 .

Solution

Let $f(x)=a_{0} x+\frac{a_{1}}{2} x^{2}+\cdots+\frac{a_{n}}{n+1} x^{n+1}$. This function is clearly differentiable everywhere, with $f^{\prime}(x)=a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}+a_{n} x^{n}$. Applying the mean value theorem we have $f(1)-f(0)=f^{\prime}(c)(1-0)$ for some $c \in(0,1)$. Clearly $f(0)=0$ and from how the coefficients were constructed we also have $f(1)=0$. Thus we must have $f^{\prime}(c)=0$.

Problem 6.

Assume that $f:[0, \infty) \rightarrow \mathbb{R}$ is differentiable for all $x>0$, and $f^{\prime}(x) \rightarrow 0$ as $x \rightarrow \infty$. Prove

$$
\lim _{x \rightarrow \infty}[f(x+1)-f(x)] \rightarrow 0 .
$$

Solution

Define $g(x)=f(x+1)-f(x)$. Since f is differentiable we can apply the mean value theorem: for all $x>0$ we can find some $c_{x} \in(x, x+1)$ such that $g(x)=f^{\prime}\left(c_{x}\right)(x+1-x)=f^{\prime}\left(c_{x}\right)$. But we have $f^{\prime}(x) \rightarrow 0$, and since $c_{x}>x$, we have

$$
\lim _{x \rightarrow \infty}[f(x+1)-f(x)]=\lim _{x \rightarrow \infty} g(x)=\lim _{x \rightarrow \infty} f^{\prime}\left(c_{x}\right)=\lim _{c_{x} \rightarrow \infty} f^{\prime}\left(c_{x}\right)=0
$$

