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Problem 1.

Let A1, A2, . . . and L be square matrices from Rn×n. We say that {Ak} converges to L if

lim
k→∞

(Ak)ij = Lij ∀1 ≤ i ≤ n, 1 ≤ j ≤ n

i.e. each element (Ak)ij converges to Lij. Prove or provide a counterexample to the following:

a) If limm→∞A
m exists, then every eigenvalue of A satisfies |λ| < 1 or λ = 1.

b) If A is diagonalizable and every eigenvalue of A satisfies |λ| < 1 or λ = 1, then limm→∞A
m

exists.

c) If every eigenvalue of A satisfies |λ| < 1 or λ = 1, then limm→∞A
m exists.

Solution

First we prove the following:

Theorem. If limm→∞A
m = L exists, then limm→∞ PA

m = PL and limm→∞A
mQ = LQ.

Proof. Take the ijth element:

lim
m→∞

(PAm)ij = lim
m→∞

(
n∑

k=1

Pik(Am)kj

)

=
n∑

k=1

Pik lim
m→∞

(Am)kj

=
n∑

k=1

PikLkj = (PL)ij

The other direction is the same.

a) True. Let L = limm→∞A
m. If λ is an eigenvalue and v a corresponding eigenvector of

A then inductively we have Amv = Am−1Av = Am−1(λv) = . . . = λmv. Hence λm is
an eigenvalue and v a corresponding eigenvector of Am. Then from the above theorem,
Lv = limm→∞(Amv) = limm→∞(λmv) = (limm→∞ λ

m) v, which exists iff |λ| < 1 or λ = 1.

b) True. If A is diagonalizable then A = Q−1ΛQ where Λ is a diagonal matrix of eigenvalues,
and

Am = (Q−1ΛQ) · · · (Q−1ΛQ) = Q−1ΛmQ

Since |λ| < 1 or λ = 1, limm→∞ λ
m
i exists for i = 1 . . . , n. Hence limm→∞ Λm exists, and

from the above theorem (applied twice) we have limm→∞A
m exists.

c) False. Consider B =

(
1 1
0 1

)
. Then Bm =

(
1 m
0 1

)
.

Correction: Originally I wrote “every eigenvalue satisfies −1 < λ ≤ 1” however real-
valued matrices can still have complex eigenvalues; as originally written, (a) is false.
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Problem 2.

In section we saw that the set of invertible matrices, Ω(Rn×n) = {A ∈ Rn×n : A−1 exists}, is
an open subset of Rn×n. Prove that Ω(Rn×n) is dense in Rn×n.

Solution

What we want to show is that every singular matrix A is a limit point of the set of all invert-
ible matrices. So fix some singular matrix A and consider the the characteristic polynomial
of A: g(t) = det (A− tI). From what we saw in section, g is a continuous function, and we
know that g is zero only at eigenvalues: g(λi) = 0 for i = 1 . . . , n (not necessarily distinct).
Since det(A) = 0 we have that 0 is an eigenvalue, so choose λ = argmin(|λi| : λi 6= 0).
Then take the sequence tn = 1

n
. We can find some N such that n > N implies tn < |λ|, so

g(tn) 6= 0. But this says the matrix A− tnI is invertible. Further, using the metric d induced
by the norm defined on the space of all n× n matrices:

d(A,A− tnI) = ‖A− (A− tnI)‖
= ‖tnI‖
= |tn| → 0

Hence A− tnI is a sequence of invertible matrices that approaches A. So A is a limit point
of the set of all invertible matrices.

Remark: Note that the above holds for any norm we can define on the space of all n×n
matrices.
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Problem 3.

For the following functions, determine at what points the derivative exists, and if the deriva-
tive function is continuous (you may use that the derivative of sinx is cos x):

f(x) =

{
x · sin

(
1
x

)
if x 6= 0

0 if x = 0
, g(x) =

{
x2 · sin

(
1
x

)
if x 6= 0

0 if x = 0

Solution

For x 6= 0 we can find the derivatives of f and g using the simple properties of derivatives:

f ′(x) = sin
1

x
− 1

x
cos

1

x
, g′(x) = 2x sin

1

x
− cos

1

x

At x = 0 we use directly the definition of the derivative. Note that for h 6= 0 we have

f(h)− f(0)

h
= sin

1

h
,

g(h)− g(0)

h
= h sin

1

h

Since limh→0 sin 1
h

is not defined, f ′(0) is not defined. However, note
∣∣h sin 1

h

∣∣ ≤ |h| so
g′(0) = 0 and the derivative of g exists everywhere. But limx→0 cos 1

x
is not defined, so

limx→0 g
′(x) 6= g′(0), ie g′ is not continuous at x = 0.
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Problem 4.

Let f : R → R be a differentiable function. Prove that f ′(R), the image of the derivative
function, is an interval (possibly a singleton).

Solution

To prove the claim it suffices to show that for any a, b ∈ f ′(R) with a < b, and any c ∈ (a, b),
we have c ∈ f ′(R). Note that if there are no two distinct values, since f is differentiable we
have f ′(R) 6= ∅; so f ′(R) = {c} and we’re done (this occurs if f is a constant function).

Choose x1, x2 such that f ′(x1) = a, f ′(x2) = b, and assume without loss of generality that
x1 < x2. Define the function g : R → R where g(x) = f(x) − cx. g is also a differentiable
function with g′(x) = f ′(x) − x. This implies that g is continuous, hence by the Extreme
Value Theorem g attains its minimum (and maximum) on the closed interval [x1, x2].

Now note that g′(x1) = a− c < 0, which says

lim
h→0

g(x1 + h)− g(x1)

h
< 0

So for some h′ > 0 we have that for every 0 < ε < h′, g(x1+ε)−g(x1)
ε

< 0 =⇒ g(x1+ε)−g(x1) <
0 =⇒ g(x1 + ε) < g(x1), so g(x1) is not a minimum of g([x1, x2]). A similar argument
shows that since g′(x2) = b − c > 0, g(x2) is not a minimum either. So g attains its mini-
mum at some x0 ∈ (x1, x2), and the same argument implies that g′(x0) = 0. Thus we have
f ′(x0) = c ⇐⇒ c ∈ f ′(R).

Remark: Note that we can’t use the Intermediate Value Theorem since we can’t assume
f ′ is a continuous function.
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Problem 5.

If a0 + 1
2
a1 + · · · + 1

n
an−1 + 1

n+1
an = 0, where a0, . . . , an are real constants, prove that the

equation
a0 + a1x+ · · ·+ an−1x

n−1 + anx
n = 0

has at least one real root between 0 and 1.

Solution

Let f(x) = a0x + a1
2
x2 + · · · + an

n+1
xn+1. This function is clearly differentiable everywhere,

with f ′(x) = a0 + a1x + · · · + an−1x
n−1 + anx

n. Applying the mean value theorem we have
f(1)−f(0) = f ′(c)(1−0) for some c ∈ (0, 1). Clearly f(0) = 0 and from how the coefficients
were constructed we also have f(1) = 0. Thus we must have f ′(c) = 0.
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Problem 6.

Assume that f : [0,∞)→ R is differentiable for all x > 0, and f ′(x)→ 0 as x→∞. Prove

lim
x→∞

[f(x+ 1)− f(x)]→ 0.

Solution

Define g(x) = f(x+1)−f(x). Since f is differentiable we can apply the mean value theorem:
for all x > 0 we can find some cx ∈ (x, x + 1) such that g(x) = f ′(cx)(x + 1 − x) = f ′(cx).
But we have f ′(x)→ 0, and since cx > x, we have

lim
x→∞

[f(x+ 1)− f(x)] = lim
x→∞

g(x) = lim
x→∞

f ′(cx) = lim
cx→∞

f ′(cx) = 0
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