Walker Ray Econ 204 — Problem Set 5 Suggested Solutions August 16, 2014

Problem 1.

Let Ay, Ay, ... and L be square matrices from R™*"™. We say that {Ax} converges to L if

k—o0
i.e. each element (Ay);; converges to L;;. Prove or provide a counterexample to the following:

a) If lim,, ., A™ exists, then every eigenvalue of A satisfies |A\| <1 or A = 1.

b) If A is diagonalizable and every eigenvalue of A satisfies |A| < 1 or A = 1, then lim,, o, A™
exists.

c) If every eigenvalue of A satisfies |A| < 1 or A = 1, then lim,, ,,, A™ exists.

Solution

First we prove the following:

Theorem. If lim,, ,,, A™ = L exists, then lim,, .o PA™ = PL and lim,,_.., A"Q = LQ).
Proof. Take the ij*" element:

A (PAT)y = i, (Z Pik“m)kj)
= Z P Wlblg(l)o(Am)k]
k=1

= Pl = (PL);
k=1

The other direction is the same. O

a) True. Let L = lim,, .o, A™. If X is an eigenvalue and v a corresponding eigenvector of
A then inductively we have A™v = A™ 1Ay = A™1(\v) = ... = X0. Hence \" is
an eigenvalue and v a corresponding eigenvector of A™. Then from the above theorem,
Ly = limy;, 00 (A™0) = limy, 00 (A™0) = (limyy, 00 A™) v, which exists iff |A] < 1or A = 1.

b) True. If A is diagonalizable then A = Q~'AQ where A is a diagonal matrix of eigenvalues,
and

A" = (Q7TIAQ) - (QTMAQ) = QTIA™Q
Since [A| < 1 or A =1, lim,, ,o A" exists for i = 1...,n. Hence lim,, ,,, A™ exists, and
from the above theorem (applied twice) we have lim,, ,,, A™ exists.

. 11 m_ (1 m
c¢) False. Consider B = (0 1). Then B™ = (0 1).

Correction: Originally I wrote “every eigenvalue satisfies —1 < A < 1”7 however real-
valued matrices can still have complex eigenvalues; as originally written, (a) is false.
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Problem 2.

In section we saw that the set of invertible matrices, Q(R™") = {4 € R™" : A~! exists}, is
an open subset of R™*". Prove that Q(R™"*") is dense in R"*".

Solution

What we want to show is that every singular matrix A is a limit point of the set of all invert-
ible matrices. So fix some singular matrix A and consider the the characteristic polynomial
of A: g(t) = det (A —tI). From what we saw in section, ¢ is a continuous function, and we
know that g is zero only at eigenvalues: g()\;) = 0 for i = 1...,n (not necessarily distinct).
Since det(A) = 0 we have that 0 is an eigenvalue, so choose A = argmin(|\;| : A; # 0).
Then take the sequence ¢,, = % We can find some N such that n > N implies t,, < |A|, so
g(t,) # 0. But this says the matrix A —t,1 is invertible. Further, using the metric d induced
by the norm defined on the space of all n x n matrices:

d(A, A—t,I)=||A—(A—t,10)|
= ||t 1]
=t,] =0

Hence A — t,1 is a sequence of invertible matrices that approaches A. So A is a limit point
of the set of all invertible matrices.

Remark: Note that the above holds for any norm we can define on the space of all n x n
matrices.
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Problem 3.

For the following functions, determine at what points the derivative exists, and if the deriva-
tive function is continuous (you may use that the derivative of sin z is cos z):

Jaesin(2) ifz#£0 ~Ja?esin(L) ifa#£0
f(x)_{o te—g 9@ {0 if 2 =0

Solution
For x # 0 we can find the derivatives of f and g using the simple properties of derivatives:

1 1 1 1 1
f'(x) =sin— — —cos—, ¢'(x)=2xsin— — cos —
r x T T

At x = 0 we use directly the definition of the derivative. Note that for h # 0 we have

1 g(h)—g(0) .1
W W N —hsmh

Since limj,_sin ¢ is not defined, f/(0) is not defined. However, note |hsin%‘ < |h| so
¢'(0) = 0 and the derivative of g exists everywhere. But lim, o cos% is not defined, so
lim, o ¢'(z) # ¢'(0), ie ¢’ is not continuous at = = 0.

f(x) g(x)
0.5 w 0.25 w

0.2

0.15

0.1

0.05

205 0 0.5 -0.5 0 0.5
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Problem 4.

Let f : R — R be a differentiable function. Prove that f’(R), the image of the derivative
function, is an interval (possibly a singleton).

Solution

To prove the claim it suffices to show that for any a,b € f'(R) with a < b, and any ¢ € (a, b),
we have ¢ € f'(R). Note that if there are no two distinct values, since f is differentiable we
have f'(R) # &; so f'(R) = {c} and we're done (this occurs if f is a constant function).

Choose z1, x5 such that f'(x1) = a, f'(22) = b, and assume without loss of generality that
21 < 3. Define the function g : R — R where g(z) = f(x) — cx. ¢ is also a differentiable
function with ¢’(x) = f’(z) — «. This implies that ¢ is continuous, hence by the Extreme
Value Theorem g attains its minimum (and maximum) on the closed interval [z, xs].

Now note that ¢'(x;) = a — ¢ < 0, which says

lim g(z1+h) — g(z1)

h—0 h <0

So for some A’ > 0 we have that for every 0 < e < A/, w <0 = g(x1+e)—g(x) <
0 = g(z1 +¢) < g(x1), so g(x1) is not a minimum of g([xy,z5]). A similar argument
shows that since ¢'(x2) = b — ¢ > 0, g(x2) is not a minimum either. So g attains its mini-
mum at some zg € (1, x2), and the same argument implies that ¢'(zg) = 0. Thus we have

f'(xo) = ¢ <= ce fI(R).

Remark: Note that we can’t use the Intermediate Value Theorem since we can’t assume
f"is a continuous function.
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Problem 5.

If ag + %al + -4 %an_l + %Han = 0, where ay,...,a, are real constants, prove that the
equation
a+amzr+ -+ ap 12"+ a2 =0

has at least one real root between 0 and 1.

Solution

Let f(z) = apw + %a* + - + Tf—jlx”“. This function is clearly differentiable everywhere,
with f'(z) = ap + a1z + -+ + ap_12" ' + a,2". Applying the mean value theorem we have
f(1)—f(0) = f'(c)(1—0) for some ¢ € (0,1). Clearly f(0) = 0 and from how the coefficients

were constructed we also have f(1) = 0. Thus we must have f'(c) = 0.
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Problem 6.

Assume that f : [0,00) — R is differentiable for all > 0, and f'(z) — 0 as © — co. Prove

lim [f(x + 1) — f(z)] — 0.

T—00

Solution

Define g(z) = f(z+1)— f(x). Since f is differentiable we can apply the mean value theorem:
for all z > 0 we can find some ¢, € (z,z + 1) such that g(z) = f'(c.)(x + 1 —2) = f'(c).
But we have f/(x) — 0, and since ¢, > x, we have

lim [f (2 + 1) — f(2)] = lim g(x) = lim f'(c,) = lim f'(¢;) =0

T—00 T—00 T—r00 Cgp— 00



