Problem 1.

Let A_1, A_2, \ldots and L be square matrices from $\mathbb{R}^{n \times n}$. We say that $\{A_k\}$ converges to L if

$$\lim_{k \to \infty} (A_k)_{ij} = L_{ij} \ \forall 1 \le i \le n, 1 \le j \le n$$

i.e. each element $(A_k)_{ij}$ converges to L_{ij} . Prove or provide a counterexample to the following:

- a) If $\lim_{m\to\infty} A^m$ exists, then every eigenvalue of A satisfies $|\lambda| < 1$ or $\lambda = 1$.
- b) If A is diagonalizable and every eigenvalue of A satisfies $|\lambda| < 1$ or $\lambda = 1$, then $\lim_{m \to \infty} A^m$ exists.
- c) If every eigenvalue of A satisfies $|\lambda| < 1$ or $\lambda = 1$, then $\lim_{m \to \infty} A^m$ exists.

Solution

First we prove the following:

Theorem. If $\lim_{m\to\infty} A^m = L$ exists, then $\lim_{m\to\infty} PA^m = PL$ and $\lim_{m\to\infty} A^mQ = LQ$. Proof. Take the ij^{th} element:

$$\lim_{m \to \infty} (PA^m)_{ij} = \lim_{m \to \infty} \left(\sum_{k=1}^n P_{ik} (A_m)_{kj} \right)$$
$$= \sum_{k=1}^n P_{ik} \lim_{m \to \infty} (A_m)_{kj}$$
$$= \sum_{k=1}^n P_{ik} L_{kj} = (PL)_{ij}$$

The other direction is the same.

- a) True. Let $L = \lim_{m \to \infty} A^m$. If λ is an eigenvalue and v a corresponding eigenvector of A then inductively we have $A^m v = A^{m-1} A v = A^{m-1} (\lambda v) = \ldots = \lambda^m v$. Hence λ^m is an eigenvalue and v a corresponding eigenvector of A^m . Then from the above theorem, $Lv = \lim_{m \to \infty} (A^m v) = \lim_{m \to \infty} (\lambda^m v) = (\lim_{m \to \infty} \lambda^m) v$, which exists iff $|\lambda| < 1$ or $\lambda = 1$.
- b) True. If A is diagonalizable then $A=Q^{-1}\Lambda Q$ where Λ is a diagonal matrix of eigenvalues, and

$$A^m = (Q^{-1}\Lambda Q) \cdots (Q^{-1}\Lambda Q) = Q^{-1}\Lambda^m Q$$

Since $|\lambda| < 1$ or $\lambda = 1$, $\lim_{m \to \infty} \lambda_i^m$ exists for $i = 1 \dots, n$. Hence $\lim_{m \to \infty} \Lambda^m$ exists, and from the above theorem (applied twice) we have $\lim_{m \to \infty} A^m$ exists.

c) False. Consider $B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. Then $B^m = \begin{pmatrix} 1 & m \\ 0 & 1 \end{pmatrix}$.

Correction: Originally I wrote "every eigenvalue satisfies $-1 < \lambda \le 1$ " however real-valued matrices can still have complex eigenvalues; as originally written, (a) is false.

Problem 2.

In section we saw that the set of invertible matrices, $\Omega(\mathbb{R}^{n\times n}) = \{A \in \mathbb{R}^{n\times n} : A^{-1} \text{ exists}\}$, is an open subset of $\mathbb{R}^{n\times n}$. Prove that $\Omega(\mathbb{R}^{n\times n})$ is dense in $\mathbb{R}^{n\times n}$.

Solution

What we want to show is that every singular matrix A is a limit point of the set of all invertible matrices. So fix some singular matrix A and consider the characteristic polynomial of A: $g(t) = \det(A - tI)$. From what we saw in section, g is a continuous function, and we know that g is zero only at eigenvalues: $g(\lambda_i) = 0$ for $i = 1 \dots, n$ (not necessarily distinct). Since $\det(A) = 0$ we have that 0 is an eigenvalue, so choose $\lambda = \operatorname{argmin}(|\lambda_i| : \lambda_i \neq 0)$. Then take the sequence $t_n = \frac{1}{n}$. We can find some N such that n > N implies $t_n < |\lambda|$, so $g(t_n) \neq 0$. But this says the matrix $A - t_n I$ is invertible. Further, using the metric d induced by the norm defined on the space of all $n \times n$ matrices:

$$d(A, A - t_n I) = ||A - (A - t_n I)||$$

$$= ||t_n I||$$

$$= |t_n| \to 0$$

Hence $A - t_n I$ is a sequence of invertible matrices that approaches A. So A is a limit point of the set of all invertible matrices.

Remark: Note that the above holds for any norm we can define on the space of all $n \times n$ matrices.

Problem 3.

For the following functions, determine at what points the derivative exists, and if the derivative function is continuous (you may use that the derivative of $\sin x$ is $\cos x$):

$$f(x) = \begin{cases} x \cdot \sin\left(\frac{1}{x}\right) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}, \quad g(x) = \begin{cases} x^2 \cdot \sin\left(\frac{1}{x}\right) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$

Solution

For $x \neq 0$ we can find the derivatives of f and g using the simple properties of derivatives:

$$f'(x) = \sin\frac{1}{x} - \frac{1}{x}\cos\frac{1}{x}, \quad g'(x) = 2x\sin\frac{1}{x} - \cos\frac{1}{x}$$

At x=0 we use directly the definition of the derivative. Note that for $h\neq 0$ we have

$$\frac{f(h) - f(0)}{h} = \sin\frac{1}{h}, \quad \frac{g(h) - g(0)}{h} = h\sin\frac{1}{h}$$

Since $\lim_{h\to 0} \sin\frac{1}{h}$ is not defined, f'(0) is not defined. However, note $\left|h\sin\frac{1}{h}\right| \leq |h|$ so g'(0)=0 and the derivative of g exists everywhere. But $\lim_{x\to 0}\cos\frac{1}{x}$ is not defined, so $\lim_{x\to 0}g'(x)\neq g'(0)$, ie g' is not continuous at x=0.

Problem 4.

Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function. Prove that $f'(\mathbb{R})$, the image of the derivative function, is an interval (possibly a singleton).

Solution

To prove the claim it suffices to show that for any $a, b \in f'(\mathbb{R})$ with a < b, and any $c \in (a, b)$, we have $c \in f'(\mathbb{R})$. Note that if there are no two distinct values, since f is differentiable we have $f'(\mathbb{R}) \neq \emptyset$; so $f'(\mathbb{R}) = \{c\}$ and we're done (this occurs if f is a constant function).

Choose x_1, x_2 such that $f'(x_1) = a, f'(x_2) = b$, and assume without loss of generality that $x_1 < x_2$. Define the function $g : \mathbb{R} \to \mathbb{R}$ where g(x) = f(x) - cx. g is also a differentiable function with g'(x) = f'(x) - x. This implies that g is continuous, hence by the Extreme Value Theorem g attains its minimum (and maximum) on the closed interval $[x_1, x_2]$.

Now note that $g'(x_1) = a - c < 0$, which says

$$\lim_{h \to 0} \frac{g(x_1 + h) - g(x_1)}{h} < 0$$

So for some h' > 0 we have that for every $0 < \varepsilon < h'$, $\frac{g(x_1+\varepsilon)-g(x_1)}{\varepsilon} < 0 \implies g(x_1+\varepsilon)-g(x_1) < 0 \implies g(x_1+\varepsilon) < g(x_1)$, so $g(x_1)$ is not a minimum of $g([x_1,x_2])$. A similar argument shows that since $g'(x_2) = b - c > 0$, $g(x_2)$ is not a minimum either. So g attains its minimum at some $x_0 \in (x_1,x_2)$, and the same argument implies that $g'(x_0) = 0$. Thus we have $f'(x_0) = c \iff c \in f'(\mathbb{R})$.

Remark: Note that we can't use the Intermediate Value Theorem since we can't assume f' is a continuous function.

Problem 5.

If $a_0 + \frac{1}{2}a_1 + \cdots + \frac{1}{n}a_{n-1} + \frac{1}{n+1}a_n = 0$, where a_0, \ldots, a_n are real constants, prove that the equation

$$a_0 + a_1 x + \dots + a_{n-1} x^{n-1} + a_n x^n = 0$$

has at least one real root between 0 and 1.

Solution

Let $f(x) = a_0 x + \frac{a_1}{2} x^2 + \dots + \frac{a_n}{n+1} x^{n+1}$. This function is clearly differentiable everywhere, with $f'(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1} + a_n x^n$. Applying the mean value theorem we have f(1) - f(0) = f'(c)(1-0) for some $c \in (0,1)$. Clearly f(0) = 0 and from how the coefficients were constructed we also have f(1) = 0. Thus we must have f'(c) = 0.

Problem 6.

Assume that $f:[0,\infty)\to\mathbb{R}$ is differentiable for all x>0, and $f'(x)\to 0$ as $x\to\infty$. Prove

$$\lim_{x \to \infty} [f(x+1) - f(x)] \to 0.$$

Solution

Define g(x) = f(x+1) - f(x). Since f is differentiable we can apply the mean value theorem: for all x > 0 we can find some $c_x \in (x, x+1)$ such that $g(x) = f'(c_x)(x+1-x) = f'(c_x)$. But we have $f'(x) \to 0$, and since $c_x > x$, we have

$$\lim_{x \to \infty} [f(x+1) - f(x)] = \lim_{x \to \infty} g(x) = \lim_{x \to \infty} f'(c_x) = \lim_{c_x \to \infty} f'(c_x) = 0$$