Economics 204
Fall 2011
Problem Set 6
Due Monday, August 13 in Exam

1. Call a function $f: X \to \mathbf{R}$ defined on a convex subset X of Euclidean space quasi-convex if for all $x, y \in X$ and all $\lambda \in [0,1]$ we have $f(\lambda x + (1-\lambda)y) \le \max\{f(x), f(y)\}$. Similarly, call a function f quasi-concave if -f is a quasi-convex function.

Lets assume that f and g be continuous functions on \mathbf{R}^2 such that for all fixed $x \in \mathbf{R}^2$ $f(\cdot, x_2)$ is quasi-concave and $g(x_1, \cdot)$ is quasi-convex. In addition, assume that $f([0, 1], x_2) \cap \mathbf{R}_+ \neq \emptyset$ and $g(x_1, [0, 1]) \cap \mathbf{R}_- \neq \emptyset$. Prove that there is $x \in [0, 1]^2$ such that

$$f(x) \ge 0 \ge g(x).$$

(Hint: Use Kakutani's Fixed Point Theorem)

- 2. Let $C \subseteq \mathbf{R}^n$ be a closed, convex subset with the additional property that $C \cap \mathbf{R}_+^n = \{0\}$. Show that $C + \omega \cap \mathbf{R}_+^n$ is compact for any $\omega \in \mathbf{R}^n$. (Hint: Use the Separating Hyperplane Theorem.)
- 3. Show that \mathbf{R}^2 cannot be the countable union of the range of \mathcal{C}^1 functions from \mathbf{R} to \mathbf{R}^2 . (Hint: Use Sard's Theorem.)
- 4. Consider the following inhomogeneous second order linear differential equation

$$x''(t) - 2x'(t) + x(t) = \sin(t)$$

- (a) Write down the corresponding homogeneous equation.
- (b) Find the general solution of the homogeneous equation.
- (c) Find a particular solution of the original inhomogeneous equation satisfying the initial condition x(0) = (1) and x'(0) = 0.
- (d) Find the general solution of the original inhomogeneous equation.