Economics 204
Fall 2011
Problem Set 6
Due Monday, August 13 in Exam

1. Call a function $f: X \rightarrow \mathbf{R}$ defined on a convex subset X of Euclidean space quasi-convex if for all $x, y \in X$ and all $\lambda \in[0,1]$ we have $f(\lambda x+(1-\lambda) y) \leq$ $\max \{f(x), f(y)\}$. Similarly, call a function f quasi-concave if $-f$ is a quasiconvex function.
Lets assume that f and g be continuous functions on \mathbf{R}^{2} such that for all fixed $x \in \mathbf{R}^{2} f\left(\cdot, x_{2}\right)$ is quasi-concave and $g\left(x_{1}, \cdot\right)$ is quasi-convex. In addition, assume that $f\left([0,1], x_{2}\right) \cap \mathbf{R}_{+} \neq \emptyset$ and $g\left(x_{1},[0,1]\right) \cap \mathbf{R}_{-} \neq \emptyset$. Prove that there is $x \in[0,1]^{2}$ such that

$$
f(x) \geq 0 \geq g(x) .
$$

(Hint: Use Kakutani's Fixed Point Theorem)
2. Let $C \subseteq \mathbf{R}^{n}$ be a closed, convex subset with the additional property that $C \cap \mathbf{R}_{+}^{n}=\{0\}$. Show that $C+\omega \cap \mathbf{R}_{+}^{n}$ is compact for any $\omega \in \mathbf{R}^{n}$. (Hint: Use the Separating Hyperplane Theorem.)
3. Show that \mathbf{R}^{2} cannot be the countable union of the range of \mathcal{C}^{1} functions from \mathbf{R} to \mathbf{R}^{2}. (Hint: Use Sard's Theorem.)
4. Consider the following inhomogeneous second order linear differential equation

$$
x^{\prime \prime}(t)-2 x^{\prime}(t)+x(t)=\sin (t)
$$

(a) Write down the corresponding homogeneous equation.
(b) Find the general solution of the homogeneous equation.
(c) Find a particular solution of the original inhomogeneous equation satisfying the initial condition $x(0)=(1)$ and $x^{\prime}(0)=0$.
(d) Find the general solution of the original inhomogeneous equation.

