
Economics 204
Fall 2012
Problem Set 6 Suggested Solutions

1. Call a function f : X → R defined on a convex subset X of Euclidean space
quasi-convex if for all x, y ∈ X and all λ ∈ [0, 1] we have f(λx + (1 − λ)y) ≤
max {f(x), f(y)} . Similarly, call a function f quasi-concave if −f is a quasi-
convex function.

Lets assume that f and g be continuous functions on R2 such that for all
fixed x ∈ R2 f(·, x2) is quasi-concave and g(x1, ·) is quasi-convex. In addition,
assume that f([0, 1], x2) ∩R+ 6= ∅ and g(x1, [0, 1]) ∩R− 6= ∅. Prove that there
is x ∈ [0, 1]2 such that

f(x) ≥ 0 ≥ g(x).

(Hint: Use Kakutani’s Fixed Point Theorem)

Solution. Lets define following self-correspondences on a unit interval

Ψf (x2) = {x1 ∈ [0, 1] : f(x1, x2) ≥ 0}
Ψg(x1) = {x2 ∈ [0, 1] : g(x1, x2) ≤ 0}

Clearly, these two correspondences are non-empty by our assumption. Now,
lets define correspondence Γ on [0, 1]2 as Γ(x) = Ψf (x2)× Ψg(x1). Again, it is
trivially non-empty. Note that by construction x ∈ [0, 1]2 is a fixed point of the
correspondence Γ if and only if our desired result holds. To show its existence,
we use Kakutani’s Fixed Point Theorem.

Firstly, note that our correspondence Γ has a closed graph, because f and g
are continuous (and graph of continuous function is closed). In addition, Γ
has a compact range, implying immediately that Γ is upper hemi-continuous.
To prove the convex-valuedness of Γ we use the alternative characterization of
quasi-concavity and quasi-convexity, that upper- and lower-contour sets (respec-
tively) of those functions are convex sets.1 Finally, Γ is clearly compact-valued
by construction, and we get the result we desire.

2. Let C ⊆ Rn be a closed, convex subset with the additional property that
C ∩Rn

+ = {0}. Show that C + ω ∩Rn
+ is compact for any ω ∈ Rn. (Hint: Use

the Separating Hyperplane Theorem.)

Solution. (C + ω) ∩ Rn
+ is the intersection of two closed sets, hence it is

closed. Suppose it is not bounded. Then we can find a sequence cm ∈ C such
that cm + ω ∈ Rn

+ and |cm + ω| → ∞, so |cm| → ∞. Since C is convex and
0 ∈ C, dm = cm

|cm| ∈ C. Since |dm| = 1 for all m, we can choose a convergent

subsequence dmk
→ c ∈ Rn. Since |dm| = 1, |c| = 1, so c 6= 0. Since C is

1You can look up these results for instance in Mas-Collel Winston and Green, p. 933-34.
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closed, c ∈ C. Since cm + ω ∈ Rn
+, cm ≥ −ω, so dm ≥ − ω

|cm| → 0, so c ≥ 0, so

c ∈ C ∩Rn
+. Since c 6= 0, C ∩Rn

+ 6= {0}, contradiction. Thus, (C + ω) ∩Rn
+ is

a closed and bounded subset of Rn, hence it is compact.

3. Show that R2 cannot be the countable union of the range of C1 functions from
R to R2. (Hint: Use Sard’s Theorem.)

Solution. The idea for the proof is that we have smooth C1 functions, mapping
from lower-dimensional space to higher dimensional space (that is why we need
an extra degree of differentiability, i.e. smoothness). As the result every point
of the domain is a critical point of f.

Formally, it is a direct implication of Sard’s Theorem in in de la Fuente p. 215.
Here m < n, and X = R is open, then the set of critical points of f is the
whole R. The theorem suggests that range (f) = f(Cf ) has Lebesgue measure
0. Finally, countable union of Lebesque measure null sets is a null set, while R2

is not measure zero. Thus, we get the result we desire.

4. Consider the following inhomogeneous second order linear differential equation

x′′(t)− 2x′(t) + x(t) = sin(t)

(a) Write down the corresponding homogeneous equation.

Solution.
x′′(t)− 2x′(t) + x(t) = 0

(b) Find the general solution of the homogeneous equation.

Solution. We rewrite the second order linear homogenous equation as a
system of two variables, i.e. lets define the new variable

x̄ =

[
x
x′

]
.

This gives us:

x̄′ =

[
x′

x′′

]
=

[
x′

2x′ − x

]
=

[
0 1
−1 2

] [
x
x′

]
= Ax̄.

The characteristic polynomial χ(λ) = λ2 − 2λ + 1 = (λ − 1)2 so the
only eigenvalue of A is 1 with multiplicity 2. From the lecture notes, we
immediately know the general solution of homogenous equation must be
of the form:

C1e
t + C2te

t,

for some constants C1, C2 ∈ R.
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(c) Find a particular solution of the original inhomogeneous equation satisfy-
ing the initial condition x(0) = (1) and x′(0) = 0.

Solution. It is easy to check that cos t
2

is a particular solution to the
original equation, so the general solution is

C1e
t + C2te

t +
cos t

2
.

Using the initial conditions, we pin down C1 = −1
2

and C2 = 1
2
,

(d) Find the general solution of the original inhomogeneous equation.

Solution. Since we know form the class that the general solution of
the original inhomogeneous equation is just the sum of general solutions
to the homogenous equation and a particular solution to inhomogeneous
equation, we get

1

2

(
tet − et + cos t

)
.
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