
Economics 204
Fall 2013
Problem Set 6 Suggested Solutions

1. Let f : Rn → Rn be C1 function. Prove that the image of Lebesgue measure
zero set must have measure zero as well. (Hint: You can use without proof that
countable union of Lebesgue measure zero sets has Lebesgue measure zero).

Solution. Let A ⊂ Rn and let µ(·) denote the Lebesgue measure of set, so
that we have µ(A) = 0. Let C be the set of all critical points of f and define
following collection of sets Bε = {x ∈ Rn : | det f ′(x)| > 0} for all arbitrarily
small ε > 0. Observe that A ∩ Bε ⊂ A implies µ(A ∩ Bε) = 0. Moreover,
because | det f ′(x)| > 0 on Bε (i.e. f is diffeomorphism on Bε) we can apply
integral change of variables formula∫

f(A∩Bε)

dx =

∫
A∩Bε

| det f ′| dt = 0

to conclude that µ(f(A ∩ Bε)) = 0. Now we use the hint that countable union
of Lebesgue measure zero sets has Lebesgue measure zero to get that

µ
(
∪∞

n=1f(A ∩B 1
n
)
)
= 0.

Finally, f(A ∩ C) ⊂ f(C) so by Sard’s Theorem it must have null measure as
well, and we get the result we desire as

A =
(
∪∞
n=1(A ∩B 1

n
)
)
∪ C.

2. Lets call a vector π ∈ Rn a probability distribution for the states of the world
if and only if

∑n
i=1 πi = 1 and πi ≥ 0 for all i = 1, 2, . . . , n, i.e. πi is the

probability of state i occurring. Suppose that there are n states of the world
and two traders (trader 1 and trader 2). Corresponding to each trader is a
closed, convex, and compact set of prior probability distributions denoted by
Π1 and Π2. A trade is a vector f ∈ Rn corresponding to the net transfer trader
1 receives in each state of the world (so that −f corresponds to the net transfer
that trader 2 receives in each state of the world). A trade f ∈ Rn is agreeable
if

inf
π∈Π1

n∑
i=1

πifi > 0 and inf
π∈Π2

n∑
i=1

πi(−fi) > 0.

Prove that there exists an agreeable trade if and only if there is no common
prior (Π1 ∩ Π2 = ∅).
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Solution. Suppose there exists an agreeable trade f ∈ Rn and that Π1∩Π2 ̸= ∅.
Choose any π∗ ∈ Π1 ∩ Π2, then

n∑
i=1

π∗
i fi ≥ inf

π∈Π1

n∑
i=1

πifi > 0.

But this implies that
∑

i π
∗
i (−fi) = −

∑
i π

∗
i fi < 0, which contradicts the fact

that infπ∈Π2

∑
i πi(−fi) > 0. It follows, then, that Π1 ∩ Π2 = ∅.

Suppose that Π1 ∩ Π2 = ∅. Because Π1 and Π2 are closed, convex, compact,
and disjoint sets in Rn, the Strict Separating Hyperplane Theorem guarantees
the existence of a nonzero trade f ∈ Rn and some k ∈ R such that f · x > k
for all x ∈ Π1 and f · x < k for all x ∈ Π2. This implies that the trade g ∈ Rn

given by gi = fi − k for all i = 1, 2, . . . , n satisfies

inf
π∈Π1

n∑
i=1

πigi = inf
π∈Π1

n∑
i=1

(πifi − πik) = inf
π∈Π1

n∑
i=1

πifi − k > 0

and

inf
π∈Π2

n∑
i=1

πi(−gi) = − sup
π∈Π2

n∑
i=1

(πifi − πik) = − sup
π∈Π2

n∑
i=1

πifi − k > 0.

3. Consider the set X = [0, 1]2 and the correspondence Ψ(x) : X → 2X , defined
by

Ψ(x) = argmaxy∈X || y − x||

(a) Draw a picture, showing the images under Ψ of x0 = (0, 0), x1 = (1
2
, 0)

and x2 = (1
2
, 1
2
).

Solution. Lets define following sets E = {(0, 0), (1, 0), (1, 1), (0, 1)},
V = {x ∈ X : x1 = 1

2
, x2 ̸= 1

2
}, H = {x ∈ X : x1 ̸= 1

2
, x2 = 1

2
} and

C = {( 1
2
, 1
2
)}. Then we have

Ψ(x0) =Ψ((0, 0)) = {(1, 1)}

Ψ(x1) =Ψ((
1

2
, 0)) = {(1, 1), (0, 1)}

Ψ(x2) =Ψ((
1

2
,
1

2
)) = {(0, 0), (1, 0), (1, 1), (0, 1)}

(b) At what points x ∈ X is Ψ convex-valued? Compact-valued? Upper
hemi-continuous? (No proofs needed, but give precise definitions of these
concepts and explain your answers. Also, you may use without proof
Berge’s Maximum Theorem which states that for two metric spaces (X, d)
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and (Θ, σ), f : X ×Θ → R a continuous function, Ψ : Θ → 2X compact-
valued and continuous correspondence, and ψ∗(θ) and g∗(θ) defined as
follows

ψ∗(θ) = argmax{f(x, θ) : x ∈ Ψ(θ)} for all θ ∈ Θ

g∗(θ) = max{f(x, θ) : x ∈ Ψ(θ)} for all θ ∈ Θ

we have ψ∗ : Θ → 2X is a compact-valued, upper hemi-continuous and
closed at θ and g∗(θ) : Θ → R is continuous at θ).

Solution.

Ψ(x) is


singleton valued ⊂ E, x ∈ E
two pont set ⊂ E, x ∈ V ∪H
four pont set = E, x ∈ C

more precisely

Ψ(x) =



{(1− x1, 1− x2)} ⊂ E, x ∈ E
{(0, 1), (1, 1)} ⊂ E, x ∈ V, x2 <

1
2

{(0, 0), (1, 0)} ⊂ E, x ∈ V, x2 >
1
2

{(1, 0), (1, 1)} ⊂ E, x ∈ H, x2 <
1
2

{(0, 0), (0, 1)} ⊂ E, x ∈ Y, x2 >
1
2

E x ∈ C

Now, Ψ(x) is convex-valued for all x ∈ E, and not convex for all x ∈ X \E,
so Ψ is not convex-valued.

Ψ(x) is closed-valued for all x ∈ X (as union of singletons which are closed
sets), so Ψ is closed-valued.

Ψ is upper hemi-continuous as a direct implication of Berge’s Theorem of
Maximum.

(c) Which (if any) of the Kakutani’s Theorem are met by Ψ?

Solution. Every condition in Kakutanis Theorem holds except the Ψ
being convex-valued.

(d) Find the (possibly empty) set of fixed points under Ψ.

Solution. The set of fixed points for correspondence is ∅, since for all
x ∈ X ||x− x|| = 0 < ||x− y|| for all y ̸= x, so x ̸∈ Ψ(x) for all x ∈ X.

(e) Consider the correspondence Φ : X → 2X where, for each x ∈ X, Φ(x) is
the convex hull of Ψ(x). Redo parts (a)− (d) for Φ(x).
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Solution. Lets denote by the co(A) a convex hull of set A. Now Φ = co(Ψ)
for all x ∈ X and clearly Φ now is convex-valued.

Φ(x0) =Φ((0, 0)) = co({(1, 1)}) = {(1, 1)}

Φ(x1) =Φ((
1

2
, 0)) = co({(1, 1), (0, 1)}) = [0, 1]× {1}

Φ(x2) =Φ((
1

2
,
1

2
)) = co({(0, 0), (1, 0), (1, 1), (0, 1)}) = X.

Also, we have

Φ(x) =



co({(1− x1, 1− x2)}), x ∈ E
co({(0, 1), (1, 1)}), x ∈ V, x2 <

1
2

co({(0, 0), (1, 0)}), x ∈ V, x2 >
1
2

co({(1, 0), (1, 1)}), x ∈ H, x2 <
1
2

co({(0, 0), (0, 1)}), x ∈ Y, x2 >
1
2

co(E) x ∈ C

=



{(1− x1, 1− x2)}, x ∈ E
[0, 1]× {1}, x ∈ V, x2 <

1
2

[0, 1]× {0}, x ∈ V, x2 >
1
2

{1} × [0, 1], x ∈ H, x2 <
1
2

{0} × [0, 1], x ∈ Y, x2 >
1
2

[0, 1]× [0, 1] x ∈ C

We see that all conditions in Kakutani’s Theorem are met, so Φ(x) has at
least one fixed point, i.e. there is x ∈ X such that x∗ ∈ Φ(x∗). The set of
fixed point of the correspondence Φ(x) is {1

2
, 1
2
}.

4. Consider the second order linear differential equation given by y′′ = −y − y′.

(a) Show how this equation can be rewritten as the following first order linear
differential equation of two variables y1 and y2.

Solution. Write it as(
y1
y2

)′

=

(
0 1
−1 −1

)(
y1
y2

)
(b) Describe the solutions of the first order system (verbally) by analyzing the

matrix A.

Solution. The eigenvalues are λ1,2 = −1
2
± i

√
3
2
. Because the eigenvalues

are complex, the solutions to the system spiral around the origin. Because
the real parts of the solutions are both negative, the system spirals inward,
converging to a steady state at the origin.
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(c) In a phase diagram, show the behavior of the system using the previous
analysis and by solving for y′1(t) = 0 and y′2(t) = 0.

Solution. See Figure 1. The y′1 = 0 locus is the line y2 = 0, that is the
horizontal axis. All path of the system cross this line vertically. Above
this line, the solution moves from left to right and below it solutions move
from right to left. The y′2 = 0 locus is the line y2 = −y1 and all paths cross
this line horizontally. Above this line solutions move from up to down and
below the line they move from down to up. The intersection of these two
line yields a stable steady state at the origin. In summary, the solutions
spiral inwards around the origin in a clockwise direction.

(d) Give the solution of the system when y1(t0) = 0 and y′2(t0) = 1.

Solution. From lectures, we know immediately the solution is of the form

y(t) = e−(t−t0)/2(C1 cos(
√
3(t− t0)/2) + C2 sin(

√
3(t− t0)/2).

We obtain this by simply substituting in the eigenvalues obtained above.
Substituting in t = t0, you get y0 = y(t0) = C1, but we are given the initial
condition that y0 = 0. This means that C1 = 0 and

y(t) = C2e
−(t−t0)/2 sin(

√
3(t− t0)/2).

Differentiating yields

y′(t) = −(C2/2)e
−(t−t0)/2 sin(

√
3(t−t0)/2)+(C2

√
3/2)e−(t−t0)/2 cos(

√
3(t−t0)/2

and substituting in the second initial condition gives us

1 = y′(0) = C2

√
3/2 =⇒ C2 = 2/

√
3,

so
y(t) = (2/

√
3)e−(t−t0)/2 sin(

√
3(t− t0)/2).

5. Consider the following inhomogeneous second order linear differential equation

x′′(t) + 3x′(t)− 4x(t) = 12t2 + 2t− 1

(a) Write down the corresponding homogeneous equation.

Solution.
x′′(t) + 3x′(t)− 4x(t) = 0.
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(b) Find the general solution of the homogeneous equation.

Solution. As in the previous problem we rewrite the second order linear
homogenous equation as a system of two variables, i.e. lets define the new
variable

x̄ =

(
x
x′

)
.

This gives us:

x̄′ =

(
x′

x′′

)
=

(
x′

2x′ − x

)
=

(
0 1
4 −3

)(
x
x′

)
= Ax̄.

The characteristic polynomial χ(λ) = λ2 + 3λ − 4 so we have two real
eigenvalues of A, 4 and −1. From the lecture notes, we immediately know
the general solution of homogenous equation must be of the form:

C1e
4t + C2e

−t

for some constants C1, C2 ∈ R.

(c) Find a particular solution of the original inhomogeneous equation

Solution. To find a particular solution we employ the method of unde-
termined coefficients. It is applicable here because right hand side of our
differential equation and its successive derivatives together contain only
a finite number of distinct types of expression (apart from multiplicative
constants).

Now, we know that the particular solution, by definition, is a value of x(t)
satisfying the given equation (regardless of the value of t). Note that LHS
contains function x(t) and its derivatives x′(t) and x′′(t), whereas RHS
contains multiples of t2, t, and a constant. So, we suppose initially that
the particular solutions would be

x(t) = at2 + bt+ c.

Differentiating we get x′(t) = 2at+ b and x′′(t) = 2a. Plugging those in

x′′(t) + 3x′(t)− 4x(t) = −4at2 + (6a− 4b)t+ 2a+ 3b− 4c

which must be equal to 12t2 + 2t − 1. Matching the coefficients we get
a = −3, b = −5, and c = −5. Thus, the desired particular solution is

xp = −3t2 − 5t− 5.
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(d) Find the general solution of the original inhomogeneous equation satisfying
the initial condition x(0) = 1 and x′(0) = 0.

Solution. Since we know form lectures that the general solution of the
original inhomogeneous equation is just the sum of general solutions to the
homogenous equation and a particular solution to inhomogeneous equa-
tion, we get

x(t) = C1e
4t + C2e

−t − 3t2 − 5t− 5.

Now we use the boundary conditions to pin down constants of integration
C1 and C2. We have x(0) = 1 implying C1+C2 = 1 and x′(0) = 0 implying
4C1 − C2 = 0. Thus, we get C1 =

1
5
and C2 =

4
5
, yielding

x(t) =
1

5
e4t +

4

5
e−t − 3t2 − 5t− 5.

7






