
Econ 204 – Problem Set 6
Due Tuesday, August 20; before exam

1. Calculate the second and third order Taylor expansion of (1 + 2x − 3y)2

around the point (0, 0). Calculate the difference between the value of the
function and the expansions.

Solution We want to expand f(x, y) = (1 + 2x− 3y)2 at the point (0, 0).
Generally, a second order expansion of f(x, y) at (0, 0) is the following:

f(x, y) = f(0, 0) +Df(0, 0)

(

x
y

)

+
1

2!
(x, y)D2f(0, 0)

(

x
y

)

Now we have to calculate some derivatives. We have:

fx(x, y) = 4(1 + 2x− 3y) fx(0, 0) = 4
fy(x, y) = −6(1 + 2x− 3y) fy(0, 0) = −6
fxx(x, y) = 8 fxx(0, 0) = 8
fxy(x, y) = −12 fxy(0, 0) = −12
fyy(x, y) = 18 fyy(0, 0) = 18

We also have f(0, 0) = 1, and that all third and higher order derivatives
are zero. Thus, our second order Taylor expansion should exactly equal
f(x, y). Plugging our derivatives in to our Taylor expansion yields:

f(x, y) = 1 + (4,−6)

(

x
y

)

+
1

2
(x, y)

[

8 −12
−12 18

](

x
y

)

To verify that this Taylor expansion exactly equals f(x, y), we will need
to do some algebra. Carrying out the matrix multiplications above, we
have:

f(x, y) = 1 + 4x− 6y + 4x2 − 12xy + 9y2

To complete the check, we take the square of (1 + 2x− 3y) to find that:

f(x, y) = (1 + 2x− 3y)2 = 1 + 4x− 6y + 4x2 − 12xy + 9y2

Which is exactly the same as the second order Taylor expansion.

Since the second order expansion exactly equal the function then it equals
the third order expansions as well.

2. Consider the following equations:

u =
x

x2 + y2
, v =

y

x2 + y2
, x2 + y2 > 0.

(a) For (u, v) = (1/2, 1/2), find a pair of values (x0, y0) that satisfy the
equations.

Solution The point (x0, y0) = (1, 1) satisfies the equations.
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(b) Describe either verbally or graphically what this transformation does.
Bonus given for colorful metaphors.

Solution Points near the origin are mapped to points very far away
from the origin. Points very far away are mapped to points very
close to the origin. This transformation takes R2, rips it open at the
navel (0, 0) and turns it inside out. Zero becomes infinity and infinity
becomes zero. Each point on a given ray starting at the origin gets
mapped to another point on the same ray. Points on the unit circle
remain the same.

(c) Show that the above transformation implicitly defines a function in
the neighborhood of (x0, y0) (in the sense that for every pair of values
(u, v) near (1/2, 1/2), there is just one corresponding pair of (x, y)
values.

Solution Define F : R4 → R
2 by

F ((x, y), (u, v)) =

(

u− x

x2 + y2
, v − y

x2 + y2

)

From our answer to part (a), we see that when a = (1, 1) and b =
(1/2, 1/2), F (a,b) = (0, 0). We compute the Jacobian (restricted to
x and y) and evaluate at (a,b) to check whether we can apply the
Implicit Function Theorem. If the Jacobian is invertible, then we
can. We find

DFxy(a,b) =

[

x2−y2

(x2+y2)2
2xy

(x2+y2)2

2xy
(x2+y2)2

y2−x2

(x2+y2)2

]

|(a,b)

=

[

0 1/2
1/2 0

]

= −1

4

Since the determinant of this matrix is non-zero, the Implicit Func-
tion Theorem guarantees the existence of a neighborhood W around
(1/2, 1/2) and a U containing (a,b) such that each (u, v) ∈ W corre-
sponds to a unique (x, y) with ((x, y), (u, v)) ∈ U and f((x, y), (u, v)) =
0.

(d) Compute the Jacobian of the implicit function.

Solution

(

∂g
∂u
∂g
∂v

)

= −
[

0 1/2
1/2 0

]−1 [
1 0
0 1

]

=

[

0 −2
−2 0

]

3. Prove that there exist functions u, v : R4 −→ R, continuously differentiable
on some open neighborhood around the point (x, y, z, w) = (2, 1,−1, 2)
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such that u(2, 1,−1, 2) = 4 and v(2, 1,−1, 2) = 3 and the equations

u2 + v2 + w2 = 29 and
u2

x2
+

v2

y2
+

w2

z2
= 17

both hold for all (x, y, z, w) in that neighborhood.

Solution First, we need to check that our two equations hold at (x, y, z, w, u, v) =
(2, 1,−1, 2, 4, 3). Plugging the appropriate values into each equation, we

see that 42 + 32 + 22 = 29, and 42

22 + 32

12 + 22

(−1)2 = 17. So the equations

hold at (x, y, z, w) = (2, 1,−1, 2), a point which we will henceforth call s∗

We shall also label u∗ = 4 and v∗ = 3.

To determine whether our functions u, v exist on some neighborhood
around s∗, we must set up our system of equations in a way that is useful
for the implicit function theroem. Define F : R6 −→ R

2 so that:

F (x, y, z, w, u, v) =

(

u2 + v2 + w2 − 29
u2

x2 + v2

y2 + w2

z2 − 17

)

=

(

0
0

)

This is something to which we can apply the implicit function theorem.
Note that the dimension of the range of F , which is 2, is equal to the
number of endogenous variables (also 2, u and v). So, to verify whether
or not we can express the endogenous variables as functions of the exoge-
nous variables at s∗, we must verify that the determinant of the Jacobian
derivative matrix of F with respect to the endogenous variables u and v
is non-singular. That is, we must verify:

|Du,vF (s∗, u∗, v∗)| 6= 0

⇔
∣

∣

∣

∣

∣

[

∂f1(s
∗,u∗,v∗)
∂u

∂f1(s
∗,u∗,v∗)
∂v

∂f2(s
∗,u∗,v∗)
∂u

∂f2(s
∗,u∗,v∗)
∂v

]∣

∣

∣

∣

∣

6= 0

⇔
∣

∣

∣

∣

[

2u∗ 2v∗
2u∗

(x∗)2
2v∗

(y∗)2

]∣

∣

∣

∣

6= 0

⇔
∣

∣

∣

∣

[

8 6
2 6

]∣

∣

∣

∣

6= 0

⇔ 36 6= 0

So the Jacobian matrix is non-singular, and we can define our fuvnctions
u and v on a neighborhood of s∗.

4. Let E = {(x, y) : 0 < y < x} and set f(x, y) = (x+ y, xy) for (x, y) ∈ E.

(a) Prove f is one-to-one from E onto {(s, t) : s > 2
√
t, t > 0} and find

a formula for f−1(s, t).

Solution First, to prove that f is one-to-one from its entire domain of
E, we must verify that the conditions of the inverse function theorem
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hold for all of E; that is, the determinant of the Jacobian matrix of
partial derivatives of f must be non-singular at all points in E. We
have:

|Df(x, y)| =
∣

∣

∣

∣

∣

∂f1(x,y)
∂x

∂f1(x,y)
∂y

∂f2(x,y)
∂x

∂f2(x,y)
∂y

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

1 1
y x

∣

∣

∣

∣

= x− y

6= 0 ∀x, y ∈ E since x > y

So f is one-to-one from E onto {(s, t) : s > 2
√
t, t > 0}. To find the

formula of the inverse function, we must do some algebra to express
x and y as functions of s and t. Letting y = s − x, we have that
t = xy = x(s − x). Solving this for x using the quadratic formula
yields:

x =
s±

√
s2 − 4t

2

Which will always be real and positive given that s > 2
√
t, and t > 0.

Using y = s− x to solve for y yields:

y =
s∓

√
s2 − 4t

2

This initally appears to violate the just-proven fact that f is one-to-
one. However, noting that we must have 0 < y < x, it must be that
the formula for x takes the positve sign, while the formula for y takes
the negative sign. That is:

x =
s+

√
s2 − 4t

2
, y =

s−
√
s2 − 4t

2

Which defines f−1(s, t).

(b) Use the inverse function theorem to compute D(f−1)(f(x, y)) for
x 6= y.

Solution The IFT tells us that D(f−1)(f(x, y)) = (Df(x, y))−1.
Therefore:

D(f−1)(f(x, y)) =

[

1 1
y x

]−1

=
1

x− y

[

x −1
−y 1

]

=

[

x
x−y

−1
x−y

−y
x−y

1
x−y

]
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(c) Compare the two expressions for D(f−1)(f(x, y)) that you derived
directly of using the Implicit Function Theorem

Solution To compute D(f−1)(f(x, y)) directly, we use our formula

from part (i): x = s+
√
s2−4t
2 , y = s−

√
s2−4t
2 . Taking derivatives, we

have that:

D(f−1)(f(x, y)) = D(f−1)(s, t) =
1

2

[

1 + s√
s2−4t

−2√
s2−4t

1− s√
s2−4t

2√
s2−4t

]

=
1

2

1√
s2 − 4t

[√
s2 − 4t+ s −2√
s2 − 4t− s 2

]

To put this into terms of x and y, we use our inital s = x + y
and t = xy. This gives us that

√
s2 − 4t =

√

(x+ y)2 − 4xy =
√

x2 + 2xy + y2 − 4xy =
√

(x− y)2 = x − y. Substituting every-
thing into the above yields:

D(f−1)(f(x, y)) =
1

2(x− y)

[

x− y + x+ y −2
x− y − x− y 2

]

=
1

2(x− y)

[

2x −2
−2y 2

]

=

[

x
x−y

−1
x−y

−y
x−y

1
x−y

]

Which is exactly what we had in part (ii). Once again, isn’t it nice
when math works out?

5. Consider the following system of first order differential equations:

ẋ = x1/4 − y

ẏ = y[ 32x
−2/3 − 1

10 ]

(a) Plot the ẋ = 0 and ẏ = 0 loci for x > 0 in a phase diagram. Show the
steady state, the direction of motion, and the approximate location
of the stable and unstable arms.

Solution The ẋ = 0 locus is y = x1/4 and the ẏ = 0 locus is both
the horizontal line y = 0 and the vertical line x = (1/15)−

3
2 . The

steady state is at the intersection of the two loci, which occurs at
(

(1/15)(−3/2), (1/15)(−3/8)
)

or approximately (58.1, 2.76). Solutions
move to the left above the ẋ = 0 locus and the right below. Solutions
move upward on the left of the ẏ = 0 locus and downward on the
right. Thus, paths look like hyperbolas.

(b) Linearize the system using a Taylor-series expansion around the x > 0
steady state. Write down the linearized equations.
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Solution We will call the steady state (x∗, y∗) and calculate the
Taylor expansion around that point. To make life simpler, we will

define a new variable,

(

z1
z2

)

=

(

x− x∗

y − y∗

)

, which translates the

steady state to the origin. First, from the Taylor formula we have

ẋ = 1
4 (x

∗)−3/4(x− x∗)− (y − y∗)
ẏ =

[

3
2 (− 2

3 )(x
∗)−5/3

]

(x− x∗)− 0 · (y − y∗).

Notice that since we are expanding around the steady state, the first
term drops out and all we are left with is the first derivative term.
On the second line, the zero comes from the fact that at the steady
state, the expression in the brackets in the non-linear equatio n for ẏ
is zero. Now let’s plug in the rewrite this system in terms of z and
then plug in the values for (x∗, y∗).

(

ż1
ż2

)

=

(

0.012z1 − z2
−0.003z1

)

=

(

0.012 −1
−0.003 0

)

z.

(c) Plot a phase diagram for the linearized system and compare the be-
havior at the steady state of the two systems.

Solution The ż1 = 0 locus is z2 = 0.012z1 and the ż2 = 0 locus is the
line z1 = 0. This gives us a steady state at the origin, which makes
sense, because we have translated the steady state to the origin.
Above the ż1 = 0 locus, solutions move to the left and below it they
move to the right. To the left of the ż2 = 0 locus, solutions move
upward and they move downward to the right. The slope the ż1 = 0
locus should correspond to the slope of the ẋ = 0 locus at the steady
state in the non-linear system. Both the ż2 = 0 and ẏ = 0 loci are
vertical lines. Checking the eigenvalues of the matrix of coefficients,
we get two real eigenvalues of opposite sign:

λ1,2 =
0.012±

√

0.0122 − 4(−0.003)

2
= (0.06,−0.05).

We conclude from this that in the region around the steady state, the
paths of the solutions look like hyperbolas. Thus, the behavior of the
linearized system is qualitatively the same as the nonlinear system.

(d) Give the general solution of the linearized system.

Solution Two eigenvectors corresponding to λ1 and λ2 are v1 =
(

1
−0.048

)

and v2 =

(

1
0.062

)

, respectively. The general solu-

tions then is z(t) = C1e
0.06tv1 + C2e

−0.05tv2, or changing back to
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(x, y) coordinates,

(

x(t)
y(t)

)

= C1e
0.06t

(

1
−0.048

)

+ C2e
−0.05t

(

1
0.062

)

+

(

x∗

y∗

)

6. Consider the second order linear differential equation given by y′′ = −y−
y′.

(a) Show how this equation can be rewritten as the following first order
linear differential equation of two variables:

x̄′(t) = Ax̄(t),

where A =

[

0 1
−1 −1

]

and x̄ =

[

x1(t)
x2(t)

]

.

Solution Define the new variable x̄ =

[

y
y′

]

. This gives us

x′ =

[

y′

y′′

]

=

[

y′

−y − y′

]

=

[

0 1
−1 −1

] [

y
y′

]

= Ax.

(b) Describe the solutions of the first order system (verbally) by analyz-
ing the matrix A.

Solution The eigenvalues of A are λ1,2 = − 1
2 ± i

√
3
2 . Because the

eigenvalues are complex, the solutions to the system spiral around
the origin. Because the real parts of the solutions are both negative,
the sytem spirals inward, converging to a steady state at the origin.

(c) In a phase diagram, show the behavior of the system using the pre-
vious analysis and by solving for x′

1(t) = 0 and x′
2(t) = 0.

Solution The x′
1 = 0 locus is the line x2 = 0, that is the horizon-

tal axis. All paths of the system cross this line vertically. Above
this line, the solution moves from left to right and below it solutions
move from right to left. The x′

2 = 0 locus is the line x2 = −x1 and
all paths cross this line horizontally. Above this line solutions move
from up to down and below the line they move from down to up.
The intersection of these two line yields a stable steady state at the
origin. In summary, the solutions spiral inwards around the origin in
a clockwise direction.

(d) Give the solution of the system when x1(t0) = 0 and x′
2(t0) = 1.
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Solution Instead of carrying the expression (t − t0) through this
solution, we will simply let t0 = 0. The eigenvectors corresponding

to λ1 and λ2 are v1 = u + iw and v2 = u − iw, where u =

(

−2
1

)

and w =

(

0

−
√
3

)

. Expressed in terms of the eigenvector basis, the

solution takes the following form:

z1 = C1e
λ1t = C1e

− t

2 ei
√

3
2 = C1e

− t

2 (cos( t
√
3

2 ) + i sin( t
√
3

2 ))

z2 = C2e
λ2t = C2e

− t
2 e−i

√
3

2 = C2e
− t

2 (cos( t
√
3

2 )− i sin( t
√
3

2 ))
.

We can rewrite this solution in terms of the standard basis and
strictly real coordinates by pre-multiplying by P , the matrix that
has the standard coordinates of v1 and v2 as columns. This gives us

(

x1(t)
x2(t)

)

= e−
t
2

[

(d1u− d2w) cos(
t
√
3

2
)− (d2u+ d1w) sin(

t
√
3

2
)

]

,

where d1, d2 are constants. Check you section notes to see how these
constants relate to C1 and C2. Plugging in our values of u and w
from above, we get

(

x1(t)
x2(t)

)

=





e−
t
2

[

−2d1 cos(
t
√
3

2 ) + d2 sin(
t
√
3

2 )
]

e−
t
2

[

(d1 + d2
√
3) cos( t

√
3

2 )− (d2 − d1
√
3) sin( t

√
3

2 )
]



 .

We can solve for d1 and d2 using our boundary conditions, without
bothering with the C constants. We begin by evaluating x1(0), which
makes the sine and cosine expressions disappear and leaves us with
x1(0) = d1(−2) = 0 or d1 = 0. Since d1 = 0, we can rewrite x2(t)
more simply:

x2(t) = e−
t
2

[

d2
√
3 cos(

t
√
3

2
)− (d2 sin(

t
√
3

2
)

]

.

Our second boundary condition is that x′(0) = 1, so we (carefully)
take the derivative, evaluate at zero, and set equal to one. This yields
d2 = −1/

√
3. Substituting in these value of d1 and d2, we write the

solution as

(

x1(t)
x2(t)

)

=
e−

t
2

√
3

[

u sin(
t
√
3

2
)− w cos(

t
√
3

2
)

]

.
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