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A UNIQUE COSTLY CONTEMPLATION REPRESENTATION

BY HALUK ERGIN AND TODD SARVER1

We study preferences over menus which can be represented as if the individual is
uncertain of her tastes, but is able to engage in costly contemplation before selecting
an alternative from a menu. Since contemplation is costly, our key axiom, aversion to
contingent planning, reflects the individual’s preference to learn the menu from which
she will be choosing prior to engaging in contemplation about her tastes for the alter-
natives. Our representation models contemplation strategies as subjective signals over
a subjective state space. The subjectivity of the state space and the information struc-
ture in our representation makes it difficult to identify them from the preference. To
overcome this issue, we show that each signal can be modeled in reduced form as a
measure over ex post utility functions without reference to a state space. We show that
in this reduced-form representation, the set of measures and their costs are uniquely
identified. Finally, we provide a measure of comparative contemplation costs and char-
acterize the special case of our representation where contemplation is costless.

KEYWORDS: Costly contemplation, aversion to contingent planning, subjective state
space.

1. INTRODUCTION

IN MANY PROBLEMS OF INDIVIDUAL CHOICE, the decision-maker faces some
uncertainty about her preferences over the available alternatives. In many
cases, she may be able to improve her decision by first engaging in some form
of introspection or contemplation about her preferences. However, if this con-
templation is psychologically costly for the individual, then she will not wish to
engage in any unnecessary contemplation. This will lead a rational individual
to exhibit what we will refer to as an aversion to contingent planning.

To illustrate, consider a simple example. We will take an individual to one
of two restaurants. The first one is a seafood restaurant that serves a tuna (t)
and a salmon (s) dish, which we denote by A = {t� s}. The second one is a
steak restaurant that serves a filet mignon (f ) and a ribeye (r) dish, which we
denote by B = {f� r}. We will flip a coin to determine to which restaurant to
go. If it comes up heads, then we will buy the individual the meal of her choice
in A, and if it comes up tails, then we will buy her the meal of her choice in B.
We consider presenting the individual with one of the two following decision
problems:

DECISION PROBLEM 1: We ask the individual to make a complete contin-
gent plan listing what she would choose conditional on each outcome of the
coin flip.

1We thank Eddie Dekel, Faruk Gul, Bart Lipman, Massimo Marinacci, numerous seminar
participants, the editor, and the three anonymous referees for helpful comments and suggestions.
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DECISION PROBLEM 2: We first flip the coin and let the individual know its
outcome. She then selects the dish of her choice from the restaurant deter-
mined by the coin flip.

It is conceivable that the individual prefers facing the second decision prob-
lem rather than the first one. In this case, we say that her preferences (over
decision problems) exhibit an aversion to contingent planning (ACP). Our ex-
planation of ACP is that the individual finds it psychologically costly to figure
out her tastes over meals. Because of this cost, she would rather not contem-
plate an inconsequential decision: She would rather not contemplate about her
choice out of A were she to know that the coin came up tails and her actual
choice set is B. In particular, she prefers to learn which choice set (A or B) is
relevant before contemplating her choice.

Our main results are a representation and a uniqueness theorem for pref-
erences over sets of lotteries. We interpret the preferences as arising from
a choice situation where the individual initially chooses from among sets (or
menus) of lotteries and subsequently chooses a lottery from that set. The only
primitive of the model is the preference over sets of lotteries, which corre-
sponds to the individual’s choice behavior in the first period; we do not ex-
plicitly model the second-period choice out of the sets. The key axioms in our
analysis are aversion to contingent planning (ACP) and independence of degen-
erate decisions (IDD). These axioms allow for costly contemplation, but impose
enough structure to rule out the possibility that the individual’s beliefs them-
selves are changing.

Before stating the ACP axiom formally, note that in our restaurant exam-
ple, Decision Problem 1 corresponds to a choice out of A×B= {(t� f )� (t� r)�
(s� f )� (s� r)}, where, for instance, (s� f ) is the plan where the individual indi-
cates that she will have the salmon dish from the seafood restaurant if the coin
comes up heads and she will have the filet mignon from the steak restaurant if
the coin comes up tails. Also, note that each choice of a contingent plan even-
tually yields a lottery over meals. For example, if the individual chooses (s� f ),
then she will face the lottery 1

2s+ 1
2f that yields either salmon or filet mignon,

each with one-half probability. Hence, Decision Problem 1 is identical to a
choice out of the set of lotteries 1

2A+ 1
2B= { 1

2 t + 1
2f�

1
2 t + 1

2 r�
1
2s+ 1

2f�
1
2s+ 1

2 r}.
In general, we can represent the set of contingent plans between any two menus
as a convex combination of these menus, with the weight on each menu corre-
sponding to the probability that it will be the relevant menu. The individual’s
preference of Decision Problem 2 to Decision Problem 1 is thus equivalent to
preferring the half–half lottery over A and B (resolving prior to her choice
from the menus) to the convex combination of the two menus, 1

2A+ 1
2B. Al-

though we do not analyze preferences over lotteries over menus explicitly, it
is intuitive that the individual would prefer the better menu, say A, to any lot-
tery over the two menus. Under this assumption, aversion to contingent plan-
ning implies that the individual will prefer choosing from the better of the two
menus to making a contingent plan from the two menus. Our ACP axiom is
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precisely the formalization of this statement: If A� B, then A � αA+(1−α)B
for any α ∈ [0�1].

To motivate our IDD axiom, consider the situation in which the individual
makes a contingent choice from a menu A and with probability α her con-
tingent choice is carried out; with probability 1 − α she is instead given a
fixed lottery p. As argued above, this choice problem corresponds to the menu
αA+ (1−α){p}. If the probability α that her contingent choice from A will be
implemented decreases, then her benefit from contemplation decreases. How-
ever, if α is held fixed, then replacing the lottery p in the convex combination
αA+ (1 − α){p} with another lottery q does not change the probability that
the individual’s contingent choice from A will be implemented. Therefore, al-
though replacing p with q could affect the individual’s utility through its effect
on the final composition of lotteries, it will not affect the individual’s opti-
mal level of contemplation. This observation motivates our IDD axiom, which
states that for any fixed α, if αA+ (1− α){p} is preferred to αB+ (1− α){p},
then αA+ (1− α){q} is also preferred to αB+ (1− α){q}.

We present our model in detail in Section 2. Section 2.1 contains a de-
tailed description of our axioms. Along with ACP and IDD, we consider three
standard axioms in the setting of preferences over menus: (i) weak order,
which states that the preference is complete and transitive, (ii) continuity, and
(iii) monotonicity, which states that adding alternatives to any menu is always
(weakly) better for the individual.

Our representation theorem is contained in Section 2.2. Letting p denote a
lottery over some set of alternatives Z and letting A denote a menu of such lot-
teries, Theorem 1 shows that any preference over menus satisfying our axioms
can be represented by the costly contemplation (CC) representation

V (A)= max
G∈G

(
E

[
max
p∈A

E[U |G] ·p
]
− c(G)

)
�(1)

We interpret Equation (1) as follows. The individual is uncertain regarding
her tastes over alternatives in Z. This uncertainty is modeled by a probability
space (Ω� F�P) and a state-dependent expected-utility function U over �(Z).
Before making a choice out of a menu A, the individual is able to engage in
contemplation so as to resolve some of this uncertainty. Contemplation strate-
gies are modeled as a collection of signals about the state or, more compactly,
as a collection G of σ-algebras generated by these signals. If the individual car-
ries out the contemplation strategy G ∈ G, she is able to update her expected-
utility function using her information G and chose a lottery p in A maximizing
her conditional expected utility E[U |G] · p=∑

z∈Z pzE[Uz|G]. Faced with the
menu A, the individual chooses her contemplation strategy optimally by maxi-
mizing the ex ante value E[maxp∈A E[U |G] ·p] minus the cost c(G) of contem-
plation, giving Equation (1). Note that this representation closely resembles
a standard costly information acquisition problem. The difference is that the
parameters ((Ω� F�P)�G�U� c) of the CC representation are subjective in the
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sense that they are not directly observable, but instead must be elicited from
the individual’s preferences.

In Section 3, we discuss the extent to which we are able identify contempla-
tion strategies and their costs from the preference. Due to the subjectivity of
the state space and information structure in the CC representation, it is not
possible to pin down the parameters of the representation from the prefer-
ence. After providing an example to illustrate the nonuniqueness of the CC
representation, we show that contemplation strategies can be uniquely identi-
fied when they are put into a reduced form using measures over ex post util-
ity functions. To motivate this reduced form, suppose the individual selects a
signal (i.e., contemplation strategy), the realization of which gives her some
information about her tastes for the different alternatives in a menu. The in-
formation contained in a realization of the signal results in some ex post utility
function, and hence the distribution of the signal translates into a distribution
over ex post utility functions. Following this approach of transforming contem-
plation strategies into measures, Theorem 2 shows that any CC representation
is equivalent to the reduced-form costly contemplation (RFCC) representa-
tion2

V (A)= max
μ∈M

(∫
U

max
p∈A

u(p)μ(du)− c(μ)

)
�(2)

The set U is a collection of ex post expected-utility functions, and M is a set
of measures on U .3 Each measure μ ∈ M determines a particular weighting
of the ex post utility functions. It is important to note that we do not require
the measures in M to be probability measures. Although such a requirement
seems natural given our motivation for the representation, to identify the pa-
rameters in the RFCC representation, we will impose a normalization on the
utility functions in U . Under this normalization, the measures in M are used to
capture both the likelihood of an ex post utility function and the “magnitude”
of that utility function, which requires the use of measures that are not proba-
bilities. When costly contemplation is modeled in this reduced form, parame-
ters can be uniquely identified from the preference. Theorem 4 establishes the

2This representation bears some similarity to the representation for “variational preferences”
considered by Maccheroni, Marinacci, and Rustichini (2006) in the Anscombe–Aumann setting.
There is also a technical connection between the two representations since we apply similar re-
sults from convex analysis to establish our representation theorems, although the setting of our
model requires us to develop a stronger version of these results in Section S.1 of the Supplemental
Material (Ergin and Sarver (2010)).

3The RFCC representation also imposes the following consistency condition on the measures
in M: For every μ�ν ∈ M and every lottery p,

∫
U u(p)μ(du) = ∫

U u(p)ν(du). This condition
implies that even though the individual’s tastes after contemplation can be very different from
her tastes before contemplation, the contemplation process should not affect the individual’s
tendencies on average.
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uniqueness of the set of measures M and cost function c in an RFCC repre-
sentation.

The uniqueness of the parameters in the RFCC representation makes it pos-
sible to conduct meaningful comparisons of contemplation costs between two
representations. In Section 4, we introduce a measure of comparative contem-
plation costs and show the implications for our RFCC representation.

In Section 5.1, we introduce a variation of our model in which the individual
has limited resources to devote to contemplation. That is, the cost of contem-
plation does not directly affect the utility of the individual, but instead enters
indirectly by being constrained to be below some fixed upper bound. We show
that such a representation is in fact a special case of our model, and we in-
troduce the additional axiom needed to obtain this representation for limited
contemplation resources.

Our work relates to several other papers in the literature on preferences over
menus. This literature originated with Kreps (1979), who considered prefer-
ences over menus taken from a finite set of alternatives. Dekel, Lipman, and
Rustichini (2001) (henceforth DLR) extended Kreps’ analysis to the current
setting of preferences over menus of lotteries and used the additional structure
of this domain to obtain an essentially unique representation. In Section 5.2,
we discuss a version of the independence axiom for preferences over menus
of lotteries which was used by DLR in one of their representation results. We
illustrate how our axioms relax the independence axiom and why such a relax-
ation of independence is necessary to model costly contemplation.

A model of costly contemplation was also considered by Ergin (2003), whose
primitive was the same as that of Kreps (1979)—a preference over menus
taken from a finite set of alternatives. The costly contemplation representation
in Equation (1) is similar to the functional form of his representation. How-
ever, the parameters in Ergin’s (2003) representation are not pinned down
by the preference. The richer domain of our preferences, menus of lotteries,
combined with the reduced form of our RFCC representation enables us to
uniquely identify the parameters of our representation. Moreover, our richer
domain yields additional behavioral implications of costly contemplation, such
as ACP and IDD.

We conclude in Section 6 with a brief overview of the so-called infinite-regress
issue for models of costly decision-making. We discuss how our model relates to
the issue and explain how our representation result provides an as if solution to
the issue. Unless otherwise indicated, all proofs are contained in the Appendix.

2. A MODEL OF COSTLY CONTEMPLATION

Let Z be a finite set of alternatives, and let �(Z) denote the set of all proba-
bility distributions on Z, endowed with the Euclidean metric d.4 Let A denote

4Since Z is finite, the topology generated by d is equivalent to the weak* topology on �(Z).
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the set of all closed subsets of �(Z), endowed with the Hausdorff metric, which
is defined by

dh(A�B)= max
{

max
p∈A

min
q∈B

d(p�q)�max
q∈B

min
p∈A

d(p�q)
}
�

Elements of A are called menus or option sets. The primitive of our model is a
binary relation � on A, representing the individual’s preferences over menus.
We maintain the interpretation that after committing to a particular menu A,
the individual chooses a lottery out of A in an unmodeled second stage.

For any A�B ∈ A and α ∈ [0�1], define the convex combination of these
two menus by αA+ (1 − α)B ≡ {αp+ (1 − α)q :p ∈A and q ∈ B}. Let co(A)
denote the convex hull of the set A.

2.1. Axioms

We impose the following order and continuity axioms.

AXIOM 1—Weak Order: � is complete and transitive.

AXIOM 2—Strong Continuity:
(i) Continuity. For all A ∈ A, the sets {B ∈ A :B � A} and {B ∈ A :B � A}

are closed.
(ii) L-continuity. There exist p∗�p∗ ∈ �(Z) and M > 0 such that for every

A�B ∈ A and α ∈ (0�1) with α>Mdh(A�B),

(1− α)A+ α{p∗} � (1− α)B+ α{p∗}�
The weak order axiom is entirely standard, as is the first part of the strong

continuity axiom. The added assumption of L-continuity is used to obtain Lip-
schitz continuity of our representation in much the same way that the continu-
ity axiom is used to obtain continuity.5 To interpret L-continuity, first note that
{p∗} � {p∗}.6 For any A�B ∈ A, continuity therefore implies that there exists
α ∈ (0�1) such that (1−α)A+α{p∗} � (1−α)B+α{p∗}. L-continuity implies
that such a preference holds for any α>Mdh(A�B), so as A and B get closer,
the minimum required weight on p∗ and p∗ converges to 0 at a smooth rate.
The constant M can be thought of as the sensitivity of this minimum α to the
distance between A and B.

The next axiom captures an important aspect of our model of costly contem-
plation:

5Similar L-continuity axioms are used in Dekel, Lipman, Rustichini, and Sarver (2007) (hence-
forth DLRS) and Sarver (2008). There is also a connection between our L-continuity axiom and
the properness condition proposed by Mas-Colell (1986).

6Let α= 1
2 . Applying L-continuity with A= B= {p∗} implies {p∗} � { 1

2p
∗+ 1

2p∗}, and applying
L-continuity with A= B= {p∗} implies { 1

2p
∗ + 1

2p∗} � {p∗}.
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AXIOM 3—Aversion to Contingent Planning: For any α ∈ [0�1],
A� B �⇒ A� αA+ (1− α)B�

To interpret ACP, suppose we were to extend the individual’s preferences to
lotteries over menus. Let α ◦A⊕ (1− α) ◦B denote the lottery that yields the
menu A with probability α and the menu B with probability 1−α. We interpret
this lottery as resolving prior to the individual making her choice of alternative
from the menus. If instead the individual is asked to make her decision prior
to the resolution of the lottery, then she must make a contingent choice. The
situation in which the individual makes a contingent choice, p if A and q if B,
prior to the resolution of the lottery over menus is equivalent to choosing the
alternative αp+ (1− α)q ∈ αA+ (1− α)B. Thus, any contingent choice from
A and B corresponds to a unique lottery in αA+ (1−α)B. As discussed in the
Introduction, if contemplation is costly for the individual, then she will prefer
that a lottery over menus is resolved prior to her choosing an alternative so
that she can avoid contingent planning. Hence,

α ◦A⊕ (1− α) ◦B � αA+ (1− α)B�(3)

If in addition this extended preference satisfies stochastic dominance, then
A � B implies A � α◦A⊕(1−α)◦B. Together with Equation (3), this implies
ACP.7

The following axiom allows for the possibility that the individual contem-
plates to obtain information about her ex post utility, but it rules out the possi-
bility that she changes her beliefs by becoming more optimistic about the utility
she will obtain from a given lottery.

AXIOM 4 —Independence of Degenerate Decisions: For any A�B ∈ A,
p�q ∈�(Z), and α ∈ [0�1],

αA+ (1− α){p}� αB+ (1− α){p}
�⇒ αA+ (1− α){q}� αB+ (1− α){q}�

Suppose the individual is asked to make a contingent plan, and she is told
that she will be choosing from the menu A with probability α and from the
menu {p} with probability 1−α. We refer to a choice from the singleton menu
{p} as a degenerate decision. When faced with a degenerate decision, there is
no benefit or loss to the individual from contemplating. Therefore, if the prob-
ability α that her contingent choice from A will be implemented decreases,
then her benefit from contemplation decreases. Hence, we should expect the

7All the results in the text continue to hold if one replaces ACP with the following weaker
condition: A∼ B �⇒ A� αA+ (1− α)B ∀α ∈ [0�1].
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individual to choose a less costly level of contemplation as α decreases. How-
ever, if α is held fixed, then replacing the degenerate decision {p} in the convex
combination αA+ (1 − α){p} with another degenerate decision {q} does not
change the probability that the individual’s contingent choice from A will be
implemented. Therefore, although replacing p with q could affect the individ-
ual’s utility through its effect on the final composition of lotteries, it will not
affect the individual’s optimal level of contemplation.8

Our last axiom is a monotonicity axiom introduced by Kreps (1979).

AXIOM 5—Monotonicity: If A⊂ B, then B � A.

If additional alternatives are added to a menu A, the individual can always
“ignore” these new alternatives and engage in the same contemplation as with
the menu A.9 Therefore, the utility from a menu B ⊃ A must be at least as
great as the utility from the menu A. Although at first glance it may seem that
costly contemplation alone could lead to a preference for smaller menus to
avoid “overanalyzing” the decision, this argument overlooks the fact that the
individual chooses her contemplation strategy optimally and, in particular, can
ignore any options.

The possibility of overanalysis could arise if the individual experiences some
disutility from not selecting the ex post optimal choice from a menu, for exam-
ple, because of regret. Therefore, regret could lead the individual to sometimes
prefer a smaller menu, which we refer to as a preference for commitment. Other
factors, such as temptation, could also lead to a preference for commitment.
Regret is studied in a related framework by Sarver (2008), and temptation is
studied by Gul and Pesendorfer (2001) and Dekel, Lipman, and Rustichini
(2008). We leave the study of how to incorporate regret or temptation into our
model of costly contemplation as an open question for future research.

2.2. Representation Result

We now define our costly contemplation representation.

DEFINITION 1: A costly contemplation (CC) representation is a tuple ((Ω� F�
P)�G�U� c), where (Ω� F�P) is a probability space, G is a collection of sub-
σ-algebras of F , U is a Z-dimensional, F -measurable, and integrable random
vector, and c : G →R is a cost function such that V : A →R defined by

V (A)= max
G∈G

(
E

[
max
p∈A

E[U |G] ·p
]
− c(G)

)
(4)

8Our IDD axiom is similar in spirit to the weak certainty independence axiom used by
Maccheroni, Marinacci, and Rustichini (2006) in the Anscombe–Aumann setting. In their ax-
iom, arbitrary acts play the role of the menus A and B, and constant acts play the role of the
singleton menus {p} and {q}.

9Note that we are assuming it is costless for the individual to “read” the alternatives on the
menu. What is costly for the individual is analyzing her tastes for these alternatives.
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represents �, where the outer maximization in Equation (4) has a solution for
every A ∈ A and there exist p�q ∈�(Z) such that E[U] ·p> E[U] · q.10

The costly contemplation representation above is a generalized version of
the costly contemplation representation in Ergin (2003).11 The interpretation
of Equation (4) is as follows: The individual has a subjective state space Ω
representing her tastes over alternatives, endowed with a σ-algebra F . She
does not know the realization of the subjective state ω ∈Ω but has a prior P on
(Ω� F). Her tastes over lotteries in �(Z) are summarized by the random vector
U representing her state-dependent expected-utility function. Her utility from
a lottery p ∈�(Z) conditional on the subjective state ω ∈Ω is therefore given
by U(ω) ·p=∑

z∈Z pzUz(ω).
Before making a choice out of a menu A ∈ A, the individual may engage

in contemplation. A contemplation strategy is modeled as a signal about the
subjective state, which corresponds to a sub-σ-algebra G of F . The contem-
plation strategies available to the individual are given by the collection of
σ-algebras G. If the individual carries out the contemplation strategy G , she
incurs a psychological cost of contemplation c(G). However, she can then con-
dition her choice out of A on G and pick an alternative that yields the highest
expected utility conditional on the signal realization. Faced with the menu A,
the individual chooses an optimal level of contemplation by maximizing the
value minus the cost of contemplation. This yields V (A) in Equation (4) as the
ex ante value of the option set A. The CC formulation is similar to an optimal
information acquisition formula. The difference from a standard information
acquisition problem is that the parameters ((Ω� F�P)�G�U� c) are subjective.
Therefore, they are not directly observable, but need to be derived from the
individual’s preference.

10Two notes are in order regarding this definition: (i) We show in Appendix A that the integra-
bility of U implies that the term E[maxp∈A E[U |G] · p] is well defined and finite for every A ∈ A
and G ∈ G. (ii) For simplicity, we directly assume that the outer maximization in Equation (4)
has a solution instead of making topological assumptions on G to guarantee the existence of a
maximum. An alternative approach that does not require this indirect assumption on the para-
meters of the representation would be to replace the outer maximization in Equation (4) with a
supremum, in which case all of our results would carry over.

11Ergin (2003) works in the framework introduced by Kreps (1979), where the primitive of the
model is a preference over subsets of Z rather than subsets of �(Z). He shows that a preference
� over sets of alternatives is monotone (A ⊂ B �⇒ B � A) if and only if there exists a costly
contemplation representation with finite Ω such that � is represented by the ex ante utility func-
tion V in Equation (4). The formulation of costly contemplation in this paper allows for infinite
subjective state space Ω and extends the formulation to menus of lotteries assuming that the
state-dependent utility is von Neumann–Morgenstern.
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Finally, note that V ({p})= E[U] ·p−minG∈G c(G) for any p ∈�(Z). There-
fore, the requirement in Definition 1 that E[U] · p > E[U] · q for some p�q ∈
�(Z) is equivalent to assuming V ({p}) > V ({q}).12

We now present our first representation theorem.

THEOREM 1: The preference � has a CC representation if and only if it satisfies
weak order, strong continuity, ACP, IDD, and monotonicity.

We will not provide a direct proof for this result since it follows from two
results presented in the next section (Theorems 2 and 3).

3. IDENTIFYING CONTEMPLATION STRATEGIES AND COSTS

The following example shows that two different CC representations can lead
to the same value function V for menus and, hence, represent the same pref-
erence.

EXAMPLE 1: Let Z = {z1� z2� z3} and Ω= {ω1�ω2�ω3}. Let F be the discrete
algebra and let P be the uniform distribution on Ω. For each i ∈ {1�2�3}, let Gi

be the algebra generated by the partition {{ωi}� {ωj�ωk}}, and let the collec-
tion of contemplation strategies be G = {G1� G2� G3}. Let c : G → R be any cost
function, and define U :Ω→R

3 and Û :Ω→R
3 by13

U(ω1)=
( 2
−1
−1

)
� U(ω2)=

(−1
2
−1

)
� U(ω3)=

(−1
−1
2

)
�

Û(ω1)=
(−2

1
1

)
� Û(ω2)=

( 1
−2
1

)
� Û(ω3)=

( 1
1
−2

)
�

Then

E

[
max
p∈A

E[U |G1] ·p
]
= 1

3
max
p∈A

U(ω1) ·p(5)

+ 2
3

max
p∈A

[
1
2
U(ω2)+ 1

2
U(ω3)

]
·p

12If we take p∗ and p∗ as in the definition of L-continuity, then {p∗} � {p∗}, which gives rise
to this condition. This “singleton-nontriviality” implication of L-continuity is not accidental, as it
plays an important role in the proof of our representation theorem.

13Under this specification of the random vectors, we have E[U] = 0 and E[Û] = 0, and hence
the singleton-nontriviality condition in Definition 1 is not satisfied. However, we allow for this vio-
lation purely for expositional simplicity. The representations can be modified to satisfy singleton-
nontriviality as follows: Add a fourth state ω4 to Ω, let U(ω4)= Û(ω4)= (1�0�0), and let Gi be
the algebra generated by the partition {{ωi}� {ωj�ωk}� {ω4}}.
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= max
p∈A

⎛
⎜⎜⎜⎜⎜⎝

2
3

−1
3

−1
3

⎞
⎟⎟⎟⎟⎟⎠ ·p+max

p∈A

⎛
⎜⎜⎜⎜⎜⎝

−2
3

1
3
1
3

⎞
⎟⎟⎟⎟⎟⎠ ·p

= 2
3

max
p∈A

[
1
2
Û(ω2)+ 1

2
Û(ω3)

]
·p

+ 1
3

max
p∈A

Û(ω1) ·p

= E

[
max
p∈A

E[Û |G1] ·p
]
�

Similar arguments can be made for each algebra in Gi ∈ G. Therefore, defining
V and V̂ as in Equation (4) for each of the representations ((Ω� F�P)�G�U� c)

and ((Ω� F�P)�G� Û� c), respectively, we have V (A) = V̂ (A) for any menu
A ∈ A.

Although the CC representation is not unique, we will show that the con-
templation strategies in the representation can be put into a “reduced form”
which will allow them to be uniquely identified by the preference. Equation (5)
in Example 1 illustrates the motivation for this reduced form. First, note that
for any G ∈ G, the distributions over ex post utility functions induced by these
two representations are not the same. For instance, for G1, the distribution
over ex post utility functions induced by the first representation puts weight 1

3

on (2�−1�−1) and weight 2
3 on (−1� 1

2 �
1
2), whereas the second representation

puts weight 2
3 on (1�− 1

2 �− 1
2) and weight 1

3 on (−2�1�1). However, the product
of these ex post utility functions with their probabilities is the same for both
representations, yielding the vectors ( 2

3 �− 1
3 �− 1

3) and (− 2
3 �

1
3 �

1
3).

We now generalize these observations to show that contemplation strate-
gies can be uniquely identified when they are represented using measures over
ex post expected-utility functions, where each measure captures the combina-
tion of the likelihood and the magnitude of ex post utilities for the correspond-
ing contemplation strategy. Since expected-utility functions on �(Z) are equiv-
alent to vectors in R

Z , we will use the notation u(p) and u ·p interchangeably.
Define the set of normalized (nonconstant) expected-utility functions on �(Z)
to be

U =
{
u ∈R

Z :
∑
z∈Z

uz = 0�
∑
z∈Z

u2
z = 1

}
�(6)
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For any v ∈ R
Z (i.e., any expected-utility function), there exist α ≥ 0, β ∈ R,

and u ∈ U such that v(p)= αu(p)+β for all p ∈�(Z). Therefore, modulo an
affine transformation, U contains all possible ex post expected-utility functions.

The following lemma shows that in any CC representation, each contempla-
tion strategy corresponds to a unique measure over U .

LEMMA 1: Let ((Ω� F�P)�G�U� c) be any costly contemplation representa-
tion. For each G ∈ G, there exists a unique finite Borel measure μG on U and
scalar βG ∈R such that for all A ∈ A,

E

[
max
p∈A

E[U |G] ·p
]
=

∫
U

max
p∈A

u(p)μG(du)+βG�

In particular, it must be that βG = 1
|Z|

∑
z∈Z E[Uz] for all G ∈ G.

Note that the normalization of the ex post utility functions in U is necessary
for obtaining the uniqueness of the measure μG in this result. For instance,
as we illustrated in the context of Example 1, different distributions over non-
normalized ex post utility functions may correspond to the same measure μ
on the set of normalized utility functions U .14 Note also that while the nor-
malization of the utility functions in U necessitates the use of measures that
may not be probabilities, we can interpret any positive measure μ on U as
a normalized version of a distribution over ex post utility functions. Specifi-
cally, let λ = μ(U) > 0, and consider the probability measure π on V = λU
which (heuristically) puts μ(u)/λ weight on each v = λu ∈ V . Then, by a sim-
ple change of variables,

∫
U maxp∈A u(p)μ(du)= ∫

V maxp∈A v(p)π(dv).
We now sketch the proof of Lemma 1 for the case of a costly contemplation

representation ((Ω� F�P)�G�U� c) where the state space Ω is finite (and F is
the discrete algebra). For each event E ⊂Ω, one can think of

∑
ω∈E P(ω)U(ω)

as an expected-utility function over �(Z). By the definition of U , there exist
αE ≥ 0, βE ∈R, and uE ∈ U such that

αEuE(p)+βE =
[∑
ω∈E

P(ω)U(ω)

]
·p ∀p ∈�(Z)�

For simplicity, suppose that βE = 0 for each event E ⊂Ω.

14The impossibility of uniquely identifying distributions over (nonnormalized) ex post utility
functions in our model is similar to the issue common to most models of state-dependent utility
that the probability distribution over states cannot be identified separately from the utility func-
tion (see Karni (1993) for a more detailed discussion of state-dependent utility within the context
of the Anscombe–Aumann model). For example, this observation motivated Kreps (1979) to im-
pose the implicit normalization that the expectation of the state-dependent utility function be
taken with respect to the uniform distribution. We adopt the alternative approach of normalizing
utilities and using measures to represent the product of the probability and ex post utility.
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Let G ∈ G. Finiteness of Ω implies that there is a partition πG of Ω that
generates G . We define a measure μG over U which has finite support by
μG(u)=∑

E∈πG :uE=u αE for each u ∈ U . Note that we sum over all E for which
uE = u since it is possible to have multiple elements of the partition that lead
to the same ex post expected-utility preference. Then

E

[
max
p∈A

E[U |G] ·p
]
=

∑
E∈πG

P(E)

[
max
p∈A

[∑
ω∈E

P(ω|E)U(ω)

]
·p

]

=
∑
E∈πG

[
max
p∈A

[∑
ω∈E

P(ω)U(ω)

]
·p

]

=
∑
E∈πG

αE max
p∈A

uE(p)

=
∫

U
max
p∈A

u(p)μG(du)�

We show in Appendix B that without the assumption that βE = 0 for all E ⊂
Ω, the term βG = ∑

E∈πG
βE = 1

|Z|
∑

z∈Z E[Uz] would be added to the above
expression. We also show that the uniqueness of μG can be established using
the uniqueness results for the additive expected-utility (EU) representation of
DLR.15

Going back to Example 1, define u1�u2�u3 ∈ U by

u1 = 1√
6

( 2
−1
−1

)
� u2 = 1√

6

(−1
2
−1

)
� u3 = 1√

6

(−1
−1
2

)
�

Then, by the same arguments as those given in Equation (5), we see that the
measures induced by the partition {{ωi}� {ωj�ωk}} in the two representations
are identical, giving

√
6

3 weight to ui,
√

6
3 weight to −ui, and 0 weight to U \

{ui�−ui}.
Motivated by the equivalence obtained in Lemma 1, we now define our

reduced-form representation.16

DEFINITION 2: A reduced-form costly contemplation (RFCC) representation
is a pair (M� c) consisting of a compact set of finite Borel measures M on U

15We discuss the relationship between our model and the additive EU representation of DLR
in more detail in Section 5.2.

16Note that we endow the set of all finite Borel measures on U with the weak* topology, that
is, the topology where a net {μd}d∈D converges to μ if and only if

∫
U fμd(du)→

∫
U fμ(du) for

every continuous function f : U →R.
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and a lower semicontinuous function c : M → R such that V : A → R defined
by

V (A)= max
μ∈M

(∫
U

max
p∈A

u(p)μ(du)− c(μ)

)
(7)

represents � and the following conditions hold:
(i) The set M is consistent: For each μ�ν ∈ M and p ∈�(Z),∫

U
u(p)μ(du)=

∫
U
u(p)ν(du)�

(ii) The set M is minimal: For any compact proper subset M′ of M, the
function V ′ obtained by replacing M with M′ in Equation (7) no longer rep-
resents �.

(iii) There exist p�q ∈�(Z) such that V ({p}) > V ({q}).

The following result shows that the RFCC representation can be interpreted
as a reduced form of the CC representation.

THEOREM 2: Let V : A → R. Then there exists a CC representation such that
V is given by Equation (4) if and only if there exists an RFCC representation such
that V is given by Equation (7).

We now sketch the construction of an equivalent RFCC representation for a
given CC representation ((Ω� F�P)�G�U� c). Letting β = 1

|Z|
∑

z∈Z E[Uz], we
showed in Lemma 1 that for any G ∈ G, there exists a unique finite Borel mea-
sure μG on U such that for all A ∈ A,

E

[
max
p∈A

E[U |G] ·p
]
=

∫
U

max
p∈A

u(p)μG(du)+β�

Let M = {μG : G ∈ G} and, for each μ ∈ M, let

c̃(μ)= inf{c(G) : G ∈ G and μ= μG} −β�

By the construction of M and c̃, for any A ∈ A,

max
G∈G

(
E

[
max
p∈A

E[U |G] ·p
]
−c(G)

)
= max

μ∈M

(∫
U

max
p∈A

u(p)μ(du)− c̃(μ)

)
�(8)

Also, for any G ∈ G and p ∈�(Z),∫
U
u(p)μG(du)= E[E[U |G] ·p] −β= E[U] ·p−β
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by the law of iterated expectations. This implies that the measures in M must
satisfy the consistency condition in Definition 2. Also, condition (iii) in Defin-
ition 2 corresponds to the requirement in the definition of the CC representa-
tion that E[U] ·p> E[U] · q for some p�q ∈�(Z).

The minimality condition in the definition of the RFCC representation is
needed to uniquely identify the parameters in the representation. To see this,
note that it is always possible to add a measure μ /∈ M to the set M and assign
it a cost c(μ) high enough to guarantee that this measure is never a maximizer
in Equation (7). The minimality condition requires that all such unnecessary
measures be dropped from the representation. In contrast, a CC representa-
tion may include contemplation strategies that are never optimal. In the con-
struction of an equivalent RFCC representation from a CC representation, it
is therefore necessary to remove measures from M that are not strictly opti-
mal in Equation (8) for some A ∈ A.17 Thus, the minimal set M in an RFCC
representation may not include all possible contemplation strategies available
to the individual, but it identifies all of the “relevant” ones.

Theorem 2 also asserts that for any RFCC representation, there exists a CC
representation giving rise to the same value function V for menus. The con-
struction used to prove this part of the theorem is more involved, so we refer
the reader to Appendix D for the details.

Using Theorem 2, we establish our CC representation result (Theorem 1) by
proving the following RFCC representation theorem.

THEOREM 3: The preference � has an RFCC representation if and only if it
satisfies weak order, strong continuity, ACP, IDD, and monotonicity.

The proof of Theorem 3 is contained in Appendix C and is divided into two
parts18: In Appendix C.1, we construct a function V that represents � and sat-
isfies certain desirable properties: Lipschitz continuity, convexity, and a type of
“translation linearity” which is closely related to the consistency condition for
the measures in our representation. Then, in Appendix C.2, we apply duality
results from convex analysis to establish that this function V satisfies Equa-
tion (7) for some pair (M� c).

We claimed that contemplation strategies can be uniquely identified from
the preference once they are put into the reduced form of measures over util-
ity functions. The following uniqueness result for the RFCC representation
formalizes this claim.

17If G is finite, then the set M obtained by the construction above is also finite. In this case,
it can be shown that sequentially removing measures from M that are not strictly optimal in
Equation (8) for some A ∈ A leads to a minimal set of measures M̃ ⊂ M. Although this approach
can be generalized to the case of infinite G, in Appendix D we instead give a simpler indirect proof
of this direction that does not use Lemma 1.

18In Appendix C, we also prove a related representation result for nonmonotone preferences,
which may be useful in future applications.
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THEOREM 4: If (M� c) and (M′� c′) are two RFCC representations for �,
then there exist α > 0 and β ∈ R such that M′ = αM and c′(αμ)= αc(μ)+ β
for all μ ∈ M.

An RFCC representation (M� c) in which M is a singleton corresponds to
a monotone additive EU representation of DLR. Since DLR did not impose a
normalization on the ex post expected-utility functions in their representation,
their uniqueness result appears weaker than the implication of our Theorem 4
for singleton M. However, our uniqueness result for singleton M is not actu-
ally stronger than theirs since the same normalization also gives a unique belief
in DLR.

For the intuition behind this theorem, note that the V defined by Equa-
tion (7) for an RFCC representation is a convex function. Although the nonlin-
earity of this function prevents the use of standard arguments from expected-
utility theory, it can still be shown that V is unique up to a positive affine trans-
formation (see Proposition 1 in Appendix C.1). From this it can then be shown
that the parameters of an RFCC representation (M� c) are themselves unique
up to the positive affine transformation described in Theorem 4.

For a simple example of how the type of transformation described in Theo-
rem 4 could arise, consider a CC representation ((Ω� F�P)�G�U� c), and let
(M� c̃) be the corresponding RFCC representation as described in Theorem 2.
If we replace the state-dependent utility function U in this CC representation
with the utility function U ′ = αU − β and replace the cost function c with
c′ = αc, where α > 0 and β ∈ R, then the underlying preference is the same.
This new representation corresponds to the RFCC representation (M′� c̃′),
where M′ = αM and c̃′(μ)= αc̃( 1

α
μ)+β for all μ ∈ M′. However, due to the

nonuniqueness of the CC representation, there are many other changes to the
parameters of a CC representation that could also result in such a transfor-
mation of the corresponding RFCC representation (e.g., changes to the prob-
ability distribution or information structure, or other types of changes to the
utility or cost function). In particular, as illustrated in Example 1, two sets of
CC parameters can correspond to precisely the same RFCC representation.
Given the sharp uniqueness result that is obtained for the RFCC representa-
tion (Theorem 4), the equivalence result established above (Theorem 2) allows
the nonuniqueness issue associated with CC representations to be overcome by
working with equivalent RFCC representations.19�20

19Note that in the model of Ergin (2003), the preference being over finitely many menus
presents an additional, more basic source of nonuniqueness. In his framework, even a reduced-
form representation would not be uniquely identified.

20In an alternative approach to modeling costly information acquisition, Hyogo (2007) studied
preferences over pairs consisting of an action and a menu of Anscombe–Aumann acts. In his
representation, each action yields a distribution over posteriors over the objective state space,
and the individual anticipates that she will choose an ex post optimal act from the menu. Since in
his framework the state space is objective and utility is not state dependent, he is able to uniquely
identify the prior over the state space and the distribution of posteriors induced by each action.
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4. COMPARING CONTEMPLATION COSTS

By identifying contemplation strategies with measures over ex post utility
functions as described in the previous section, it is possible to conduct mean-
ingful comparisons of contemplation costs between two representations. In this
section, we consider one such comparative measure of the cost of contempla-
tion. Our measure will apply to preferences � that are bounded above by single-
ton menus in the sense that there exists an alternative z ∈Z such that {δz}� A
for all A ∈ A, where δz denotes the lottery that puts full probability on z. For
example, such an alternative z could be a very large monetary prize that is
known with certainty to be better than any other alternative z′ ∈Z.

DEFINITION 3: Suppose that the preferences �1 and �2 satisfy Axioms 1–5
and are bounded above by singleton menus. We say that �1 has lower cost of
contemplation than �2 if for every A ∈ A and p ∈�(Z),

A�2 {p} �⇒ A�1 {p}�
In this comparative measure, individuals face a trade-off between a menu A

that may offer some flexibility and a lottery p that may be better on average.
For example, consider any menu A and lottery p. If there is some q ∈A such
that {q} �i {p} for i = 1�2, then A �i {p} for i = 1�2 by the monotonicity of
the preferences. In this case, the condition in Definition 3 holds vacuously.
Alternatively, suppose {p} �i {q} for i = 1�2 for all q ∈A. Then the menu A
may offer flexibility if it contains more than one alternative, while p is better
than the alternatives in A on average. Definition 3 formalizes the intuition that
an individual is more likely to favor A over {p} as her cost of contemplation
becomes smaller since flexibility is more valuable when information about the
alternatives is available at a lower cost.

Assume that the preference �i has the RFCC representation (Mi� ci) for
i = 1�2. If the sets of measures M1 and M2 are different, then it is not clear
what the statement “the cost function c1 is lower than the cost function c2”
means. In this case, there are measures μ ∈ M1 ∪ M2 for which either c1(μ)
or c2(μ) is not defined. To overcome this problem, we will extend the cost
function in an RFCC representation to the set of all measures.

DEFINITION 4: Let M denote the set of all finite Borel measures on U and
let V : A →R be continuous. The minimum rationalizable cost of contemplation
for V is the function c∗ : M →R defined by

c∗(μ)= max
A∈A

(∫
U

max
p∈A

u(p)μ(du)− V (A)

)
�(9)

Suppose V is defined by Equation (7) for some RFCC representation
(M� c). Then the function c∗ defined by Equation (9) agrees with the cost
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function c on M.21 Moreover, for any A ∈ A and μ ∈ M, we have V (A) ≥∫
U maxp∈A u(p)μ(du) − c∗(μ), with equality for some A ∈ A. Thus, c∗ is the

minimal extension of c to M that does not alter the function V . Recall from
the discussion in Section 3 that if an individual has an RFCC representation
(M� c), then μ /∈ M is not a statement that the contemplation strategy corre-
sponding to μ is not available to the individual. Rather, the exclusion of this
measure from M implies that it is never strictly optimal and, hence, is not
needed to represent the individual’s preference. In this sense, it is natural to
consider what contemplation costs could be attributed to measures not con-
tained in M. The function c∗ indicates the minimum rationalizable cost of
contemplation for all measures in M, which makes it possible to compare con-
templation costs between different RFCC representations.

For the following result, we use S ≡ {{p} :p ∈�(Z)} to denote the set all of
singleton menus, and we write V2|S ≈ V1|S to indicate that the restriction of V2

to S is a positive affine transformation of the restriction of V1 to S (i.e., there
exist α> 0 and β ∈R such that V2({p})= αV1({p})+β for all p ∈�(Z)).

THEOREM 5: Assume that for i = 1�2, the preference �i has an RFCC repre-
sentation (Mi� ci) and is bounded above by singleton menus. Define Vi by Equa-
tion (7) and c∗i by Equation (9) for i = 1�2. Then the following statements are
equivalent:

(i) �1 has lower cost of contemplation than �2.
(ii) V2|S ≈ V1|S and V2 ≤ V1 (provided V2|S = V1|S ).
(iii) V2|S ≈ V1|S and c∗2 ≥ c∗1 (provided V2|S = V1|S ).22

To interpret condition (iii) in this theorem, first note that if V2|S ≈ V1|S , then
by Theorem 4 it is without loss of generality to assume that V2|S = V1|S . In
this case, we have

∫
U u(p)μ(du)= ∫

U u(p)ν(du) for all μ ∈ M2, ν ∈ M1, and
p ∈�(Z). In other words, the average utility of any lottery is the same for both
representations. However, c∗1(μ) ≤ c∗2(μ) for all μ ∈ M implies that informa-
tion is less costly for the first individual. In particular, consider any μ ∈ M2. If
μ ∈ M1 ∩ M2, then c1(μ)= c∗1(μ)≤ c∗2(μ)= c2(μ), that is, the contemplation
strategy corresponding to μ is less costly for the first individual. Alternatively, if
μ ∈ M2 \ M1, then c∗1(μ)≤ c∗2(μ)= c2(μ). Thus, if the measure μ were added
to the representation (M1� c1) at a cost c∗1(μ), where c∗1(μ)≤ c2(μ), the value
function for menus V1 would not be altered. Although we cannot infer from the

21This result is obtained as part of the proof of Theorem 4 in Appendix E. Note that although
it is immediate that c∗(μ)≤ c(μ) for all μ ∈ M, the minimality requirement on M is important
for obtaining the opposite inequality. For example, consider a measure μ ∈ M that is strictly
suboptimal for every menu in the sense that V (A) >

∫
U maxp∈A u(p)μ(du)− c(μ) for all A ∈ A.

The minimality requirement rules out the possibility of having such a measure in M, but if it were
permitted, we would obtain c(μ) > c∗(μ).

22This theorem continues to hold if that assumption that c∗2 ≥ c∗1 in condition (iii) is replaced
with the weaker assumption that c∗2(μ)≥ c∗1(μ) for all μ ∈ M2.
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preference �1 whether the contemplation strategy corresponding to μ /∈ M1 is
available to the first individual or not, this contemplation strategy can be ra-
tionalized by the preference at a cost c∗1(μ) ≤ c2(μ). In this sense, all of the
contemplation strategies available to the second individual can be thought of
as being available to the first individual at a lower cost.

Using the mapping from contemplation strategies G to measures μG de-
scribed in Lemma 1, we obtain the following corollary for CC representations.

COROLLARY 1: Assume that for i= 1�2, the preference �i has a CC represen-
tation ((Ωi� Fi� Pi)�Gi�Ui� ci) and is bounded above by singleton menus. Define
Vi by Equation (4) and c∗i by Equation (9) for i = 1�2. Then the following state-
ments are equivalent:

(i) �1 has lower cost of contemplation than �2.
(ii) V2|S ≈ V1|S and V2 ≤ V1 (provided V2|S = V1|S ).
(iii) V2|S ≈ V1|S and c∗2(μG2)≥ c∗1(μG2) for all G2 ∈ G2 (provided V2|S = V1|S ).

The interpretation of this corollary is similar to that of Theorem 5, with the
following caveat: In a CC representation ((Ω� F�P)�G�U� c), the interpreta-
tion of the function c∗ as an extension of the cost function c is a little more
subtle than in the case of the RFCC representation. Aside from the obvious
distinction that the domain of c is not actually a subset of the domain of c∗, it is
possible to have c∗(μG) < c(G) for some G ∈ G. In particular, Lemma 14 in Ap-
pendix F.2 shows that c∗(μG)≤ c(G), with equality if and only if G solves Equa-
tion (4) for some A ∈ A.23 Therefore, if we let Ĝ denote the subset of contem-
plation strategies that solve Equation (4) for some menu, then c∗(μG)= c(G)

for any G ∈ Ĝ. Thus, c∗ can be thought of as the minimal extension of c|Ĝ to M
that does not alter the function V .

5. SPECIAL CASES

5.1. Limited Contemplation Resources

In this section, we consider an alternative model of costly contemplation
in which the cost of contemplation does not directly affect the utility of the
individual. Instead, the cost of contemplation enters indirectly when it is con-
strained to be below some bound k. Such a model may be appropriate in in-
stances where the only cost of contemplation is time and the individual has a
limited amount of time to devote to her decision.

Formally, we continue to model contemplation in the reduced form of a com-
pact set of finite Borel measures M over the set of ex post utility functions U ,
with the requirement that M be consistent and minimal. Let c : M → R be a

23Throughout this discussion, we assume for expositional simplicity that β≡ 1
|Z|

∑
z∈Z E[Uz] =

0. As we show in Lemma 14, without this assumption, the inequality would be c∗(μG)≤ c(G)−β.
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lower semicontinuous cost function and let k ∈ R be the maximum allowable
contemplation cost. A representation for limited contemplation resources then
takes the form of a function V : A →R defined by

V (A)= max
μ∈M

(∫
U

max
p∈A

u(p)μ(du)

)
subject to c(μ)≤ k�(10)

If we let M′ = {μ ∈ M : c(μ)≤ k}, then this representation is equivalent to

V (A)= max
μ∈M′

(∫
U

max
p∈A

u(p)μ(du)

)
�

Moreover, since c is lower semicontinuous, M′ is also compact. Thus, the lim-
ited contemplation resources representation in Equation (10) is equivalent to
an RFCC representation with a zero cost function, (M′�0). Since the cost
function in an RFCC representation is only unique up to an affine transfor-
mation, we see that a preference has a representation as in Equation (10) if
and only if it has an RFCC representation (M′� c′), where c′ is constant.

We now introduce an axiom that characterizes a constant cost of contempla-
tion for all available contemplation strategies.

AXIOM 6—Strong IDD: For any A�B ∈ A, p ∈�(Z), and α ∈ (0�1),

A� B ⇐⇒ αA+ (1− α){p}� αB+ (1− α){p}�

As the name suggests, strong IDD is a strengthening of IDD. Suppose

αA+ (1− α){p}� αB+ (1− α){p}
for some A�B ∈ A, p ∈�(Z), and α ∈ (0�1). Strong IDD then implies A � B,
and applying strong IDD again, we have

βA+ (1−β){q}� βB+ (1−β){q}
for any q ∈ �(Z) and β ∈ (0�1). In contrast, IDD only guarantees that the
above preference holds for β= α. Thus, strong IDD implies an independence
of degenerate decisions (IDD) and, in addition, independence of the weights
on these degenerate decisions.24

24Strong IDD is similar in spirit to the certainty independence axiom used by Gilboa and
Schmeidler (1989) in the Anscombe–Aumann setting. In their axiom, arbitrary acts play the role
of the menus A and B, and a constant act plays the role of the singleton menu {p}. Our dis-
cussion of the relationship between strong IDD and IDD parallels the comparison of certainty
independence and weak certainty independence found in Section 3.1 of Maccheroni, Marinacci,
and Rustichini (2006).
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For intuition, recall that the menu αA+ (1 − α){p} represents the decision
problem in which the individual makes a contingent choice from A, this choice
is implemented with probability α, and with probability 1 − α the individual
instead receives p. We argued in Section 2.1 that as α decreases, the individ-
ual’s benefit from contemplation decreases, causing her to choose a less costly
contemplation strategy. However, if the cost of all available contemplation
strategies is the same, then her optimal contemplation strategy when choos-
ing from the menu A will be the same as her optimal contemplation strategy
when choosing from αA+ (1 − α){p} for any α ∈ (0�1). Therefore, if A � B,
then taking the convex combination of these menus with some singleton menu
{p} could affect the individual’s utility through its effect on the final compo-
sition of lotteries, but it will not affect her optimal contemplation strategy for
each of the respective menus. Hence, her ranking of the menus will not change.

The following theorem formalizes the connection between strong IDD and
constant contemplation costs.

THEOREM 6: Suppose the preference � has an RFCC representation (M� c).
Then � satisfies strong IDD if and only if c is constant.

Given the relationship between the CC representation and the RFCC rep-
resentation, we obtain the following corollary.

COROLLARY 2: For a preference � on A, the following statements are equiva-
lent:

(i) The preference � satisfies weak order, strong continuity, ACP, strong IDD,
and monotonicity.

(ii) There exists a probability space (Ω� F�P), a collection G of sub-σ-algebras
of F , a Z-dimensional, F -measurable, and integrable random vector U , a cost
function c : G →R, and a constant k ∈R such that the preference � is represented
by

V (A)= max
G∈G

E

[
max
p∈A

E[U |G] ·p
]

subject to c(G)≤ k�(11)

where the outer maximization in Equation (11) has a solution for every A ∈ A
and there exist p�q ∈�(Z) such that E[U] ·p> E[U] · q.

5.2. Connection to the Independence Axiom

In this section, we discuss the special case of our model in which the full-
information contemplation strategy is available and no more costly than any
other (less informative) contemplation strategy. This special case will be closely
related to the analysis of DLR, who introduced the following independence
axiom for sets of lotteries.
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AXIOM 7—Independence: For any A�B�C ∈ A and α ∈ (0�1),

A� B �⇒ αA+ (1− α)C � αB+ (1− α)C�

It is easily verified that under weak order and continuity, independence im-
plies ACP and strong IDD. Note also that under weak order and continuity,
independence implies a form of indifference to contingent planning: For any
A�B ∈ A and α ∈ [0�1], A ∼ B implies A ∼ αA + (1 − α)B. Intuitively, this
suggests that independence rules out the possibility of multiple contemplation
strategies.

For a simple example of why multiple contemplation strategies are inconsis-
tent with the independence axiom, let A and B be the restaurant menus de-
scribed in the Introduction, that is, A= {t� s} and B= {f� r}. Suppose the indi-
vidual has two contemplation strategies, both of which have zero cost: (i) con-
template which seafood dish she would like and (ii) contemplate which steak
dish she would like. In particular, it is not possible for the individual to contem-
plate both restaurant menus. This could occur if, as discussed in Section 5.1, the
individual’s contemplation is constrained due to limited time and there is not
sufficient time to think about both restaurant menus. Then, when faced with
either menu A or B, the individual can choose a contemplation strategy that
allows her to pick the ex post optimal alternative with probability 1. However,
since she cannot contemplate both menus simultaneously, it is not possible for
her to choose the ex post optimal alternative with certainty when asked to make
a contingent plan from αA+ (1−α)B. Therefore, if the items on these menus
are such that A ∼ B, it follows that A � αA + (1 − α)B, in violation of the
independence axiom.25 The following result generalizes these observations by
showing that the independence axiom is equivalent to an RFCC representation
with a single contemplation strategy.

THEOREM 7: The preference � satisfies weak order, strong continuity, indepen-
dence, and monotonicity if and only if it has an RFCC representation (M� c) in
which M is a singleton.

25It is well known that independence may be violated if the individual takes a payoff-relevant
action prior to the resolution of uncertainty. In the context of our CC representation, the in-
dividual facing the complete contingent plan αA + (1 − α)B chooses her contemplation strat-
egy before the uncertainty regarding the menu (A or B) is resolved. In the context of choices
among lotteries, Mossin (1969) gave the example of an individual who has expected-utility pref-
erences over two-period consumption vectors and makes a savings decision in period 1. Mossin
argued that the individual’s induced preferences over second-period income distributions may
violate independence if the savings decision precedes the resolution of uncertainty regarding the
second-period income. Such induced preferences over lotteries naturally satisfy a quasiconvexity
property analogous to our ACP axiom: p � q⇒ p � αp+ (1 − α)q. Quasiconvexity of prefer-
ences over monetary prizes has also been studied for entirely different purposes in economics.
For instance, Green (1987) showed that an individual who has fixed, time-independent, continu-
ous, and monotone preferences over lotteries over monetary prizes is prone to “money pumps”
starting from nonrandom wealth levels if and only if her preferences are quasiconvex.
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We will not provide a proof of this result since it is simply a restatement of
the additive EU representation theorem of DLR and DLRS.26 The following
corollary shows the implications of independence for the CC representation.

COROLLARY 3: The preference � satisfies weak order, strong continuity,
independence, and monotonicity if and only if it has a CC representation
((Ω� F�P)�G�U� c) such that F ∈ G and c(F)= minG∈G c(G).

Corollary 3 states that a preference � that satisfies independence (and our
other axioms) can be represented with a CC representation in which the full-
information contemplation strategy is available and no more costly than any
other contemplation strategy. However, due to the nonuniqueness of the CC
representation, there are also other CC representations for this preference in
which the full-information contemplation strategy is not the least costly. In-
deed, an individual’s preference will satisfy independence whenever there is a
single optimal contemplation strategy, even if it is not the most informative.
Therefore, it is not possible to determine from the preference whether or not
the full-information contemplation strategy is the least costly; the indepen-
dence axiom simply indicates that the preference can be represented as if the
full-information contemplation strategy is the least costly.

In the remainder of this section, we provide graphical intuition for our main
axioms (ACP and IDD) and illustrate how these axioms relax the indepen-
dence axiom. Consider preferences over menus of lotteries over two alterna-
tives. That is, suppose Z = {z1� z2}. In this case, the set of lotteries over Z can
be represented as the unit interval [0�1], with p ∈ [0�1] being the probabil-
ity of alternative z2. Under weak order and continuity, ACP and monotonicity
imply that the individual is indifferent between any menu and its convex hull
(see Lemma 2 in Appendix C.1). We can therefore restrict attention to convex
menus. Closed and convex menus from [0�1] are simply closed intervals, and
hence we are considering preferences over menus of the form [p�q] ⊂ [0�1]
where p�q ∈ [0�1].

26Although DLR do not impose a normalization on the set of ex post expected-utility functions
in the definition of their representation, the proof of their representation result uses a set of ex
post utility functions that is precisely U as defined in Equation (6). In particular, it is shown in the
Supplemental Material of DLRS that the preference � satisfies weak order, strong continuity,
independence, and monotonicity if and only if there exists a finite Borel measure μ on U such
that � is represented by the functional form

V (A)=
∫

U
max
p∈A

u(p)μ(du)�

Since DLRS used a slightly weaker L-continuity axiom, their representation need not satisfy sin-
gleton nontriviality (condition (iii) in Definition 2). However, under the strong continuity ax-
iom of the current paper, singleton nontriviality will be satisfied. Hence, the pair (M� c), where
M = {μ} and c = 0, is an RFCC representation for �.
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FIGURE 1.—Representing convex menus.

The set of all menus of this form is illustrated in Figure 1.27 Consider any in-
terval A= [p�q]. This interval corresponds to the point in the triangle whose
first coordinate is p and whose second coordinate is q, that is, the point whose
horizontal distance from the left side of the graph is p and whose vertical dis-
tance from the bottom of the graph is q. In particular, the set of all singleton
menus (i.e., menus of the form {p} = [p�p]) is represented by the diagonal of
the triangle in this figure. Note that we abuse notation slightly and let z1 de-
note the lottery that gives z1 with probability 1, and likewise for z2. Thus, the
corners of the triangle labeled {z1}, {z2}, and [z1� z2] correspond to the menus
{0}, {1}, and [0�1], respectively.

When the set of closed and convex menus is represented as in Figure 1,
a convex combination of two menus corresponds to the convex combination
of the points representing these menus. Therefore, the implication of ACP is
simply that the lower contour sets for the preference are convex sets. Before
illustrating the implications of IDD, we make a few observations about “trans-
lations” of menus. Consider the menu A = [p�q] indicated in Figure 1, and
take some real number θ. Adding the translation θ to the menu A yields a new
menu A+θ= [p+θ�q+θ]. Figure 1 illustrates that translating a menu results
in a movement in a direction parallel to the diagonal of the triangle.

Figure 2 builds on these observations to show that IDD implies a type of
translation invariance.28 That is, we will show that if the individual is indiffer-
ent between two menus, then she is also indifferent between the new menus

27A similar depiction of menus of lotteries can be found in Olszewski (2007).
28This property is defined formally in Appendix C.1 and plays an important role in the proof

of Theorem 3.
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FIGURE 2.—Translation invariance.

obtained by translating them both the same distance in a direction parallel
to the diagonal of the triangle. Consider any two menus A and B such that
A ∼ B. Therefore, as illustrated in Figure 2, A and B both lie on the same
indifference curve I1. Note that for this preference to satisfy ACP, the lower
contour sets of the preference must be convex, and hence the points above I1

must be preferred to the points below I1. Figure 2 illustrates that the menus
A and B can be written as convex combinations of the singleton menu {p}
with the menus A′ and B′, respectively. That is, there exists α ∈ (0�1) such that
A = αA′ + (1 − α){p} and B = αB′ + (1 − α){p}. Fix any lottery q. Then by
IDD, we have

αA′ + (1− α){p} ∼ αB′ + (1− α){p}
�⇒ αA′ + (1− α){q} ∼ αB′ + (1− α){q}�

Thus, the menus αA′ + (1 − α){q} and αB′ + (1 − α){q} must also be on the
same indifference curve, which is indicated by I2 in Figure 2. However, letting
θ= (1−α)(q−p), it is easily seen that A+θ= αA′ + (1−α){q} and B+θ=
αB′ + (1 − α){q}. In other words, if the menus A and B are both translated
by θ, then the individual remains indifferent between them. More generally,
it can be shown that IDD implies that when the same translation is applied
to any two menus, the individual’s ranking of these menus is not altered (see
Lemma 3).

These figures show that although ACP and IDD allow for “kinks” in indiffer-
ence curves, these axioms require that lower contour sets be convex and that
indifference curves be translations of each other. Note that the kinks in the
indifference curves in Figure 2 indicate a change in the optimal contemplation
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strategy, and our model allows for a possibly infinite number of kinks. In con-
trast, the independence axiom requires that indifference curves be linear and
does not allow for such kinks. These observations illustrate why it is necessary
to relax independence so as to allow for nondegenerate costly contemplation,
that is, costly contemplation with more than one contemplation strategy.29

6. INFINITE REGRESS

We conclude by discussing the infinite-regress problem of bounded ratio-
nality (see Lipman (1991) and Conlisk (1996)) within the context of our main
representation theorem. Let D stand for some collection of abstract decision
problems. In theoretical economic analysis, standard rational agents are as-
sumed to solve any decision problem D ∈ D optimally without any constraints.
One may think that this is not a realistic assumption when the decision problem
D is difficult in some sense, and be tempted to make the model more realistic
by explicitly taking into account the costs of solving D. Let F be a correspon-
dence that associates with every decision problem D ∈ D a set of new decision
problems F(D)⊂ D obtained by incorporating into D the costs of solving D.

Typically, the decision problems in F(D) are even more “difficult” than D,
in the same sense in which D is difficult to start with. Therefore, assuming
that the individual solves the problems in F(D) optimally is no more reason-
able than assuming that she solves D optimally. Explicitly including the costs
of solving the decision problems in F(D) leads to a new class of decision prob-
lems F2(D) = F(F(D)) = ⋃

D′∈F(D) F(D
′). This argument can be iterated ad

infinitum. Since the classes of problems D�F(D)�F 2(D)� � � � �Fn(D)� � � � be-
come progressively more complicated, assuming that the individual solves any
one of them optimally defeats the initial purpose of building a more realistic
model. This is the infinite-regress problem.

To state the infinite-regress problem within the context of our model, as-
sume that each decision problem in D ∈ D specifies a set of actions and payoffs
from these actions. The augmented decision problems in F(D) introduce un-
certainty about the individual’s payoffs from the actions in D, but allow her to
acquire costly information about this uncertainty and condition her choice of
action from D on her information. As a result, the augmented actions in a de-
cision problem D′ ∈ F(D) are pairs consisting of (i) the choice of information
and (ii) the choice of action from D contingent on the realized information.
The payoff function corresponding to D′ is obtained by taking the expected
payoff from the augmented action minus the cost of acquired information.

29A relaxation of the independence axiom in the setting of preferences over menus of lotteries
was also considered by Epstein, Marinacci, and Seo (2007), who interpreted their axiom as the
behavior of an individual with an incomplete (or coarse) conception of the future. This coarse
conception entails a degree of pessimism on the part of the individual, and their resulting repre-
sentations are intuitively similar to the maxmin representation of Gilboa and Schmeidler (1989).
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The most basic type of decision problem D0 we consider specifies a
menu A of lotteries interpreted as actions and an expected-utility function
u :�(Z)→R. The optimization problem corresponding to D0 is to find the
utility-maximizing lottery out of the given menu. Let D0 denote the set of such
basic decision problems. The (once) augmented decision problems D1 ∈ F(D0)
consist of all maximization problems of type

max
(G�f )

E[U · f ] − c(G)�(#)

where, as in the CC formulation, (Ω� F�P) is a probability space and U is a
state-dependent utility function representing the individual’s uncertainty about
her payoff from actions in A, G is a collection of sub-σ-algebras of F speci-
fying the information that the individual can acquire, and c(G) denotes the
cost of information G . The maximization is done over all augmented actions
(G� f ), where G ∈ G and f :Ω→A determines a plan of actions measurable
with respect to the acquired information G .30

We can define F(D1) by introducing further uncertainty about the aug-
mented decision problem (#) above. More specifically, we can introduce un-
certainty about the probability P , the state dependent utility function U , and
the cost function c, and allow the individual to acquire costly information about
this additional uncertainty and condition her choice of action (G� f ) in Equa-
tion (#) on this information. It is straightforward to see how this construction
can be iterated an arbitrary number of times to construct Fn(D0) for an arbi-
trary n≥ 1. We let D =⋃∞

n=0 F
n(D0).

Although one can also argue within the context of our model that the
classes of decision problems D0�F(D0)�F

2(D0)� � � � �F
n(D0)� � � � become pro-

gressively more complicated because they involve solving higher-order infor-
mation acquisition problems, our representation result is immune to this criti-
cism. To see this, consider an excerpt from Lipman (1995, p. 59), who explained
why axiomatic approaches to bounded rationality are not susceptible to the
infinite-regress criticism:

Roughly, the axiomatic approach begins with a description of the agent and then translates
this into a model of information processing. Clearly, it then makes no sense to ask whether
the agent can carry out this information processing accurately. If the processing is simply
a representation of what the agent is doing, the question boils down to asking whether an
agent is able to do whatever it is that he does!

30The one-shot maximization problem corresponding to (#) is equivalent to the two-stage
maximization problem in the CC formulation where the individual first chooses her information

G and then chooses a lottery maximizing her ex post expected utility E[U |G] conditional on the
realized information. We are using the one-shot maximization formulation in Equation (#) be-
cause it is more explicit about the action space for D1.
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In particular, to the extent that one finds ACP and IDD to be convincing be-
havioral aspects of bounded rationality arising from contemplation costs, there
is no loss of generality from restricting attention to the case where the deci-
sion maker optimally solves the problem of learning her preferences subject to
costs, that is, to the case where she optimally solves F(D0). Therefore, our rep-
resentation result may be seen as giving an as if solution to the infinite-regress
problem.

On a final note, it is standard that every nth-level problem Dn ∈ Fn(D0)
where n≥ 1 can be collapsed to a first-level problem D1 ∈ F(D0) by rewriting
the dynamic information acquisition problem in Dn as a one-shot augmented
costly information acquisition problem. In particular, if we do not observe the
individual’s sequence of information acquisition choices, then we cannot dis-
tinguish between first-level and nth-level decision problems. Since the only
observable in our model is the individual’s preferences over menus, the rep-
resentations where the individual solves a higher-order subjective informa-
tion acquisition problem in Fn(D0) for n≥ 2 are behaviorally indistinguishable
from those where she solves a first-order problem in F(D0).

APPENDIX A: SHOWING THE CC REPRESENTATION IS WELL DEFINED

Consider any CC representation ((Ω� F�P)�G�U� c). In this section, we
show that the term E[maxp∈A E[U |G] · p] is well defined and finite for every
A ∈ A and G ∈ G. This in particular implies that V (A) is finite whenever the
outer maximization in Equation (4) has a solution. Let Ũ be an arbitrary ver-
sion of E[U |G]. The existence and integrability of Ũz follow from integrability
of Uz for each z ∈ Z (see Billingsley (1995, p. 445)). Let B be a countable
dense subset of A. At each ω ∈ Ω, maxp∈A Ũ(ω) · p exists and is equal to
supp∈B Ũ(ω) · p. For each p ∈ B, Ũ · p is F -measurable as a convex combi-
nation of F -measurable random variables. Hence, maxp∈A Ũ ·p= supp∈B Ũ ·p
is an F -measurable random variable as the pointwise supremum of countably
many F -measurable random variables (see Billingsley (1995, p. 184, Theo-
rem 13.4(i))). Note also that for any p ∈�(Z), |Ũ ·p| ≤∑

z∈Z |Ũz|, and hence
|maxp∈A Ũ · p| ≤ ∑

z∈Z |Ũz|. Therefore, integrability of maxp∈A Ũ · p follows
from integrability of Ũ .

APPENDIX B: PROOF OF LEMMA 1

Fix a CC representation ((Ω� F�P)�G�U� c) and fix G ∈ G. Let 1 ∈ R
Z de-

note the vector whose coordinates are all equal to 1. It is easy to show that
there exist G -measurable and integrable functions α :Ω→R+, β :Ω→R, and
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u :Ω→ U such that

E[U |G] = αu+β1� P-almost surely.31

Define a positive finite measure m on (Ω� G) via its Radon–Nikodym derivative
dm
dP
(ω)= α(ω), and define a finite Borel measure μG on U via μG =m ◦ u−1.32

Let βG = E[β]. Then, for any menu A ∈ A,

E

[
max
p∈A

E[U |G] ·p
]
=

∫
Ω

[
α(ω)max

p∈A
u(ω) ·p

]
P(dω)+E[β]

=
∫
Ω

[
max
p∈A

u(ω) ·p
]
m(dω)+βG

=
∫

U

[
max
p∈A

u ·p
]
μG(du)+βG�

where the final equality follows from the change of variables formula. In ad-
dition, taking p = (1/|Z|� � � � �1/|Z|), we have u · p = 0 for all u ∈ U . Thus,
letting A= {p} in the above equation, we have

βG = E[E[U |G] ·p] = E

[
1
|Z|

∑
z∈Z

E[Uz|G]
]
= 1
|Z|

∑
z∈Z

E[Uz]�

To show that the μG and βG defined above are unique, consider any other
μ′

G and β′
G such that for all A ∈ A,∫

U
max
p∈A

(u ·p)μG(du)+βG =
∫

U
max
p∈A

(u ·p)μ′
G(du)+β′

G�

Taking p= (1/|Z|� � � � �1/|Z|) and letting A= {p}, the above equation implies
βG = β′

G . This in turn implies that for any A ∈ A,∫
U

max
p∈A

(u ·p)μG(du)=
∫

U
max
p∈A

(u ·p)μ′
G(du)�

31For example, fix any version Ũ of E[U |G]. Letting ū be any element of U and letting ‖ · ‖ de-
note the standard Euclidean norm on R

Z , take β(ω)= 1
|Z|

∑
z∈Z Ũz(ω), α(ω)= ‖Ũ(ω)−β(ω)1‖,

and

u(ω)=
⎧⎨
⎩

Ũ(ω)−β(ω)1
α(ω)

� if α(ω) �= 0,

ū if α(ω)= 0.

It is a standard exercise to check that α, β, and u so defined are G -measurable and integrable.
32That is, m(E)= ∫

E
α(ω)P(dω) for any E ∈ G , and μG(F)=m◦u−1(F)= ∫

u−1(F)
α(ω)P(dω)

for any Borel measurable set F ⊂ U .
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Since each side of this equality is what DLR referred to as an additive EU rep-
resentation, we can apply their uniqueness result to conclude that μG = μ′

G .33

APPENDIX C: PROOF OF THEOREM 3

In this section, we prove two results. We first prove a general representa-
tion theorem for preferences that may violate monotonicity and subsequently
establish Theorem 3 as a special case. The following definition is a generaliza-
tion of the RFCC representation to allow for signed measures.

DEFINITION 5: A signed RFCC representation is a pair (M� c) consisting of
a compact set of finite signed Borel measures M on U and a lower semicon-
tinuous function c : M → R such that V : A → R defined by Equation (7) rep-
resents � and (i)–(iii) in Definition 2 are satisfied.

The signed RFCC representation is of interest since it can be used to model
a preference for commitment in conjunction with costly contemplation. A pref-
erence for commitment could arise if an individual experiences regret or temp-
tation. See, for example, Sarver (2008) for a model of regret and Gul and
Pesendorfer (2001) or Dekel, Lipman, and Rustichini (2008) for models of
temptation and self-control. The representations considered in those papers
are special cases of the singleton signed RFCC representation (i.e., the signed
RFCC representation with a single measure). We conjecture that models that
combine regret or temptation with costly contemplation could be represented
in reduced form as special cases of the general signed RFCC representation.
We leave the investigation of such models as an open question for future re-
search.

To allow for signed measures, we replace the monotonicity axiom with the
following axiom introduced by DLR.

AXIOM 8—Indifference to Randomization: For every A ∈ A, A∼ co(A).

Indifference to randomization (IR) is justified if the individual choosing
from the menu A can also randomly select an alternative from the menu, for
example, by flipping a coin. In that case, the menus A and co(A) offer the
same set of options, and hence they are identical from the perspective of the
individual. In this section, we prove the following theorem.

THEOREM 8: (A) The preference � has a signed RFCC representation if and
only if it satisfies weak order, strong continuity, ACP, IDD, and IR.

(B) The preference � has an RFCC representation if and only if it satisfies weak
order, strong continuity, ACP, IDD, and monotonicity.

33This particular version of the uniqueness result for the additive EU representation can be
found in Sarver (2008, Lemma 18) for the case where μG and μ′

G are Borel probability measures.
Extending the result to arbitrary finite Borel measures is trivial.
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Theorem 8(B) is simply a restatement of Theorem 3, and Theorem 8(A)
characterizes the signed RFCC representation. Note also that the IR axiom is
not included in Theorem 8(B) because it is implied by the other axioms (see
Lemma 2 in Appendix C.1).

The remainder of this section is devoted to the proof of Theorem 8. With the
exception of L-continuity, the necessity of the axioms in Theorem 8 is straight-
forward and left to the reader. The proof of the necessity of L-continuity is
contained in Section S.2 of the Supplemental Material. For the sufficiency di-
rection, let Ac ⊂ A denote the collection of all convex menus. In both parts
(A) and (B) of Theorem 8, � satisfies IR. In part (A), IR is directly assumed,
whereas in part (B) it is implied by the other axioms. Therefore, for all A ∈ A,
A∼ co(A) ∈ Ac . Note that for any u ∈ U , we have

max
p∈A

u ·p= max
p∈co(A)

u ·p�

Thus, if we establish the representations in Theorem 8 for convex menus and
then apply the same functional form to all of A, then by IR the resulting func-
tion represents � on A.

Note also that A is a compact metric space since �(Z) is a compact metric
space (see, e.g., Munkres (2000, pp. 280–281) or Theorem 1.8.3 in Schneider
(1993, p. 49)). It is a standard exercise to show that Ac is a closed subset of A,
and hence Ac is also compact (see Theorem 1.8.5 in Schneider (1993, p. 50)).

In Section C.1, we construct a function V with certain desirable properties.
In Section C.2, we apply the duality results from Section S.1 of the Supplemen-
tal Material to the function V , which completes the proof of the sufficiency part
of Theorem 8.

C.1. Construction of V

We start by establishing a simple implication of the axioms introduced in the
text.

LEMMA 2: If � satisfies weak order, continuity, ACP, and monotonicity, then
it also satisfies IR.

PROOF: Let A ∈ A. Monotonicity implies that co(A) � A, and hence we
only need to prove that A � co(A). Let us inductively define a sequence of sets
via A0 =A and Ak = 1

2Ak−1 + 1
2Ak−1 for k ≥ 1. ACP implies that Ak−1 � Ak

and therefore, by transitivity, A � Ak for any k. It is straightforward to verify
that dh(Ak� co(A))→ 0, so we have A � co(A) by continuity. Q.E.D.
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For proving our representation theorem, it will be useful to derive an alter-
native formulation of our IDD axiom. Before introducing this new axiom, we
define the set of translations to be

Θ≡
{
θ ∈R

Z :
∑
z∈Z

θz = 0
}
�(12)

Any θ ∈ Θ can be thought of as a signed measure on Z such that θ(Z) = 0.
For A ∈ A and θ ∈Θ, define A+ θ≡ {p+ θ :p ∈A}. Intuitively, adding θ to
A in this sense simply “shifts” A. Also, note that for any p�q ∈�(Z), we have
p− q ∈Θ. We now give a formulation of IDD in terms of translations.

AXIOM 9—Translation Invariance: For any A�B ∈ A and θ ∈ Θ such that
A+ θ�B+ θ ∈ A,

A� B �⇒ A+ θ � B+ θ�34

LEMMA 3: The preference � satisfies IDD if and only if it satisfies translation
invariance (TI).

PROOF: To see that TI implies IDD, assume that A�B ∈ A, p�q ∈ �(Z)
are such that λA+ (1 − λ){q} � λB + (1 − λ){q}. Let A′ = λA+ (1 − λ){q},
B′ = λB + (1 − λ){q}, and θ = (1 − λ)(p − q). Note that θ ∈ Θ, A′ + θ =
λA+ (1− λ){p} ∈ A, and B′ + θ= λA+ (1− λ){p} ∈ A. Hence, by TI, λA+
(1− λ){p}� λB+ (1− λ){p}.

To see that IDD implies TI, assume that A�B ∈ A and θ ∈ Θ are such
that A + θ�B + θ ∈ A and A � B. If θ = 0, the conclusion of TI holds triv-
ially, so assume that θ �= 0. Let Z− = {z ∈ Z :θz < 0}. Define θ+, θ− ∈ RZ by
θ+z = max {0� θz} and θ−z = max {0�−θz} for any z ∈Z. Then let κ≡∑

z∈Z θ
+
z =∑

z∈Z θ
−
z > 0.

We will first show that for any r ∈A∪B,

0 ≤ rz − θ−z ≤ 1− κ for all z ∈Z�(13)

Note that for any z ∈ Z−, rz − θ−z = rz + θz ≥ 0 since r + θ ∈ �(Z). Note also
that if z /∈Z−, then rz − θ−z = rz ≥ 0 since θ−z = 0. So for any z ∈Z,

0 ≤ rz − θ−z ≤
(

1−
∑

z′∈Z−\{z}
rz′

)
− θ−z ≤

(
1−

∑
z′∈Z−\{z}

θ−z′

)
− θ−z

= 1− κ�

34Note that TI implies its converse. Suppose A+θ � B+θ. Then by TI, A= (A+θ)+ (−θ)�
(B+ θ)+ (−θ)= B.
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establishing Equation (13). Therefore, since θ �= 0, we have 0 < κ ≤ 1. Then
p ≡ 1

κ
θ+, q ≡ 1

κ
θ− are in �(Z), and θ = κ(p − q). There are two cases to

consider:
First, consider the case of κ< 1. Define subsets A′ and B′ of R

Z by

A′ ≡
{
r ′ ∈R

Z : r ′ = 1
1− κ

(r − θ−) for some r ∈A

}
�

B′ ≡
{
r ′ ∈R

Z : r ′ = 1
1− κ

(r − θ−) for some r ∈ B

}
�

By Equation (13) and the definition of κ, we have that A′�B′ ∈ A and

(1− κ)A′ + κ{q} =A � B= (1− κ)B′ + κ{q}�(14)

Next, consider the κ= 1 case. By Equation (13) we have r = θ− = q for any
r ∈ A ∪ B. Therefore, A = B = {q}, and hence Equation (14) holds for any
choice of A′�B′ ∈ A.

Since Equation (14) holds in each of the two cases above, we conclude by
IDD that

A+ θ= (1− κ)A′ + κ{p}� (1− κ)B′ + κ{p} = B+ θ�

Therefore, TI is satisfied. Q.E.D.

In light of Lemma 3, we will use IDD and TI interchangeably. Before pro-
ceeding, we define the following important subset of Ac:

A◦ ≡ {A ∈ Ac :∀θ ∈Θ ∃α> 0 such that A+ αθ ∈ Ac}�(15)

Thus A◦ contains menus that can be translated at least a little bit in the di-
rection of any vector in Θ. It is easily verified that A◦ is convex. In addition,
the following result gives an alternative characterization of A◦ along with some
other important properties.

LEMMA 4: The set A◦ has the following properties:
(i) A◦ = {A ∈ Ac :∃ε > 0 such that ∀p ∈A�∀z ∈Z�pz ≥ ε}.

(ii) Suppose p ∈�(Z) is such that pz > 0 for all z ∈Z. Then for any A ∈ Ac

and λ ∈ [0�1), λA+ (1− λ){p} ∈ A◦.
(iii) A◦ is dense in Ac .

PROOF: (i) Let Â◦ ≡ {A ∈ Ac :∃ε > 0 such that ∀p ∈A�∀z ∈Z�pz ≥ ε}. To
see that Â◦ ⊂ A◦, take any A ∈ Â◦ and θ ∈ Θ. Let ε > 0 be such that pz ≥ ε
for all p ∈ A and z ∈ Z. Choose α > 0 sufficiently small to ensure that α ·
maxz∈Z |θz| ≤ ε. Then pz + αθz ≥ pz − ε ≥ 0 for all p ∈A and z ∈ Z, so A+
αθ ∈ Ac . Thus A ∈ A◦.
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To see that A◦ ⊂ Â◦, take any A ∈ A◦. Fix any z ∈Z and take any θ ∈Θ such
that θz = −1. Then let αz > 0 be such that A + αzθ ∈ Ac , so for any p ∈ A,
pz + αzθ = pz − αz ≥ 0. We obtain such an αz > 0 for every z ∈ Z, so let ε ≡
minz∈Z αz > 0. Then for any p ∈A and z ∈Z, pz ≥ αz ≥ ε, so A ∈ Â◦.

(ii) Let ε ≡ (1 − λ)(minz∈Z pz) > 0. Then for any q ∈A and z ∈ Z, λqz +
(1− λ)pz ≥ ε. Thus λA+ (1− λ){p} ∈ A◦ by part (i).

(iii) It is easily verified that for any A ∈ Ac , (1 − 1/n)A+ (1/n){p}→A as
n→∞. Hence A◦ is dense in Ac by part (ii). Q.E.D.

We next define Lipschitz continuity.

DEFINITION 6: Given a metric space (X�d), a function f :X → R is Lip-
schitz continuous if there is some real number K such that for every x� y ∈X ,
|f (x)− f (y)| ≤Kd(x� y). The number K is called a Lipschitz constant of f .

We will construct a function V : Ac →R that represents � on Ac and has cer-
tain desirable properties. We next define the notion of translation linearity so
as to present the main result of this section. Recall that the set of translations,
denoted by Θ, is defined in Equation (12).

DEFINITION 7: Suppose that V : Ac →R. Then V is translation linear if there
exists v ∈ R

Z such that for all A ∈ Ac and θ ∈ Θ with A + θ ∈ Ac , we have
V (A+ θ)= V (A)+ v · θ.

PROPOSITION 1: If the preference � satisfies weak order, strong continuity,
ACP, and IDD, then there exists a function V : Ac →R with the following proper-
ties:

(i) For any A�B ∈ Ac , A � B ⇐⇒ V (A)≥ V (B).
(ii) V is Lipschitz continuous, convex, and translation linear.
(iii) There exist p�q ∈�(Z) such that V ({p}) > V ({q}).

Moreover, if V and V ′ are two functions that satisfy (ii)–(iii) and are ordinally
equivalent in the sense that for any A�B ∈ Ac , V (A) ≥ V (B) ⇐⇒ V ′(A) ≥
V ′(B), then there exist α> 0 and β ∈R such that V ′ = αV +β.

First note that by taking the p∗ and p∗ from the L-continuity axiom, it fol-
lows that {p∗} � {p∗}. Thus part (iii) of Proposition 1 follows from part (i).
The proof of the rest of the proposition is in Section S.3 of the Supplemental
Material. In the remainder of the current section, we present an outline of the
proof. Intuitively, the assumptions of strong continuity, ACP, and IDD (equiv-
alently TI) on � play key roles in establishing Lipschitz continuity, convexity,
and translation linearity of V , respectively.

Let S ≡ {{p} :p ∈�(Z)} be the set all of singleton sets in Ac . Lemma S.5 in
the Supplemental Material shows that given the assumptions of Proposition 1,
� satisfies the von Neumann–Morgenstern axioms on S . Therefore, there ex-



CONTEMPLATION REPRESENTATION 1319

ists v ∈R
Z such that for all p�q ∈�(Z), {p}� {q} if and only if v ·p≥ v ·q. We

will abuse notation and also treat v as a function v : S →R naturally defined by
v({p})= v ·p. Note that v is translation linear since v({p}+θ)= v({p})+ v ·θ
whenever p ∈�(Z), θ ∈Θ, and p+ θ ∈�(Z).

We want to extend v to a function V on Ac that represents � and is transla-
tion linear. The outline of the construction of the desired extension is the fol-
lowing: We first restrict attention to menus in A◦, as defined in Equation (15).
This restriction allows us to make extensive use of the translation invariance
(TI) property. We construct a sequence of subsets of A◦, starting with A◦ ∩ S ,
such that each set is contained in its successor set. We then extend v sequen-
tially to each of these domains, while still representing � and preserving trans-
lation linearity (with respect to the vector v). The domain will grow to even-
tually contain all of the sets in A◦, and we show how to extend it to all of Ac

by continuity. Then we prove that the resulting function is translation linear,
Lipschitz continuous, and convex.

As above, take p∗ and p∗ from the L-continuity axiom, and let θ∗ ≡ p∗ −p∗.
Define a sequence A0� A′

0� A1� A′
1� � � � of subsets of A◦ inductively as follows:

Let A0 ≡ A◦ ∩ S . By part (i) of Lemma 4, we have that A0 = {{p} :p ∈
�(Z) and ∀z ∈Z�pz > 0}. Define A′

i for all i≥ 0 by

A′
i ≡ {A ∈ A◦ :A∼ B for some B ∈ Ai}�

and define Ai for all i≥ 1 by

Ai ≡ {A ∈ A◦ :A= B+ αθ∗ for some α ∈R�B ∈ A′
i−1}�

Intuitively, we first extend A0 by including all A ∈ A◦ that are viewed with
indifference to some B ∈ A0. Then we extend to all translations by multiples
of θ∗. We repeat the process, alternating between extension by indifference
and extension by translation. Note that A0 ⊂ A′

0 ⊂ A1 ⊂ A′
1 ⊂ · · ·.

Figure 3 illustrates this construction for the special case of Z = {z1� z2}. In
this case, closed and convex menus of lotteries over Z can be represented as
ordered pairs in the triangle in Figure 3 (see the discussion in Section 5.2).
In this figure, the set A0 is the diagonal of the triangle, and the set A′

0 is the
region labeled I. The combination of regions I and II is the set A1, and the
combination of regions I, II, and III is the set A′

1. One could continue in this
fashion to obtain the remaining sets A2� A′

2� � � � �
We also define a sequence of functions V0� V

′
0 � V1� V

′
1 � � � � from these domains.

That is, for all i≥ 0, Vi : Ai →R and V ′
i : A′

i →R. Define these functions recur-
sively as follows:

(i) Let V0 ≡ v|A0 .
(ii) For i ≥ 0, if A ∈ A′

i, then A ∼ B for some B ∈ Ai, so define V ′
i by

V ′
i (A)≡ Vi(B).
(iii) For i≥ 1, if A ∈ Ai, then A= B+ αθ∗ for some α ∈R and B ∈ A′

i−1, so
define Vi by Vi(A)≡ V ′

i−1(B)+ α(v · θ∗).
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FIGURE 3.—Construction of Ai and A′
i .

In a series of lemmas in Section S.3 in the Supplemental Material, we show
that these are well defined functions which represent � on their domains and
are translation linear.

C.2. Application of Duality Results

In this section, we apply the duality results from Section S.1 of the Supple-
mental Material to the function V constructed in Section C.1 to obtain the
desired signed RFCC representation. Thus, in the remainder of this section
assume that V satisfies (i)–(iii) from Proposition 1. Note that if � also satisfies
monotonicity, then V is monotone in the sense that for all A�B ∈ Ac such that
A⊂ B, we have V (A)≤ V (B). We explicitly assume monotonicity of V at the
end of this section to prove the stronger representation of Theorem 8(B).

We follow a construction similar to that in DLR to obtain from V a func-
tion W whose domain is the set of support functions. Let U be defined as in
Equation (6). For any A ∈ Ac , the support function σA : U →R of A is defined
by σA(u) = maxp∈A u · p. For a more complete introduction to support func-
tions, see Rockafellar (1970) or Schneider (1993). Let C(U) denote the set
of continuous real-valued functions on U . When endowed with the supremum
norm ‖ · ‖∞, C(U) is a Banach space. Define an order ≥ on C(U) by f ≥ g if
f (u)≥ g(u) for all u ∈ U . Let Σ= {σA ∈ C(U) :A ∈ Ac}. For any σ ∈ Σ, let

Aσ =
⋂
u∈U

{
p ∈�(Z) :u ·p=

∑
z∈Z

uzpz ≤ σ(u)

}
�

LEMMA 5: (i) For all A ∈ Ac and σ ∈ Σ, A(σA) =A and σ(Aσ) = σ . Hence, σ
is a bijection from Ac to Σ.



CONTEMPLATION REPRESENTATION 1321

(ii) For all A�B ∈ Ac , σλA+(1−λ)B = λσA + (1− λ)σB�
(iii) For all A�B ∈ Ac , dh(A�B)= ‖σA − σB‖∞�
PROOF: These are standard results that can be found in Rockafellar (1970)

or Schneider (1993).35 For instance, in Schneider (1993), part (i) follows from
Theorem 1.7.1, part (ii) follows from Theorem 1.7.5, and part (iii) follows from
Theorem 1.8.11. Q.E.D.

LEMMA 6: Σ is convex and compact, and 0 ∈ Σ.

PROOF: The set Σ is convex by the convexity of Ac and part (ii) of Lemma 5.
As discussed above, the set Ac is compact, and hence by parts (i) and (iii) of
Lemma 5, Σ is a compact subset of the Banach space C(U). Also, if we take
q= (1/|Z|� � � � �1/|Z|) ∈ �(Z), then q · u= 0 for all u ∈ U . Thus σ{q} = 0, and
hence 0 ∈ Σ. Q.E.D.

Define the function W :Σ → R by W (σ) = V (Aσ). Then, by part (i) of
Lemma 5, V (A)=W (σA) for all A ∈ Ac . We say the function W is monotone
if for all σ�σ ′ ∈ Σ such that σ ≤ σ ′, we have W (σ)≤W (σ ′).

LEMMA 7: W is convex and Lipschitz continuous with the same Lipschitz con-
stant as V . If V is monotone, then W is monotone.

PROOF: To see that W is convex, let A�B ∈ Ac . Then

W (λσA + (1− λ)σB)=W
(
σλA+(1−λ)B

)= V (λA+ (1− λ)B)

≤ λV (A)+ (1− λ)V (B)

= λW (σA)+ (1− λ)W (σB)

by parts (i) and (ii) of Lemma 5 and convexity of V . The function W is Lip-
schitz continuous with the same Lipschitz constant as V by parts (i) and (iii)
of Lemma 5. The function W inherits monotonicity from V because of the fol-
lowing fact which is easy to see from part (i) of Lemma 5: For all A�B ∈ Ac ,
A⊂ B if and only if σA ≤ σB. Q.E.D.

We denote the set of continuous linear functionals on C(U) (the dual space
of C(U)) by C(U)∗. It is well known that C(U)∗ is the set of finite signed Borel
measures on U , where the duality is given by

〈f�μ〉 =
∫

U
f (u)μ(du)

35The standard setting for support functions is the set of nonempty closed and convex subsets
of R

n. However, by imposing our normalizations on the domain of the support functions U , the
standard results are easily adapted to our setting of nonempty closed and convex subsets of �(Z).
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for any f ∈ C(U) and μ ∈ C(U)∗.36 For σ ∈ Σ, the subdifferential of W at σ is
defined to be

∂W (σ)= {μ ∈ C(U)∗ : 〈σ ′ − σ�μ〉 ≤W (σ ′)−W (σ) for all σ ∈ Σ}�
The conjugate (or Fenchel conjugate) of W is the function W ∗ :C(U)∗ → R ∪
{+∞} defined by

W ∗(μ)= sup
σ∈Σ

[〈σ�μ〉 −W (σ)]�

There is an important duality between a convex function and its conjugate.
We discuss this duality in detail in Section S.1 of the Supplemental Material.
Lemma 8 summarizes certain properties of W ∗ that will be used in the sequel.
Lemma S.1 provides a proof of these properties for general convex functions.

LEMMA 8: (i) W ∗ is lower semicontinuous in the weak* topology.
(ii) W (σ)≥ 〈σ�μ〉 −W ∗(μ) for all σ ∈ Σ and μ ∈C(U)∗.
(iii) W (σ)= 〈σ�μ〉 −W ∗(μ) if and only if μ ∈ ∂W (σ).

We next define ΣW , NW , and MW as in Equations (S.3), (S.4), and (S.5),
respectively, from Section S.1 of the Supplemental Material:

ΣW = {σ ∈ Σ :∂W(σ) is a singleton}�
NW = {μ ∈C(U)∗ :μ ∈ ∂W(σ) for some σ ∈ ΣW }�
MW = NW �

where the closure is taken with respect to the weak* topology. We now apply
Theorem S.1 in the Supplemental Material to the current setting.

LEMMA 9: MW is weak* compact, and for any weak* compact M ⊂ C(U)∗,

MW ⊂ M ⇐⇒ W (σ)= max
μ∈M

[〈σ�μ〉 −W ∗(μ)] ∀σ ∈ Σ�

PROOF: We simply need to verify that C(U), Σ, and W satisfy the assump-
tions of Theorem S.1, that is, (i) C(U) is a separable Banach space, (ii) Σ is
a closed and convex subset of C(U) containing the origin such that span(Σ) is
dense in C(U), and (iii) W :Σ→R is Lipschitz continuous and convex. Since U

36Since U is a compact metric space, by the Riesz representation theorem (see Royden (1988,
p. 357)), each continuous linear functional on C(U) corresponds uniquely to a finite signed Baire
measure on U . Since U is a locally compact separable metric space, the Baire sets and the Borel
sets of U coincide (see Royden (1988, p. 332)). Hence the sets of Baire and Borel finite signed
measures also coincide.
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is a compact metric space, C(U) is separable (see Theorem 8.48 of Aliprantis
and Border (1999)). By Lemma 6, Σ is a closed and convex subset of C(U) con-
taining the origin. Although the result is stated slightly differently, it is shown
in Hörmander (1954) that span(Σ) is dense in C(U). This result is also proved
in DLR. Finally, W is Lipschitz continuous and convex by Lemma 7. Q.E.D.

One consequence of Lemma 9 is that for all σ ∈ Σ,

W (σ)= max
μ∈MW

[〈σ�μ〉 −W ∗(μ)]�

Therefore, for all A ∈ Ac ,

V (A)= max
μ∈MW

(∫
U

max
p∈A

(u ·p)μ(du)−W ∗(μ)
)
�

The function W ∗ is lower semicontinuous by part (i) of Lemma 8, and MW

is compact by Lemma 9. It remains only to show that MW is consistent and
minimal, and that monotonicity of W implies each μ ∈ MW is positive.

Since V is translation linear, there exists v ∈R
Z such that for all A ∈ Ac and

θ ∈Θ with A+θ ∈ Ac , we have V (A+θ)= V (A)+ v · θ. The following result
shows that a certain subset of MW must agree with v in a way that will imply the
consistency of this subset. In what follows, let q = (1/|Z|� � � � �1/|Z|) ∈ �(Z)
and let A◦ ⊂ Ac be defined as in Equation (15).

LEMMA 10: If A ∈ A◦ and μ ∈ ∂W(σA), then 〈σ{p}�μ〉 = v · (p − q) for all
p ∈�(Z).

PROOF: Fix any A ∈ A◦ and μ ∈ ∂W(σA). We can apply the definition of the
support function to θ ∈Θ, so that σ{θ}(u)= u · θ for u ∈ U . It is easily verified
that for any A ∈ Ac and θ ∈Θ, σA+θ = σA + σ{θ}.

We first prove that 〈σ{θ}�μ〉 = v ·θ for all θ ∈Θ. Fix any θ ∈Θ. Since A ∈ A◦,
there exists α > 0 such that A+ αθ�A− αθ ∈ Ac . By the translation linearity
of V , we have

α(v · θ)= V (A+ αθ)− V (A)=W (σA+αθ)−W (σA)�

Since μ ∈ ∂W(σA), by part (iii) of Lemma 8, W (σA)= 〈σA�μ〉 −W ∗(μ). Also,
by part (ii) of the same lemma, W (σA+αθ) ≥ 〈σA+αθ�μ〉 −W ∗(μ). Therefore,
we have

α(v · θ)≥ 〈σA+αθ�μ〉 − 〈σA�μ〉 =
〈
σ{αθ}�μ

〉= α
〈
σ{θ}�μ

〉
�

A similar argument can be used to show that

−α(v · θ)=W (σA−αθ)−W (σA)≥−α
〈
σ{θ}�μ

〉
�
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Hence, we have α(v · θ)= α〈σ{θ}�μ〉 or, equivalently, v · θ= 〈σ{θ}�μ〉.
We now prove that 〈σ{p}�μ〉 = v · (p− q) for all p ∈ �(Z). Since

∑
z uz = 0

for u ∈ U , we have u · q= 0 for all u ∈ U . Clearly, this implies that σ{q} = 0, so
that 〈σ{q}�μ〉 = 0. For any p ∈�(Z), p− q ∈Θ, so the above results imply〈

σ{p}�μ
〉= 〈

σ{p−q}�μ
〉+ 〈

σ{q}�μ
〉= 〈

σ{p−q}�μ
〉= v · (p− q)�

which completes the proof. Q.E.D.

By part (ii) of Lemma 4, if q = (1/|Z|� � � � �1/|Z|), then λA+ (1 − λ){q} ∈
A◦ for any A ∈ Ac and λ ∈ (0�1). Therefore, we can use Lemma 10 and the
continuity of W to prove the consistency of MW .

LEMMA 11: If μ ∈ MW , then 〈σ{p}�μ〉 = v · (p− q) for all p ∈�(Z).

PROOF: Define M ⊂ MW by

M ≡ {
μ ∈ MW :

〈
σ{p}�μ

〉= v · (p− q) for all p ∈�(Z)
}
�

It is easily verified that M is a closed subset of MW and is therefore compact.
We want to show MW ⊂ M, which would imply M = MW . By Lemma 9, we
only need to verify that W (σ)= maxμ∈M[〈σ�μ〉 −W ∗(μ)] for all σ ∈ Σ.

Let σ ∈ Σ be arbitrary. For all λ ∈ (0�1), we have λAσ + (1 − λ){q} ∈ A◦.
Note that σλAσ+(1−λ){q} = λσ(Aσ) + (1− λ)σ{q} = λσ . Therefore, Lemma 10 im-
plies that for all λ ∈ (0�1), MW ∩ ∂W(λσ) ⊂ M. By Lemma 9, there exists
μ ∈ MW such that W (λσ)= 〈λσ�μ〉 −W ∗(μ), which implies μ ∈ ∂W(λσ) by
part (iii) of Lemma 8. Thus, MW ∩ ∂W(λσ) �= ∅.

Take any net {λd}d∈D such that λd → 1, and let σd ≡ λdσ , so that σd → σ .
From the above arguments, for all d ∈D there exists μd ∈ MW ∩∂W(σd)⊂ M.
Since M is weak* compact, every net in M has a convergent subnet. Without
loss of generality, suppose the net itself converges, so that μd

w∗→ μ for some
μ ∈ M. By the definition of the subdifferential and the continuity of W , for
any σ ′ ∈ Σ,

〈σ ′ − σ�μ〉 = lim
d
〈σ ′ − σd�μd〉

≤ lim
d
[W (σ ′)−W (σd)]

=W (σ ′)−W (σ)�

which implies μ ∈ ∂W(σ).37 Hence, W (σ) = 〈σ�μ〉 − W ∗(μ) by part (iii) of
Lemma 8. Since σ ∈ Σ was arbitrary, this completes the proof. Q.E.D.

37To establish the first equality in this equation, note that {μd}d∈D is norm bounded by the
compactness of M and Alaoglu’s theorem (see Theorem 6.25 in Aliprantis and Border (1999)).
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The consistency of MW follows immediately from Lemma 11 since for any
μ�μ′ ∈ MW and p ∈�(Z), we have∫

U
(u ·p)μ(du)= 〈

σ{p}�μ
〉= v · (p− q)

= 〈
σ{p}�μ′〉= ∫

U
(u ·p)μ′(du)�

We now prove the minimality of MW .

LEMMA 12: MW is minimal.

PROOF: Suppose M′ ⊂ MW is compact and (M′�W ∗|M′) still represents �.
We will show that this implies M′ = MW .

Define V ′ : Ac → R as in Equation (7) for the representation (M′�W ∗|M′),
and define W ′ :Σ→R by W ′(σ)= V ′(Aσ). Then

W ′(σ)= max
μ∈M′[〈σ�μ〉 −W ∗(μ)]

for all σ ∈ Σ. Note that V ′ satisfies (i)–(iii) from Proposition 1. Lipschitz conti-
nuity and translation linearity follow from Lemma S.2 in the Supplemental Ma-
terial, and the other properties are immediate. Therefore, by the uniqueness
part of Proposition 1, there exist α> 0 and β ∈R such that V ′ = αV +β, which
implies W ′ = αW + β. By singleton nontriviality, there exist p∗�p∗ ∈ �(Z)
such that {p∗} � {p∗}. Therefore, by Lemma 11, for any μ ∈ MW ,〈

σ{p∗} − σ{p∗}�μ
〉= 〈

σ{p∗}�μ
〉− 〈

σ{p∗}�μ
〉= v · (p∗ −p∗) > 0�

We can therefore apply Proposition S.1 from the Supplemental Material with
x̄= σ{p∗} − σ{p∗} to conclude that M′ = MW . Thus, MW is minimal. Q.E.D.

We have now completed the proof of Theorem 8(A). To complete the proof
of Theorem 8(B), note that C(U) is a Banach lattice (see Aliprantis and Border
(1999, p. 302)) and Σ has the property that σ ∨ σ ′ ∈ Σ for all σ�σ ′ ∈ Σ. There-
fore, by Theorem S.2 from the Supplemental Material, if W is monotone, then
each μ ∈ MW is positive.

Thus, there exists K > 0 such that ‖μd‖ ≤K for all d ∈D. Therefore,

|〈σ ′ − σ�μ〉 − 〈σ ′ − σd�μd〉|
≤ |〈σ ′ − σ�μ〉 − 〈σ ′ − σ�μd〉| + |〈σ ′ − σ�μd〉 − 〈σ ′ − σd�μd〉|
= |〈σ ′ − σ�μ−μd〉| + |〈σd − σ�μd〉|
≤ |〈σ ′ − σ�μ−μd〉| + ‖σd − σ‖‖μd‖
≤ |〈σ ′ − σ�μ−μd〉| + ‖σd − σ‖K�

The right side of this inequality converges to zero since μd
w∗→ μ and σd → σ .
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APPENDIX D: PROOF OF THEOREM 2

D.1. CC ⇒ RFCC

Assume there exists a CC representation ((Ω� F�P)�G�U� c) such that V is
given by Equation (4). Then the restriction of V to Ac is monotone and sat-
isfies (ii) and (iii) in Proposition 1 in Appendix C.1. It is easy to see that V
is monotone, convex, and translation linear, and that there exist p�q ∈ �(Z)
such that V ({p}) > V ({q}). It remains only to show that V is Lipschitz contin-
uous. Note that K = ∑

z∈Z E[|Uz|] > 0 is finite since U is integrable. Let ‖ · ‖
denote the usual Euclidean norm in R

Z . Let G ∈ G and define fG : A →R by

fG(A)= E

[
max
p∈A

E[U |G] ·p
]
− c(G)�

Let A�B ∈ A. Given a state ω ∈Ω, let p∗ be a solution of maxp∈A E[U |G](ω) ·
p. By definition of Hausdorff distance, there exists q∗ ∈ B such that ‖p∗−q∗‖ ≤
dh(A�B). Then

max
p∈A

E[U |G](ω) ·p−max
q∈B

E[U |G](ω) · q
= E[U |G](ω) ·p∗ −max

q∈B
E[U |G](ω) · q

≤ E[U |G](ω) ·p∗ −E[U |G](ω) · q∗

≤ ‖E[U |G](ω)‖ × ‖p∗ − q∗‖
≤ ‖E[U |G](ω)‖ × dh(A�B)�

Taking the expectation of the above inequality we obtain

fG(A)− fG(B)≤ E
[‖E[U |G]‖]dh(A�B)�

where

E
[‖E[U |G]‖] ≤ E

[∑
z∈Z

|E[Uz|G]|
]
≤ E

[∑
z∈Z

E[|Uz||G]
]

=
∑
z∈Z

E[|Uz|] =K�

Hence fG is Lipschitz continuous with a Lipschitz constant K that does not
depend on G . Since V is the pointwise maximum of fG over G ∈ G, it is also
Lipschitz continuous with the same Lipschitz constant K.

Since the restriction of V to Ac is monotone and satisfies (ii) and (iii) in
Proposition 1 in Appendix C.1, the construction in Appendix C.2 implies that
there exists an RFCC representation such that V (A) is given by Equation (7)
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for all A ∈ Ac . Since V (A)= V (co(A)) for all A ∈ A (which follows immedi-
ately from Equation (4)), this implies that V (A) is given by Equation (7) for
all A ∈ A.

D.2. RFCC ⇒ CC

We begin by establishing a result in probability theory that will be use-
ful later in the proof. Given a finite set N = {1� � � � � n}, let �(N) = {α ∈
[0�1]N :

∑
i∈N αi = 1} denote the simplex over N . In the following discussion,

we will always assume without explicit mention that N is endowed with its dis-
crete algebra consisting of all subsets of N and that �(N) is endowed with
the Borel σ-algebra B induced by its Euclidean metric. The integral of an n-
dimensional variable is used as a shorthand for the n-tuple of integrals of each
dimension of the variable.

Suppose for a moment that the set N is a state space. Consider an indi-
vidual who has uncertainty about the state i ∈ N and observes a noisy sig-
nal that gives her additional information about i (a statistical experiment).
Blackwell (1951, 1953) conveniently represented such a signal through the dis-
tribution over posterior beliefs over N that it induces.38 The next result estab-
lishes the converse of this approach by representing a collection of probability
measures over beliefs over N satisfying a certain consistency condition as con-
ditional probabilities resulting from statistical experiments. More specifically,
Lemma 13 shows that for any collection of probability measures {πd}d∈D on
�(N) having the same mean, there exists a probability space (Ω� F�P) with
the properties that (i) the state space is of the form Ω = N × Λ and (ii) for
each d ∈D there exists a sub-σ-algebra Gd of F such that the random vector
(P({i}×Λ|Gd))i∈N , denoting the posterior over N conditional on Gd , is distrib-
uted according to πd .39

LEMMA 13: Let N = {1� � � � � n} and let Λ = [�(N)]D for some an arbitrary
index set D. Let F denote the product σ-algebra on N ×Λ and let G = {Gd :d ∈
D} where each Gd denotes the sub-σ-algebra of F consisting of events measurable
with respect to the dth coordinate only, that is,

Gd =
{
N ×E × [�(N)]D\{d} ∈ F :E ∈ B

}
for each d ∈D. Let {πd}d∈D be any collection of probability measures on �(N)
that satisfies the following consistency condition for some α ∈�(N):∫

�(N)

βπd(dβ)= α ∀d ∈D�

38This approach is also used extensively in papers on mechanism design with information ac-
quisition. For instance, see Bergemann and Välimäki (2002, 2006) and Persico (2000).

39Blackwell (1951) gave a proof of this result for the special case where there is only a single
measure π and where α= ( 1

n
� � � � � 1

n
).
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Then there exists a probability measure P on (N ×Λ� F) such that the following
statements hold:

(i) The marginal of P on N agrees with α, that is, P({i} × Λ) = αi for all
i ∈N .

(ii) The marginal of P on the dth coordinate of Λ agrees with πd , that is,

P
(
N ×E × [�(N)]D\{d})= πd(E) ∀E ∈ B�

(iii) For any d ∈ D, the random vector Xd :N × Λ → �(N) defined by
Xd(j�λ)= λ(d) for all (j�λ) ∈N ×Λ satisfies

P({i} ×Λ|Gd)=Xd
i

P-almost surely for all i ∈N .40

PROOF: We first define a probability measure Pd(·|i) on �(N) for each i ∈N
and d ∈ D. If αi = 0, fix the probability measure Pd(·|i) arbitrarily. If αi > 0,
then let

Pd(E|i)= 1
αi

∫
E

βiπd(dβ)

for all E ∈ B. The consistency condition on {πd}d∈D and α implies that each
Pd(·|i) is a probability measure. By Theorem 4.4.6 in Dudley (2002), for each
i ∈N and nonempty finite subset D′ ⊂D, there exists a unique product proba-
bility measure

∏
d∈D′ Pd(·|i) on [�(N)]D′ and its associated product σ-algebra.

By the Kolmogorov extension theorem (see, e.g., Corollary 14.27 in Aliprantis
and Border (1999)), there exists a unique extension P(·|i) of these finite prod-
uct probability measures to Λ= [�(N)]D and its associated product σ-algebra.

Define the probability measure P on (N ×Λ� F) by

P(F)=
∑
i∈N

αiP
({λ ∈Λ : (i�λ) ∈ F}|i)

for all F ∈ F . The marginal of P on N agrees with α by definition. Also, for
any d ∈D, i ∈N , and E ∈ B,

P
({i} ×E × [�(N)]D\{d})= αiP

(
E × [�(N)]D\{d}|i)(16)

= αiPd(E|i)=
∫
E

βiπd(dβ)�

40Note that Gd is the σ-algebra generated by the signal Xd . Thus, conditional on observing the
signal Xd , the posterior over the first dimension of the state space is almost surely equal to the
realization of the signal itself. For the case where α= ( 1

n
� � � � � 1

n
), Blackwell (1951, 1953) refered

to the distribution of such a signal as a standard measure.
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Summing Equation (16) over i ∈N implies that the marginal of P on the dth
coordinate of Λ agrees with πd:

P
(
N ×E × [�(N)]D\{d})=∑

i∈N
P
({i} ×E × [�(N)]D\{d})

=
∑
i∈N

∫
E

βiπd(dβ)

=
∫
E

[∑
i∈N

βi

]
πd(dβ)= πd(E)�

To verify the final claim of the lemma, fix any d ∈D and i ∈N . Then, for any
G=N ×E × [�(N)]D\{d} ∈ Gd ,∫

G

Xd
i (j�λ)P(dj�dλ)=

∫
G

λi(d)P(dj�dλ)=
∫
E

βiπd(dβ)

= P
({i} ×E × [�(N)]D\{d})

= P
(
({i} ×Λ)∩G

)
�

where the second equality follows from the second claim of the lemma and the
third equality follows from Equation (16). Hence, the claim holds by definition
of conditional probability.41 Q.E.D.

Using these results, we now complete the proof of the RFCC ⇒ CC part
of Theorem 2. Let N = {1� � � � � n} for n = |Z|. Assume that there exists an
RFCC representation (M� c) such that V is given by Equation (7). Since M
is compact, there is κ > 0 such that μ(U) ≤ κ for all μ ∈ M. The set κU is
compact and (n− 1)-dimensional, which implies there exist affinely indepen-
dent vectors v1� � � � � vn ∈ R

Z such that κU ⊂ co({v1� � � � � vn}). By affine inde-
pendence of v1� � � � � vn, for all u ∈ co({v1� � � � � vn}), there exist unique coeffi-
cients (barycentric coordinates) γ(u) = (γ1(u)� � � � � γn(u)) ∈ �(N) such that
u= γ1(u)v

1+· · ·+γn(u)v
n. The mapping γ : co({v1� � � � � vn})→�(N) is a con-

tinuous bijection.
In the first step of the proof, we transform each measure μ ∈ M into a prob-

ability measure πμ over �(N) such that the following statements hold:
(i) For every μ ∈ M and A ∈ A,∫

U
max
p∈A

u(p)μ(du)=
∫
�(N)

max
p∈A

[∑
i∈N

βiv
i

]
·pπμ(dβ)�(17)

41By the definition of conditional probability, a random variable Y is a version of P(F |Gd) for
F ∈ F if (i) Y is Gd-measurable and integrable and (ii)

∫
G
Y(j�λ)P(dj�dλ) = P(F ∩G) for all

G ∈ Gd (see, e.g., Billingsley (1995, p. 430)).
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(ii) There exists α ∈�(N) such that for every μ ∈ M,∫
�(N)

βπμ(dβ)= α�(18)

To interpret Equation (17), suppose that vi is the individual’s expected-utility
function over �(Z) conditional on state i ∈ N . In period 1, the individual is
uncertain about her posterior belief β= (β1� � � � �βn) over N . In period 2, she
chooses p ∈A, maximizing her ex post expected utility

∑
i∈N βiv

i determined
by her posterior belief β. She believes that β is distributed according to πμ,
and hence the term on the right-hand side of the first condition is her expected
utility before β is realized. Equation (18) corresponds to the consistency re-
quirement that her prior belief, given by the expected value of the posterior
belief, is the same for any probability measure in the collection {πμ}μ∈M.

Take any μ ∈ M. To define πμ, first consider the probability measure μ̃ on
μ(U)U defined by μ̃(E)= 1

μ(U)
μ( 1

μ(U)
E) for any measurable E ⊂ μ(U)U .42 By

a simple change of variables, we have∫
U

max
p∈A

(u ·p)μ(du)=
∫
μ(U)U

max
p∈A

(v ·p)μ̃(dv)�(19)

The above equation reinterprets the integral expression in the RFCC rep-
resentation in a probabilistic sense by rescaling the utility functions in U ,
where the rescaling coefficient depends on the particular measure μ. Recall
that μ(U)U ⊂ co(κU)⊂ co({v1� � � � � vn}). By affine independence of v1� � � � � vn,
each point in co({v1� � � � � vn}) can be uniquely expressed as a convex combina-
tion of the vertices v1� � � � � vn. We can therefore interpret each such point as
a probability measure on N where the probability of i ∈N is given by the co-
efficient of vi in the unique convex combination. Hence, the probability mea-
sure μ̃ can be identified with a probability measure πμ over �(N) defined by
πμ = μ̃ ◦ γ−1. Figure 4 illustrates this construction for the case where n= 3.

It is easy to see that Equation (17) is satisfied for every A ∈ A.43 In addition,
letting α= ∫

�(N)
βπμ(dβ), we have44

∑
i∈N

αiv
i =

∫
�(N)

[∑
i∈N

βiv
i

]
πμ(dβ)=

∫
U
uμ(du)�(20)

42Note that μ(U) > 0 since μ is positive and the RFCC representation satisfies consistency and
singleton nontriviality.

43To see this, define a continuous function g :�(N) → R by g(β) = maxp∈A(
∑

i∈N βiv
i) · p.

Then
∫
�(N)

g(β)πμ(dβ) =
∫
μ(U)U(g ◦ γ)(v)μ̃(dv) by πμ = μ̃ ◦ γ−1 and the change of variables

formula. This implies Equation (17) by g(γ(v))= maxp∈A v ·p and Equation (19).
44To see the second equality, consider the continuous function g :�(N) → R

Z defined by
g(β) = ∑

i∈N βiv
i . Then

∫
�(N)

g(β)πμ(dβ) =
∫
μ(U)U(g ◦ γ)(v)μ̃(dv) by πμ = μ̃ ◦ γ−1 and the

change of variables formula. This implies Equation (20) by g(γ(v))= v and Equation (19).
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FIGURE 4.—Construction of the distribution over posteriors.

In particular, α = γ(
∫

U uμ(du)) is independent of the particular choice of μ
by the consistency of the measures in M. Therefore, Equation (18) is also
satisfied for all μ ∈ M.

We next use Lemma 13 to express the probability measures {πμ}μ∈M over
�(N) as distributions over posteriors resulting from statistical experiments.
Let Ω = N × Λ, where Λ, F , and G are as in Lemma 13 with D = M and
N = {1� � � � � n} for n= |Z|. That is, Λ= [�(N)]M, F is the product σ-algebra
on Ω=N × [�(N)]M, and G = {Gμ :μ ∈ M}, where

Gμ =
{
N ×E × [�(N)]M\{μ} ∈ F :E ∈ B

}
for each μ ∈ M.

By Equation (18), the collection {πμ}μ∈M satisfies the consistency condition
of Lemma 13, so there exists a probability measure P on (Ω� F) such that the
following statements hold:

(i) P({i} ×Λ)= αi for all i ∈N .
(ii) P(N ×E × [�(N)]M\{μ})= πμ(E) for all E ∈ B and μ ∈ M.

(iii) For any μ ∈ M, the random vector Xμ :Ω → �(N) defined by
Xμ(j�λ)= λ(μ) for all (j�λ) ∈Ω satisfies

P({i} ×Λ|Gμ)=Xμ
i

P-almost surely for all i ∈N .
Let U :Ω→ R

Z be defined by U(i�λ) = vi for every i ∈ N and λ ∈ Λ. Fix
any μ ∈ M. Defining Xμ :Ω→�(N) by Xμ(j�λ) = λ(μ) for all (j�λ) ∈ Ω,
condition (iii) on the measure P implies that

E[U |Gμ] =
∑
i∈N

P({i} ×Λ|Gμ)v
i =

∑
i∈N

Xμ
i v

i(21)
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P-almost surely for (j�λ) ∈Ω.45 Therefore, for any A ∈ A,

E

[
max
p∈A

E[U |Gμ] ·p
]
=

∫
Ω

[
max
p∈A

(∑
i∈N

λi(μ)v
i

)
·p

]
P(dj�dλ)(22)

=
∫
�(N)

[
max
p∈A

(∑
i∈N

βiv
i

)
·p

]
πμ(dβ)

=
∫

U
max
p∈A

u(p)μ(du)�

where the first equality follows from Equation (21), the second equality fol-
lows from condition (ii) on the measure P , and the third equality follows from
Equation (17). By Equation (22) and defining c̃(Gμ) = c(μ), we have estab-
lished that V can be expressed as

V (A)= max
G∈G

{
E

[
max
p∈A

E[U |G] ·p
]
− c̃(G)

}
�

giving the desired CC representation.

APPENDIX E: PROOF OF THEOREM 4

In this section, we show that the uniqueness asserted in Theorem 4 applies
not only to the RFCC representation, but to any signed RFCC representation
(see Definition 5 in Appendix C). Throughout this section, we will continue to
use the notation for support functions that was introduced in Appendix C.2.
Suppose (M� c) and (M′� c′) are two signed RFCC representations for �. Let
V : Ac →R and V ′ : Ac →R be defined as in Equation (7) for these respective
representations, and define W :Σ→R and W ′ :Σ→R by W (σ)= V (Aσ) and
W ′(σ)= V ′(Aσ).

We first show that M = MW and c =W ∗|MW
, and likewise for (M′� c′). To

see this, first note that by the definitions of V and W , we have

W (σ)= max
μ∈M

[〈σ�μ〉 − c(μ)] ∀σ ∈ Σ�

Therefore, by Theorem S.3 in the Supplemental Material and the compactness
of Σ, W is Lipschitz continuous and convex, MW ⊂ M, and W ∗(μ)= c(μ) for
all μ ∈ MW . By Lemma 9 and the minimality of M, this implies M = MW and
c =W ∗|MW

.
It is easily verified that both V and V ′ satisfy (i)–(iii) from Proposition 1.

Therefore, by the uniqueness part of Proposition 1, there exist α> 0 and β ∈R

45The first equality can be seen by applying Example 34.2 of Billingsley (1995, p. 446) to each
coordinate of U , since Uz is the simple function

∑
i∈N vizI{i}×Λ for each z ∈Z.
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such that V ′ = αV −β. This implies that W ′ = αW −β. For any μ ∈ C(U)∗ and
σ�σ ′ ∈ Σ, note that

W (σ ′)−W (σ)≥ 〈σ ′ − σ�μ〉
⇐⇒ W ′(σ ′)−W ′(σ)≥ 〈σ ′ − σ�αμ〉

and hence ∂W ′(σ)= α∂W (σ). In particular, ΣW ′ = ΣW and NW ′ = αNW . Tak-
ing closures, we also have that MW ′ = αMW . Since from our earlier arguments
M′ = MW ′ and M = MW , we conclude that M′ = αM. Finally, let μ ∈ M.
Then

c′(αμ)= sup
σ∈Σ

[〈σ�αμ〉 −W ′(σ)] = α sup
σ∈Σ

[〈σ�μ〉 −W (σ)] +β

= αc(μ)+β�

where the first and last equalities follow from our earlier findings that c′ =
W ′∗|MW ′ and c =W ∗|MW

. This concludes the proof of the theorem.

APPENDIX F: PROOFS OF RESULTS FROM SECTION 4

F.1. Proof of Theorem 5

(i) ⇒ (ii) Suppose �1 has a lower cost of contemplation than �2. For
any p�q ∈ �(Z), taking A = {q} in Definition 3 yields V2({q}) ≥ V2({p}) �⇒
V1({q}) ≥ V1({p}). Since the restrictions of V1 and V2 to singleton menus are
nonconstant affine functions, it is a standard result that this condition implies
there exist α > 0 and β ∈R such that V2({p})= αV1({p})+β for all p ∈�(Z)
(see, e.g., Corollary B.3 of Ghirardato, Maccheroni, and Marinacci (2004)).

The preference �2 was assumed to be bounded above by singletons. Thus,
there exists z ∈ Z such that {δz} �2 A for all A ∈ A. It is also easy to verify
that V2 being affine on singletons implies there exists some z′ ∈ Z such that
V2({p})≥ V ({δz′ }) for all p ∈�(Z). Combined with monotonicity, this implies
A �2 {δz′ } for all A ∈ A. Fix any A ∈ A. Since {δz} �2 A �2 {δz′ }, continuity
implies there exists λ ∈ [0�1] such that A ∼2 {λδz + (1 − λ)δz′ }. Since �1 has
a lower cost of contemplation than �2, this implies A �1 {λδz + (1 − λ)δz′ }.
Therefore,

V2(A)= V2

({λδz + (1− λ)δz′ }
)

= αV1

({λδz + (1− λ)δz′ }
)+β≤ αV1(A)+β�

(ii) ⇒ (i) Suppose there exist α > 0 and β ∈ R such that V2({p}) =
αV1({p})+β for all p ∈�(Z), and V2 ≤ αV1 +β. Then A �2 {p} implies

αV1(A)+β≥ V2(A)≥ V2({p})= αV1({p})+β�
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which implies A �1 {p}. Thus, �1 has a lower cost of contemplation than �2.
(ii) ⇒ (iii) Suppose there exist α > 0 and β ∈ R such that V2({p}) =

αV1({p})+β for all p ∈�(Z), and V2 ≤ αV1 +β. Then, for any μ ∈ M,

c∗2(αμ)= max
A∈A

(α〈σA�μ〉 − V2(A))

≥ max
A∈A

(α〈σA�μ〉 − αV1(A)−β)

= αmax
A∈A

(〈σA�μ〉 − V1(A))−β= αc∗1(μ)−β�

(iii) ⇒ (ii) Suppose there exist α > 0 and β ∈ R such that V2({p}) =
αV1({p}) + β for all p ∈ �(Z), and c∗2(αμ) ≥ αc∗1(μ) − β for all μ ∈ M. Fix
any A ∈ A. Since c∗2(μ)= c2(μ) for all μ ∈ M2,46 it follows from the definition
of V2 that there exists μ ∈ M2 ⊂ M such that

V2(A)= 〈σA�μ〉 − c∗2(μ)

≤ 〈σA�μ〉 − αc∗1

(
1
α
μ

)
+β

= α

[〈
σA�

1
α
μ

〉
− c∗1

(
1
α
μ

)]
+β

≤ αV1(A)+β�

where the last inequality follows from the definition of c∗1 .

F.2. Proof of Corollary 1

LEMMA 14: Let ((Ω� F�P)�G�U� c) be any CC representation. Define V by
Equation (4), define c∗ by Equation (9), and let γ = 1

|Z|
∑

z∈Z E[Uz]. Then the
following statements hold:

(i) c∗(μG)≤ c(G)− γ for any G ∈ G.
(ii) c∗(μG)= c(G)− γ if and only if G solves Equation (4) for some A ∈ A.

PROOF: (i) Note first that for any A ∈ A and G ∈ G,

V (A)≥ E

[
max
p∈A

E[U |G] ·p
]
− c(G)= 〈σA�μG〉 + γ− c(G)�

where the inequality follows from Equation (4) and the equality follows from
Lemma 1. Therefore, 〈σA�μG〉 − V (A)≤ c(G)− γ, implying by the definition
of c∗ that c∗(μG)≤ c(G)− γ.

46That c = c∗|M for any RFCC representation (M� c) follows from the observations made in
Appendix E regarding conjugate convex functionals since c∗ is precisely the restriction of the
functional W ∗ to the set M.
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(ii) Suppose that G ∈ G solves Equation (4) for some A ∈ A. Then, by Equa-
tion (4) and Lemma 1, V (A)= 〈σA�μG〉 + γ− c(G). Along with the definition
of c∗, this implies that c∗(μG) ≥ 〈σA�μG〉 − V (A) = c(G)− γ. By part (i), we
have c∗(μG)= c(G)− γ.

Conversely, suppose that c∗(μG) = c(G)− γ. Then taking A ∈ A such that
〈σA�μG〉 − V (A)= c∗(μG), Lemma 1 implies

V (A)= 〈σA�μG〉 + γ− c(G)= E

[
max
p∈A

E[U |G] ·p
]
− c(G)�

Thus, G solves Equation (4) for the menu A. Q.E.D.

We now complete the proof of Corollary 1. Note for each i = 1�2, by The-
orem 2, there exists an RFCC representation such that Vi is given by Equa-
tion (7). Therefore, the implications (i) ⇔ (ii) and (ii) ⇒ (iii) follow from
Theorem 5.

To see (iii) ⇒ (ii), suppose there exist α > 0 and β ∈ R such that V2({p})=
αV1({p})+β for all p ∈�(Z), and c∗2(μG2)≥ αc∗1(

1
α
μG2)−β for all G2 ∈ G2. Let

A ∈ A and define β2 = 1
|Z|

∑
z∈Z E

P2[U2�z]. By Equation (4), there exists G2 ∈ G2

such that

V2(A)= E
P2

[
max
p∈A

E
P2[U2|G2] ·p

]
− c2(G2)

= 〈
σA�μG2

〉+β2 − c2(G2)

≤ 〈
σA�μG2

〉− c∗2
(
μG2

)
≤ 〈

σA�μG2

〉− αc∗1

(
1
α
μG2

)
+β

= α

[〈
σA�

1
α
μG2

〉
− c∗1

(
1
α
μG2

)]
+β

≤ αV1(A)+β�

where the second equality follows from Lemma 1, the first inequality follows
from part (i) of Lemma 14, the second inequality follows from our assumptions
on c∗1 and c∗2 , and the last inequality follows from the definition of c∗1 .

APPENDIX G: PROOFS OF RESULTS FROM SECTION 5

G.1. Proof of Theorem 6

In this section, we show that for any signed RFCC representation (see Defi-
nition 5 in Appendix C)—in particular, for any RFCC representation—strong
IDD is equivalent to a constant cost function. The necessity of strong IDD is
straightforward and left to the reader. For sufficiency, suppose V is defined by
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Equation (7) for a signed RFCC representation (M� c) for the preference �
and that � satisfies strong IDD.

Lemma S.15 in the Supplemental Material shows that for any A ∈ A, p ∈
�(Z), and α ∈ [0�1],47

V (αA+ (1− α){p})= αV (A)+ (1− α)V ({p})�(24)

As in Appendix C.2, define W :Σ→R by W (σ)= V (Aσ). By Equation (24)
and parts (i) and (ii) of Lemma 5, for any A ∈ A, p ∈�(Z), and α ∈ [0�1],

W
(
ασA + (1− α)σ{p}

)= αW (σA)+ (1− α)W
(
σ{p}

)
�

It was shown in Appendix E that for any signed RFCC representation (M� c),
defining W as we have here gives M = MW and c =W ∗|MW

. In particular, W
satisfies

W (σ)= max
μ∈MW

[〈σ�μ〉 −W ∗(μ)]�(25)

Therefore, it suffices to show that W ∗ is constant on MW . Let w̄ =
minμ∈MW

W ∗(μ). Note that this minimum is well defined since W ∗ is lower
semicontinuous and MW is compact. Let μ̄ ∈ MW be a minimizing measure,
so that W ∗(μ̄)= w̄.

We first show that W ∗(μ) = w̄ for all μ ∈ NW . Let μ ∈ NW be arbitrary.
By the definition of NW and Lemma 8, there exists some A ∈ A such that μ
is the unique maximizer of Equation (25) at σA. That is, W (σA) = 〈σA�μ〉 −
W ∗(μ) > 〈σA�μ

′〉 −W ∗(μ′) for any μ′ ∈ MW , μ′ �= μ. Now, for any p ∈ �(Z)
and α ∈ (0�1), choose μ′ ∈ MW that maximizes Equation (25) at ασA + (1 −
α)σ{p}. Then

αW (σA)+ (1− α)W
(
σ{p}

)=W
(
ασA + (1− α)σ{p}

)
= 〈

ασA + (1− α)σ{p}�μ′〉−W ∗(μ′)

47To have an intuition for Equation (24), suppose there exist alternatives z� z′ ∈ Z such that
{δz} � A � {δz′ } for any A ∈ A. It is easy to see that under this simplifying assumption, every
menu is indifferent to a singleton menu. It is also easily verified that for any signed RFCC repre-
sentation, the consistency of the measures implies that V is affine on singleton menus:

V (α{q} + (1− α){p})= αV ({q})+ (1− α)V ({p}) ∀p�q ∈�(Z)�(23)

Let A ∈ A, p ∈ �(Z), and α ∈ [0�1]. By the simplifying assumption, there exists q ∈ �(Z) such
that A∼ {q}. Then

V (αA+ (1− α){p}) = V (α{q} + (1− α){p}) (by strong IDD)

= αV ({q})+ (1− α)V ({p}) (by Equation (23))

= αV (A)+ (1− α)V ({p})�
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= α[〈σA�μ
′〉 −W ∗(μ′)]

+ (1− α)
[〈
σ{p}�μ′〉−W ∗(μ′)

]
�

Since 〈σA�μ
′〉−W ∗(μ′)≤W (σA) and 〈σ{p}�μ′〉−W ∗(μ′)≤W (σ{p}), the above

equation implies that we must in fact have 〈σA�μ
′〉 − W ∗(μ′) = W (σA) and

〈σ{p}�μ′〉 −W ∗(μ′)=W (σ{p}). By the choice of A, the former implies μ′ = μ.
Therefore, the latter implies〈

σ{p}�μ
〉−W ∗(μ)=W

(
σ{p}

)≥ 〈
σ{p}� μ̄

〉− w̄�

Consistency implies 〈σ{p}�μ〉 = 〈σ{p}� μ̄〉 and therefore W ∗(μ) ≤ w̄. Since w̄ is
the minimum of W ∗ on MW , we have W ∗(μ)= w̄.

The proof is completed by showing that W ∗(μ) = w̄ for all μ ∈ MW . If
μ ∈ MW , then there exists a net {μd}d∈D in NW such that μd

w∗→ μ. Since each
μd is in NW , our previous arguments imply that W ∗(μd)= w̄. Since W ∗ is lower
semicontinuous, it follows that W ∗(μ)≤ lim infd W ∗(μd)= w̄. Since w̄ is mini-
mal, we have W ∗(μ)= w̄.

G.2. Proof of Corollary 2

(ii) ⇒ (i) Let G′ = {G ∈ G : c(G) ≤ k} and let c′ : G′ → R be any constant
function. Then ((Ω� F�P)�G′�U� c′) is a CC representation for �. Hence,
Theorem 1 implies that � satisfies weak order, strong continuity, ACP, and
monotonicity. It is easily verified that since c′ is constant, � also satisfies strong
IDD.

(i) ⇒ (ii) First, apply Theorem 3 to conclude that � has an RFCC represen-
tation (M� c). Then, by Theorem 6, strong IDD implies that c is constant. The-
orem 2 implies there is a CC representation ((Ω� F�P)�G�U� c̃) that gives the
same value function for menus V as the RFCC representation (M� c). More-
over, since c is constant, it is immediate from the construction in the proof of
Theorem 2 that c̃ can be taken to be constant. If we choose k ∈ R larger than
this constant value, then the function V defined by Equation (11) for these
parameters represents �.

G.3. Proof of Corollary 3

If : The necessity of weak order, strong continuity, and monotonicity follows
from Theorem 1. Since c(F) = minG∈G c(G), F is an optimal contemplation
strategy for any menu. Thus, for any A ∈ A,

V (A)= E

[
max
p∈A

E[U |F ] ·p
]
− c(F)�

This implies that V is affine, and hence � satisfies independence.
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Only if : By Theorem 7, � has an RFCC representation (M� c) in which
M = {μ} for some finite Borel measure μ. Since μ is positive, we can define
a Borel probability measure on U by P = μ

μ(U)
. Let Ω= U , let F be the Borel

σ-algebra on U , and let G = {F}. If we define U : U → R
Z by U(u)= u, then

for any A ∈ A,

E

[
max
p∈A

E[U |F ] ·p
]
= E

[
max
p∈A

U ·p
]
= 1

μ(U)

∫
U

max
p∈A

u(p)μ(du)�

Therefore, taking c(F) to be any real number, we have the desired CC repre-
sentation for �.
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