
Efficient Resource Allocation on the Basis of Priorities∗

by Haluk I. Ergin†

1 Introduction

Many institutions allocate resources by non-market mechanisms based on priorities. In this

paper, we introduce a model of resource allocation on the basis of priorities and address the

following questions: Is it possible to allocate resources on the basis of any priority structure?

If yes, when can we do this Pareto efficiently, without creating incentives for manipulation

and consistently across different groups of agents and resource levels?

We adopt a basic indivisible-objects model with a finite number of object types and a

finite quota of goods of each type. Some interesting examples are the determination of access

to education, allocation of graduate houses, offices or tasks. Agents are assumed to have strict

preferences over object types and remaining unassigned. An assignment is an allocation of

the objects to the agents such that every agent receives at most one object. A rule associates

an assignment to each preference profile. We formalize a priority structure to be a collection

of strict priority rankings of individuals indexed by the object types where i �a j would be

read as “i has higher priority for object a than j”. We assume that the priority structure is

exogenously fixed and allow the preferences of the agents to vary. A rule is said to violate a

priority of i for a if there is a preference profile under which i envies j who is assigned a and
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j has lower priority for a than i. A rule adapts to a priority structure if it never violates the

specified priorities.

The interpretation of our model as a college admissions model gives an important initial

result: for any priority structure, the deferred acceptance algorithm of Gale and Shapley

(1962) yields the unique rule that adapts to the structure and is Pareto superior to any

other rule that adapts to it. We therefore call this rule the best rule associated with the

priority structure and restrict attention to best rules in the subsequent analysis. Balinski and

Sönmez (1999) study a model of student placement where priorities are obtained from exam

scores. Their model is essentially the same as ours and their fairness property coincides with

our notion of adapting to a priority structure. They also note that the deferred acceptance

algorithm yields the unique rule that is Pareto superior to any other adaptive rule, however do

not investigate conditions that guarantee Pareto efficiency of the deferred acceptance outcome.

We will say that a priority structure is acyclical if it never gives rise to situations where an

agent can block a potential settlement between any other two agents without affecting his own

position. A rule is group strategyproof if it does not create any incentives for manipulation

by groups of agents, it is consistent if its outcomes in problems involving different groups of

agents and resource levels are coherent. Our main result shows that acyclicity of the priority

structure is sufficient for Pareto efficiency, group strategyproofness and consistency of the

associated best rule as well as necessary for each of these conditions separately. Since the

best rule Pareto dominates any other rule that is adapted to the same structure, this in

particular implies that a priority structure can be Pareto efficiently adapted if and only if it

is acyclical. Finally, we show that a priority structure is acyclical if and only if the priority

rankings for any pair of objects are similar in positions lower than the sum of their quotas,

demonstrating the restrictiveness of the acyclicity condition.

In our model, priority rights are not always transferable. Consider a situation where there

are three agents i, j, and k, one unit of each good type a and b with i �a j �a k �b i, i

strictly prefers getting b, j and k strictly prefer getting a and j prefers remaining unassigned

to getting b. A mutually beneficial agreement between i and k would be to obtain the goods

a and b respectively by exercising their priority rights and then to make an exchange so that

finally i gets b and k gets a. However the final settlement would violate the priority of j for a,
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contradicting the allocation of resources on the basis of specified priorities. Here the priority

structure is not acyclical, since j may block a potential settlement between i and k without

affecting his own position.

In assignment models similar to ours, Abdulkadiroğlu and Sönmez (1998, 2002) and Pápai

(2000)1 introduce Pareto efficient and strategyproof classes of rules that generalize Gale’s top

trading cycles procedure first described by Shapley and Scarf (1974). These mechanisms are

based on a collection of orderings of the agents indexed by the objects that specify a structure

for hierarchical inheritance of transferable rights on the objects. Abdulkadiroğlu and Sönmez

(2002) interprete the hierarchical inheritance orderings as priority orders where priorities are

transferable. By making priorities transferable, they recover Pareto efficiency for any priority

structure. On the other hand, the outcome of the top trading cycles algorithm applied to a

priority structure need not be adapted to the specified priorities.

To see this, consider an example where there are three districts a, b, and c, one school in

each district and three students 1, 2, and 3 residing in a, b, and c respectively. Student 1 is

female, the others are male and the achievement test score of 1 is higher than that of 2 which is

higher than that of 3. The central authority aims to assign the students to these three schools

each of which has a quota of 1. Moreover, the authority desires to make the assignment on

the basis of three criteria: Residency (students should be given priority in their own district),

Test scores (students with higher test scores should be given priority), and Gender (Females

should be given priority). Considering residency above test scores above gender yields the

following priority structure:

School a School b School c

1 2 3

2 1 1

3 3 2

The above structure turns out to be cyclical, therefore there is no Pareto efficient rule that

adapts to it. Suppose that one interprets the collection of orders above as hierarchical inheri-

1Although she does not aim to provide a formal treatment of priorities, Pápai (2000) also hints at priorities.

Her interpretation is different since she allows the priority order of lower priority agents to depend on the

preferences of higher priority agents. In our model, the priority structure is exogenous to all agents.
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tance orderings. Then the induced top trading cycle outcome (where the endowments of 1, 2,

and 3 are a, b, and c respectively) for the profile where bP1aP1c, cP2aP2b and bP3aP3c would

be:  1 2 3

a c b

 .

Note that 3 is assigned to b while 1 both prefers to attend b rather than a and has higher

priority for b, i.e., the above assignment violates a priority specified in the structure via which

it was derived. Consider the market interpretation of the above outcome: initially 1, 2, and 3

own a, b, and c respectively. Then 2 and 3 trade c and b which yields the final Pareto efficient

assignment. However in our model, agent 2’s priority for b is not transferable: he can attend

b if he wishes because he has top priority for it, but he does not have the right to make an

exchange with 3 when agent 1 wants to attend b and is ranked above 3 in the priority list for

b.

2 The Model

Let N denote the set of agents and A the set of indivisible good types. From time to

time, we will refer to N as the set of students and to A as the set of schools. Let q = (qa)a∈A

where qa ≥ 1 denotes the number of available goods of type a. A preference profile is a

vector of linear orders (complete, transitive and antisymmetric relations) R = (Ri)i∈N where

Ri denotes the preference of agent i over A ∪ {i}.2 Being assigned to oneself is interpreted

as not being assigned to any school. A school a is acceptable to i if aRii. For any subset of

agents N ′ ⊂ N , let RN ′ = (Ri)i∈N ′ and for any agent i and any x, y ∈ A ∪ {i}, let xPiy if

and only if xRiy and not yRix. An assignment is a function µ : N → A ∪ N satisfying: (i)

∀i ∈ N : µ(i) ∈ A ∪ {i} and (ii) ∀a ∈ A : |µ−1(a)| ≤ qa.

A rule f is a function that associates an assignment to every preference profile. A priority

structure is a profile of linear orders over agents �= (�a)a∈A where for each a ∈ A, �a ranks

agents with respect to their priority for a. For any a ∈ A and i, j ∈ N , let i �a j if and only

if i �a j and not j �a i. For every a ∈ A and i ∈ N , let Ua(i) = {j ∈ N |j �a i}. A rule

2Ehlers (2002) proves a maximal domain result showing that one cannot go much beyond strict preferences

if one insists on Pareto efficiency and a weak form of group strategyproofness.
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f is Pareto efficient if for any preference profile R there does not exist an assignment µ such

that µ(i)Rifi(R) for every i ∈ N and µ(j)Pjfj(R) for some j ∈ N . A rule f is strategyproof

if no single agent can be better-off by misrepresenting his preferences, i.e., for any R, i and

R′
i we have that fi(R)Rifi(RN\{i}, R

′
i). It is group strategyproof if no subset of agents can

gain by jointly misrepresenting their preferences, i.e., if there do not exist ∅ 6= N ′ ⊂ N , R

and R′
N ′ such that fi(RN\N ′ , R′

N ′)Rifi(R) for every i ∈ N ′ and fj(RN\N ′ , R′
N ′)Pjfj(R) for

some j ∈ N ′. Nonbossiness requires that no agent can maintain his assignment and cause

a change in others’ assignments by reporting different preferences. Formally, f is nonbossy

if for any i ∈ N , R and R′
i, f(R′

i, RN\{i}) = f(R) whenever fi(R
′
i, RN\{i}) = fi(R). Given

a priority structure � and a preference profile R, the assignment µ violates the priority of i

for a, if there is a student j such that j receives a under µ whereas i both prefers a to what

he receives under µ and has higher priority for a, i.e.: µ(j) = a, aPiµ(i) and i �a j. Given

R, the assignment µ adapts to � if it does not violate any priorities. A rule f adapts to the

priority structure � if for any preference profile R, the assignment µ = f(R) adapts to �.

Definition 1 Let � be a priority structure and q a vector of quotas. A cycle is constituted

of distinct a, b ∈ A and i, j, k ∈ N such that the following are satisfied:

(C) Cycle condition: i �a j �a k �b i,

(S) Scarcity condition: There exist (possibly empty) disjoint sets of agents Na, Nb ⊂

N \ {i, j, k} such that Na ⊂ Ua(j), Nb ⊂ Ub(i), |Na| = qa − 1 and |Nb| = qb − 1.

A priority structure is acyclical if it has no cycles.

Note that acyclicity is a joint property of the priority structure and the vector of quotas,

although the latter will often be suppressed. The scarcity condition (S) requires that there

are enough people with higher priority for a and b such that there may be instants when i, j

and k would compete for admission in either a or b. For example, if the quota of every school

is |N | the condition (S) is never satisfied: there is no scarcity of resources, it is possible to

assign each agent to his favorite school and this assignment will be Pareto efficient. On the

other hand, if all the quotas are one then (S) is always satisfied: resources are fully scarce

and cycles are characterized by condition (C). Given a priority structure � and two vectors of
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quotas q and q′ with q′a ≤ qa for each a, any cycle of (�, q) is also a cycle of (�, q′). Therefore,

acyclicity becomes more restrictive as resources become more scarce.

2.1 The Deferred Acceptance Algorithm and the Best Rule

Our model is closely related to the college admissions model of Gale and Shapley (1962).

The college admissions model is a two sided matching problem where there are two finite

sets of students and colleges. Every student has a preference over colleges and remaining

unassigned. Similarly, each college has a preference over students, it also has a fixed quota

determining the maximum number of students that it can admit. Our model can be inter-

preted as a college admissions model where the priority orders are seen as the fixed preferences

of colleges over students. However one must be careful with this interpretation, since there

are fundamental differences between priority orders and preferences. First, preferences are

allowed to vary whereas priorities are fixed: members of A are object types that are asso-

ciated with fixed priority orderings and only the preferences of the agents in N are subject

to change. Secondly, preferences evoke strategic considerations whereas priorities do not,

therefore in our model members of A are not strategic. Finally, preferences constitute the

criteria for Pareto efficiency whereas priorities are irrelevant from a welfare perspective. As

a consequence, Pareto efficiency is harder to achieve in our model: given (�, R), any Pareto

efficient assignment when � is interpreted as a priority structure is also a Pareto efficient

assignment when � is interpreted as a preference profile, but not vice versa.3

In the following, consider N and A as the two sides of a college admissions model where

the college a is perceived to have the fixed “preference” �a on the set of applicants and R is

the preference profile of the members of N as usual. Then Gale and Shapley (1962) define a

stable assignment µ to be one such that the following conditions are satisfied:

1. Individual Rationality: ∀i ∈ N , µ(i)Rii.

2. Pairwise stability:

2.1. There do not exist i, j and a such that a = µ(j), aPiµ(i) and i �a j.

3The implication holds independently of the way in which � is extended to a preference profile over subsets

of students but it is crucial that students have strict preferences over schools.
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2.2. There do not exist i and a such that aPiµ(i) and qa > |µ−1(a)|.4

Note that Condition 2.1 says that given R, µ adapts to�. Therefore, any stable assignment

µ is adapted to �. However, adaptability is a weaker property than stability. Thus for any

given � and R, the set of adapted assignments are larger than stable ones. Given a priority

structure and a preference profile, there always exists a stable assignment. This assignment

is found via the deferred acceptance algorithm of Gale and Shapley (1962):

At the first step, every student applies to his favorite acceptable school. For each

school a, qa applicants who have highest priority for a (all applicants if there are

fewer than qa) are placed on the waiting list of a, and the others are rejected.

At the rth step, those applicants who were rejected at step r − 1 apply to their

next best acceptable schools. For each school a, the highest priority qa students

among the new applicants and those in the waiting list are placed on the new

waiting list and the rest are rejected.

The algorithm terminates when every student is either on a waiting list or has been rejected

by every school that is acceptable to him. After this procedure ends, schools admit students

on their waiting lists which yields the desired assignment. Gale and Shapley (1962) show that

the algorithm described above yields the unique stable assignment that is Pareto superior to

any other stable assignment from the viewpoint of the students. Although the set of adapted

assignments is larger than the stable ones, it also turns out that the assignment induced by

the deferred acceptance algorithm is Pareto superior to any assignment that is adapted to the

structure. The following Proposition provides a summary of the above results. It is identical

to Theorem 2 in Balinski and Sönmez (1999).

Proposition 1 For any priority structure and preference profile, the assignment given by the

deferred acceptance algorithm is adapted to the structure and is Pareto superior to any other

assignment that is adapted to the structure.

4Different from Gale and Shapley (1962), in 1. and 2.2. we ignore individual rationality conditions for

members of A. This simplifying assumption is W.L.O.G. in our analysis. Even if we allow for priority

structures where certain students are not acceptable to certain schools, rules that adapt to such structures

would not be Pareto efficient. Balinski and Sönmez (1999) call this assumption non-wastefulness.
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We will call the rule that associates to each profile the deferred acceptance outcome, the

best rule induced by � and denote it by f�. Note that f� is (in particular) constrained

Pareto efficient within the class all rules that adapt to �. However, in general, it need not

be Pareto efficient since it may be Pareto dominated by rules that are not adapted to �.

Dubins and Freedman (1981) show that under a best rule, agents by themselves do not have

any incentives to misrepresent their preferences. However there may be cases when a group

of agents can improve their positions by jointly misrepresenting their preferences.

Given a pair (�, q), a subset of agents ∅ 6= N ′ ⊂ N , a subset of resources q′ = (q′a)a∈A where

q′a ≤ qa for each a and a preference profile R, there is a unique deferred acceptance outcome

induced by the restriction � |N ′ = (�a |N ′)a∈A of the original structure, for the smaller

economy (N ′, q′, RN ′). Let us call the map that associates the deferred acceptance with any

such smaller economy (N ′, q′, RN ′), the extended best rule associated with the structure �

and denote it by f̃�. Given an economy E = (N, q,R), an assignment µ for E and a subset

of agents ∅ 6= N ′ ⊂ N , the reduced problem rµ
N ′(E) of E with respect to µ and N ′ is the

smaller problem consisting of agents N ′ and remaining resources after agents in N \N ′ have

left with their assignments under µ, i.e., rµ
N ′(E) = (N ′, q′, RN ′) where q′a = qa − |µ−1(a) \N ′|

for each a ∈ A. Consistency requires that once an assignment is determined and a group of

agents receive their physical assignments before the others, the rule should not change the

assignments of the remaining agents in the reduced problem involving the remaining agents

and resources. Formally, a priority structure � induces a consistent extended best rule if for

any economy E = (N, q, R), one has µ|N ′ = f̃� (rµ
N ′(E)) where µ = f̃� (E). Consistent rules

are coherent in their outcomes for problems involving different groups of agents and robust

to non-simultaneous physical assignment of the objects.5

3 The Results

Theorem 1 For any pair (�, q), the following are equivalent:

(i) f� is Pareto efficient,

(ii) f� is group strategyproof,
5See Ergin (2000) for a discussion of consistency in the indivisible-object assignment setting and Thomson

(1990) for a survey of the consistency principle in general in allocation problems.
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(iii) f̃� is consistent,

(iv) � is acyclical.

Since the best rule associated with a structure � is Pareto superior to all other rules that

adapt to �, the “(i) ⇐⇒ (iv)” part above can also be read as: There exists a Pareto efficient

rule that adapts to a priority structure if and only if the structure is acyclical. As the goods

become more scarce, the acyclicity condition becomes more restrictive and therefore fewer

priority structures can be Pareto efficiently adapted. The “(ii) ⇐⇒ (iv)” part reinforces the

above result by confirming that the best rule associated with an acyclical structure is immune

to strategic behavior on the part of the agents. If we wish to achieve the weaker concept of

constrained Pareto efficiency while keeping group incentives in line, then the result implies

that we are restricted to acyclical structures.

Given a linear order �′ on N and m ≤ |N |, let L(�′, m) = {i : |{j : i �′ j}| ≤ m} be

the set of agents who share the lowest m ranks of �′.6 Next, we provide a characterization

of acyclicity showing that the priority rankings for any pair of objects should be similar in

positions lower than the sum of their quotas.

Theorem 2 Let a pair (�, q) be given. Then � is acyclical if and only if for any two a, b ∈ A,

if i ∈ N ranks lower than (qa + qb)st from the top in N with respect to �a or �b, then the

ranks of i in N with respect to �a and �b differ at most by one, i.e.:

(∗) ∀a, b ∈ A,∀i ∈ L (�a, |N | − qa − qb) ∪ L (�b, |N | − qa − qb) : ||Ua(i)| − |Ub(i)|| ≤ 1.

Let � be acyclical and for any pair of objects a and b, let us say that members of

L (�a, |N | − qa − qb)∪L (�b, |N | − qa − qb) belong to the lower class and the remaining agents

belong to the upper class for a and b. Let pa,b denote the number of lower class agents for a

and b. By Theorem 2, |N | − qa − qb ≤ pa,b ≤ |N | − qa − qb + 1 and the lower class agents

share the bottom pa,b positions with respect to both priority orders. Acyclicity brings no

restrictions as to the relative positions of upper class members as long as they are ranked in

the top |N | − pa,b positions in both priority orders. However, it restricts the ranks of a lower

class member across the two priority orders to differ at most by one.

Dept. of Economics, 001 Fisher Hall, Princeton University, Princeton, NJ 08544, U.S.A.

6Note that if m ≤ 0, then by definition L(�′,m) = ∅.
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Appendix

1 Proof of Theorem 1

The Theorem is proved in two parts: (iv)=⇒(i)=⇒ (iii)=⇒(iv) and (iii)=⇒(ii)=⇒(iv).

Given a priority structure �, a generalized cycle is constituted of distinct a0, a1, . . . , an−1 ∈ A

and j, i0, i1, . . . , in−1 ∈ N with n ≥ 2 such that the following are satisfied:

(C) i0 �a0 j �a0 in−1 �an−1 in−2 �an−2 . . . i2 �a2 i1 �a1 i0,

(S) There exist disjoint sets of agents Na0 , . . . , Nan−1 ⊂ N \ {j, i0, i1, . . . , in−1} such

that Na0 ⊂ Ua0(j), Na1 ⊂ Ua1(i0), Na2 ⊂ Ua2(i1), . . . Nan−2 ⊂ Uan−1(in−3), Nan−1 ⊂

Uan−1(in−2) and |Nal
| = qal

− 1 for l = 0, 1, . . . , n− 1.

(iv)=⇒(i): Step 1 If f�(R) is not Pareto efficient then � has a generalized cycle.

Suppose that µ′ Pareto dominates µ = f�(R). The first part is to show that there

exist agents i0, i1, . . . , in−1, in = io ∈ N with n ≥ 2 such that each agent envies the next

under µ. Let N ′ = {i ∈ N |µ′(i)Piµ(i)}, then N ′ 6= ∅. Since no agent is worse-off under µ′,

those that are not strictly better-off should be indifferent between µ and µ′. Therefore, by our

assumption of strict preferences they are assigned to the same school under both assignments,

i.e., N \ N ′ = {i ∈ N |µ′(i) = µ(i)}. For any i ∈ N ′, µ′(i) ∈ A since µ′(i)Piµ(i)Rii, by the

individual rationality of the best rule outcome .

Let i ∈ N ′, since µ′(i)Piµ(i), i has been rejected by µ′(i) at a step in the algorithm leading

to µ. At that step the waiting list of µ′(i) was full, therefore at the end of the algorithm the

school µ′(i) has full quota, i.e., |µ−1 (µ′(i)) | = qµ′(i). Moreover, there are people in N ′ who

were assigned to µ′(i) under µ. Because otherwise the set of qµ′(i) people who were assigned

to µ′(i) under µ would be a subset of N \ N ′, therefore they would be assigned to µ(i) also

under µ′. But then when we also include i ∈ N ′, there are at least qµ′(i) + 1 people assigned

to µ′(i) under µ′, which leads to a contradiction.

We can now define the correspondence π : N ′ −→ N ′ by π(i) = µ−1 (µ′(i)) ∩ N ′. The

correspondence π is non-empty valued by the above arguments. By construction, we can

choose a branch π of π such that for any i, j ∈ N ′ with µ′(i) = µ′(j) we have that π(i) =
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π(j). Note that π(i) 6= i for any i ∈ N ′, therefore there is n ≥ 2 and n distinct agents

i1, . . . , in−1, in = i0 ∈ N ′ with ir = π(ir−1), for r = 1, 2, . . . , n. Set ar = µ(ir), then ar =

µ (π(ir−1)) = µ′(ir−1) for r = 1, 2, . . . , n. Note also that since i1, . . . , in−1, in = i0 are distinct,

the schools a1, . . . , an = a0 are also distinct by the particular choice of branch π. Moreover

since ar = µ(ir) = µ′(ir−1)Pir−1µ(ir−1), and µ adapts to the structure � for the profile R,

we have that ir �ar ir−1 for r = 1, 2, . . . , n. We conclude the first part of the proof by

noting that i0 �a0 in−1 �an−1 in−2 �an−2 . . . i2 �a2 i1 �a1 i0, where a0, a1, . . . , an−1 ∈ A,

i0, i1, . . . , in−1 ∈ N are distinct and n ≥ 2.

For the second part of the proof, consider the deferred acceptance algorithm that leads to

µ. Let r be the latest step in the algorithm when someone in {i1, . . . , in−1} applies to (and is

accepted by) the school that he is assigned to under µ. W.L.O.G., suppose that i0 applies to

(and is accepted by) µ(i0) at step r. Note that after step r, all agents in {i1, . . . , in−1} never

get rejected again, since they are in the waiting list of their final allocation.

Let l ∈ {1, 2, . . . , n}. Since alPil−1
al−1, agent il−1 was rejected by al at an earlier step than

when he applied to al−1. The latest step at which il−1 could have applied to al−1 = µ(il−1) is

r, so he was rejected by al at a step r′ < r. Therefore, after the end of step r′, (in particular

right after step r − 1) the waiting list of al is full. At the end of step r − 1, the waiting list

of a0 is full and does not include any il ∈ {i1, . . . , in−1}, otherwise il would apply to al at a

step later than r, a contradiction. Thus, there is j ∈ N distinct from i0, i1, i2, . . . , in−1 such

that he is rejected by a0 at step r when i0 applies to (and is accepted in) the waiting list of

a0 and he is accepted to the waiting list of a0 at or after the step when in−1 is rejected by a0.

Note that i0 �a0 j �a0 in−1. For any l ∈ {0, 1, 2, . . . , n − 1}, let Nal
be the set of agents in

the waiting list of al other than il at the end of step r. It is now straightforward to see that

condition (S) in the definition of generalized cycle is also satisfied.

Step 2 If � has a generalized cycle, then it also has a cycle.

Suppose that � has a generalized cycle and let the size of its shortest generalized cycle

be n. We will show that n = 2 which will prove step 2, since a cycle is a generalized cycle

of size 2. Suppose that a0, a1, . . . , an−1 ∈ A; j, i0, i1, . . . , in−1 ∈ N and Na0 , . . . , Nan−1 ⊂

N \ {j, i0, . . . , in−1} form a shortest generalized cycle of size n > 2.

If i0 �a2 i2, then i0 �a2 i2 �a2 i1 �a1 i0 and Na2 , Na1 ⊂ N \ {i2, i0, i1} are disjoint sets
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satisfying Na2 ⊂ Ua2(i2), Na1 ⊂ Ua1(i0), |Na2| = qa2 − 1 and |Na1| = qa1 − 1, a contradiction

to � having no cycles. If i2 �a2 i0, then i0 �a0 j �a0 in−1 �an−1 . . . i3 �a3 i2 �a2 i0,

and Na0 , Na2 , . . . , Nan−1 ⊂ N \ {j, i0, i2, . . . , in−1} are disjoint sets satisfying Na0 ⊂ Ua0(j),

Na2 ⊂ Ua2(i0), Na3 ⊂ Ua3(i2), . . . Nan−2 ⊂ Uan−2(in−3), Nan−1 ⊂ Uan−1(in−2) and |Nal
| = qal

−1

for l = 0, 2, 3, . . . , n − 1. So, there is a generalized cycle of size n − 1, a contradiction with

the choice of the initial generalized cycle.

(i)=⇒(iii): Assume that f̃� is not consistent. Then, there is R and ∅ 6= N ′ ⊂ N such

that E = (N, q,R), µ = f̃� (E), µ′ = f̃� (rµ
N ′(E)) and µ|N ′ 6= µ′. Since µ adapts to � in

the original economy E , the restricted assignment µ|N ′ adapts to � |N ′ = (�a |N ′)a∈A in

the reduced economy rµ
N ′(E). So by Proposition 1, µ′ Pareto dominates µ|N ′ in the reduced

economy rµ
N ′(E). But then the assignment ν for the original economy E defined by:

ν(i) =

 µ′(i) if i ∈ N ′,

µ(i) otherwise.

Pareto dominates µ, therefore the best rule associated with � is not Pareto efficient.

(iii)=⇒(iv): Let N , A and q and � be given. Assume that � has a cycle with a, b, i, j,

k, Na and Nb. Consider the preference profile R where agents in Na and Nb respectively

rank a and b as their top choice and the preferences of i, j and k are such that bPiaPiiPi . . .,

aPjjPj . . . and aPkbPkkPk . . .. Finally, let agents outside Na ∪ Nb ∪ {i, j, k} prefer not to

be assigned to any school. Then, the deferred acceptance outcome µ for R is such that

∀l ∈ Na∪{i} : µ(l) = a and ∀l ∈ Nb∪{k} : µ(l) = b. Let E = (N, q,R), then the reduced

problem rµ
{i,k}(E) =

(
{i, k}, q′, R{i,k}

)
is such that the preferences of i and k are as in above,

q′a = 1, q′b = 1 and q′x = qx for any x ∈ A \ {a, b}. The deferred acceptance outcome µ′ of

the reduced problem rµ
{i,k}(E) is such that µ′(i) = b and µ′(k) = a. Since µ′ 6= µ|N ′ , f̃� is not

consistent.

(iii)=⇒(ii): An argument exactly similar to that of Lemma 1 in Pápai (2000) shows that

strategyproofness and nonbossiness imply group strategyproofness in our model.7 By Dubins

and Freedman (1981), f� is strategyproof. We will next show that if f̃� is consistent then it

is also nonbossy, completing the proof of this part. Assume that f̃� is consistent. Let i, R

7See Barberà and Jackson (1995) for a related result.
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and R′
i be given and set E = (N, q,R), E ′ =

(
N, q, (R′

i, RN\{i})
)
, µ = f̃�(E) and ν = f̃�(E ′).

Assume that µ(i) = ν(i), then the two reduced problems rµ
N\{i}(E) and rν

N\{i}(E ′) are the

same. Moreover by consistency of f̃�, µ|N\{i} = f̃�
(
rµ
N\{i}(E)

)
and ν|N\{i} = f̃�

(
rν
N\{i}(E ′)

)
,

therefore µ|N\{i} = ν|N\{i}. Since µ(i) = ν(i) and µ|N\{i} = ν|N\{i}, we conclude that µ = ν.

(ii)=⇒(iv): Assume that � has a cycle. Let R be as defined in part “(iii)=⇒(iv)”, N ′ =

{i, j, k}, R′
−j = R−j and let R′

j rank j at the top. Then, we have:

f�(RN\N ′ , RN ′) =

 i j k

a j b

 and f�(RN\N ′ , R′
N ′) =

 i j k

b j a

 ,

contradicting the group strategyproofness of f� under the true preferences R. Q.E.D.

2 Proof of Theorem 2

Let � be acyclical and suppose that there exist a, b ∈ A and i ∈ L (�a, |N | − qa − qb) ∪

L (�b, |N | − qa − qb) such that ||Ua(i)| − |Ub(i)|| > 1. W.L.O.G. let |Ub(i)| ≥ |Ua(i)|+ 2, then

|Ub(i)| ≥ qa + qb. Let k be the bottom and j the second from bottom agent in Ub(i) ∪ {i}

with respect to �a (there exist two such agents since |Ub(i)∪ {i}| ≥ 3). Then, (Ub(i) ∪ {i}) \

{j, k} ⊂ Ua(j), i.e. |Ua(j)| ≥ | (Ub(i) ∪ {i}) \ {j, k}| = |Ub(i)| − 1, so |Ua(j)| > |Ua(i)| and

|Ua(j)| ≥ qa + qb − 1 ≥ qa. Thus j (and therefore also k) ranks lower than i from the top

in N with respect to �a, i.e., i �a j and in particular i, j and k are distinct. So we have

i �a j �a k �b i, |Ua(j)| ≥ qa and |Ub(i)| ≥ qa + qb. Therefore � has a cycle, a contradiction.

For the converse, let � satisfy (∗) and suppose that it has a cycle with a, b, i, j, k, Na

and Nb. Suppose that both i and k are in the top qa + qb positions with respect to �a and �b.

Then j �a k and Na ⊂ Ua(j) imply that {j}∪Na are in the top qa + qb positions with respect

to �a. Also Nb ⊂ Ub(i) implies that elements of Nb are in the top qa + qb − 1 positions with

respect to �b. Moreover since by (∗), L (�a, |N | − qa − qb) ⊂ L (�b, |N | − qa − qb + 1), by

taking complements we deduce that the elements in the top qa + qb− 1 positions with respect

to �b are in the top qa + qb positions with respect to �a. In particular, elements of Nb are in

the top qa +qb positions with respect to �a. Thus, elements of {i, j, k}∪Na∪Nb are in the top

qa +qb positions with respect to �a, a contradiction to |{i, j, k}∪Na∪Nb| = qa +qb +1. So i or

k is in L (�a, |N | − qa − qb) ∪ L (�b, |N | − qa − qb). Suppose that k /∈ L (�a, |N | − qa − qb) ∪

13



L (�b, |N | − qa − qb), then i ∈ L (�a, |N | − qa − qb) ∪ L (�b, |N | − qa − qb). By applying (∗),

|Ua(i)| ≥ qa + qb − 1 and i �a k, so k ∈ L (�a, |N | − qa − qb), a contradiction. Thus k ∈

L (�a, |N | − qa − qb) ∪ L (�b, |N | − qa − qb). But then i �a j �a k �b i and (∗) imply that

|Ua(i)| ≤ |Ua(k)| − 2 ≤ |Ub(k)| − 1 ≤ |Ub(i)| − 2, a contradiction. Q.E.D.
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