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I. Introduction

One of the most intuitive predictions of deterrence theory is that an increase in an offender’s chances of

being caught decreases crime. This prediction is a core part of Becker’s (1968) account of deterrence theory

and is also present in historical articulations of deterrence theory, such as Beccaria (1764) and Bentham

(1789). The prediction is no less important in more recent treatments, such as the models discussed in

Lochner (2004), Burdett, Lagos and Wright (2004), and Lee and McCrary (2009), among others.1

On the empirical side, a large literature focuses on the effect of police on crime, where police are viewed

as a primary factor influencing the chances of apprehension.2 This literature is ably summarized by Cameron

(1988), Nagin (1998), Eck and Maguire (2000), Skogan and Frydl (2004), and Levitt and Miles (2006, 2007),

all of whom provide extensive references.

The early panel data literature tended to report small elasticity estimates that were rarely distinguishable

from zero and sometimes even positive, suggesting perversely that police increase crime.3 The ensuing

discussion in the literature was whether police reduce crime at all. Starting with Levitt (1997), an emerging

quasi-experimental literature has argued that simultaneity bias is the culprit for the small elasticities in

the panel data literature.4 The specific concern articulated is that if police are hired in anticipation of an

upswing in crime, then there will be a positive bias associated with regression-based strategies, masking

the true negative elasticity. This literature has therefore focused instead on instrumental variables (IV) or

difference-in-difference strategies designed to overcome this bias. These strategies consistently demonstrate

that police do reduce crime. However, the estimated elasticities display a wide range, roughly -0.1 to -1,

depending on the study and the type of crime.

In this paper, we argue that the central empirical issue confronting the literature is not whether police

affect crime, but the extent to which police reduce violent crime, particularly murder. We formalize this

1Polinsky and Shavell (2000) provide a review of the theoretical deterrence literature that emerged since Becker (1968),
with a particular focus on the normative implications of the theory for the organization of law enforcement strategies.

2A related literature considers the efficacy of adoption of “best practices” in policing. Declines in
crime have been linked to the adoption of “hot spots” policing (Sherman and Rogan 1995, Sherman and
Weisburd 1995, Braga 2001, Braga 2005, Weisburd 2005, Braga and Bond 2008, Berk and MacDonald 2010), “problem-oriented”
policing (Braga, Weisburd, Waring, Mazerolle, Spelman and Gajewski 1999, Braga, Kennedy, Waring and Piehl 2001, Weisburd,
Telep, Hinckle and Eck 2010) and a variety of similarly proactive approaches. In this paper, we address the effect of additional
manpower, under the assumption that police departments operate according to “business-as-usual” practices. As a result, the esti-
mates we report are likely an underestimate with respect to what is possible if additional officers are hired and utilized optimally.

3Prominent panel data papers include Cornwell and Trumbull (1994), Marvell and Moody (1996), Witt, Clarke and Fielding
(1999), Fajnzylber, Lederman and Loayza (2002), and Baltagi (2006).

4Prominent quasi-experimental papers after Levitt (1997) include Di Tella and Schargrodsky (2004), Klick and Tabarrok
(2005), Evans and Owens (2007), Draca, Machin and Witt (2011), Machin and Marie (2011), and Vollaard and Hamed (2012).
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point in Section II with a social welfare analysis. The analysis shows that at current staffing levels U.S.

cities are almost surely underpoliced if police appreciably reduce violent crimes, but are almost surely

overpoliced if they do not. This conclusion is rooted in the extraordinary cost of most violent crimes and

the comparatively minor cost of most property crimes.

Unfortunately, papers in the recent quasi-experimental literature present suggestive but not persuasive

evidence regarding the effect of police on violent crime. Compounding the fact that quasi-experimental

research designs purposefully disregard most of the variation in police staffing levels, a further empirical

challenge is that the most costly crimes are rare. Rare crimes have highly variable crime rates and even

more variable growth rates, leading to parameter uncertainty. Consequently, we still know little about the

elasticities that are central to a social welfare evaluation.

The leading example is the police elasticity of murder. Two prominent papers using U.S. data are

Levitt (1997, murder elasticity of -3.05± 4.06) and Evans and Owens (2007, elasticity of -0.84± 0.94).5

Both confidence intervals are wide enough to incorporate very large elasticities (e.g., -1.5) as well as zero.

Meanwhile, another prominent study estimates a police elasticity of violent crime of zero and argues that

it is implausible that police affect murder (Klick and Tabarrok 2005, fn. 24).

As noted, many recent studies disregard most of the variation in police due to concerns over simultaneity

bias. An obvious way to improve the precision of police elasticities is to return to regression-based methods

with appropriate controls, as in Marvell and Moody (1996), for example. Importantly, however, this type

of approach has the potential to run afoul of the “iron law of econometrics,” or the tendency of regression

coefficients to be too small because of errors in the measurement of the variable of interest (Hausman 2001).

Most quasi-experimental approaches, such as IV, do not suffer from the same bias (Bound, Brown and

Mathiowetz 2001), at least under the hypotheses of the classical measurement error model.

The implications of measurement errors in police for the estimated police elasticity of crime has, prior

to this work, gone unaddressed in the crime literature.6 We document that there is a high degree of

measurement error in the basic dataset on police used in the U.S. literature, the Uniform Crime Reports

(UCR). We estimate that prior regression-based estimates are too small by a factor of four or five, providing

an alternative explanation for the small size of the elasticities from the prior panel data literature.

5For Levitt (1997), we cite the corrected elasticity estimate and confidence interval from McCrary (2002).
6In contrast, a great has been written on measurement errors in crime. Non-classical measurement errors in crime are

the focus of an extensive literature within criminology (see Mosher, Miethe and Hart (2011) for a review). Within economics,
non-classical measurement errors in crime are the subject of two papers using U.S. data (Levitt 1998a,b), and a paper using
British data (Vollaard and Hamed 2012). None of these papers contemplates measurement errors in police.
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The core of our empirical analysis is a series of measurement error corrected estimates of the effect of police

on crime using natural variation in year-over-year changes in police at the city level in the U.S. in recent

decades. These estimates take advantage of measures of city police from the Annual Survey of Government

(ASG) and maintain the hypotheses of the classical measurement error model. A methodological contribution

of the paper is that we obtain a more efficient estimator of the policy parameter by exploiting the inherent

symmetry of the classical measurement error model. A second methodological contribution is that we show

how that symmetry implies new tests for the restrictions of the classical measurement error model. We

find little evidence against the restrictions of the classical measurement error model in our data.

Our estimated police elasticities are substantively large, roughly four times as large as those from the

traditional literature using natural variation and in line with some of the larger estimates from the quasi-

experimental literature. For example, our best guess regarding the elasticity for murder is -0.67±0.48. Combin-

ing our empirical analysis with the social welfare framework suggests reduced victim costs of $1.63 for each ad-

ditional dollar spent on police in 2010, implying that U.S. cities are in fact underpoliced. To the extent that lin-

gering simultaneity bias affects our estimates, this conclusion is conservative. Importantly, our estimates are ro-

bust to controlling for the confounders mentioned in the quasi-experimental literature, including demographic

factors, the local economy, city budgets, social disorganization, and any possible state-level policy changes

that have the same effect across cities (e.g., sentencing reform, education policy 10-20 years ago, and so on).

The remainder of the paper is organized as follows. Section II presents our social welfare framework.

Section III presents direct evidence on the degree of measurement error. We then outline our econometric

methodology in Section IV, discuss our primary data in Section V, and report estimated police elasticities of

crime in Section VI. In Section VII, we compare our results to those from the previous literature. Section VIII

connects our estimated elasticities to the social welfare framework from Section II, and Section IX concludes.

II. Conceptual Framework

In this section, we outline a framework for deriving the optimal number of police. We begin by considering

a simple case in which individuals are identical and there is only one type of crime. We then extend the model

to accommodate multiple crime types which vary according to their social cost. Finally, we extend the model

to accomodate externalities in private precautions, crowd-out, and heterogeneity. This framework emphasizes

two main points. First, reasonable calibrations suggest that additional investments in police are unlikely to

be socially beneficial unless police reduce violent crimes to at least a moderate degree. Reductions in property
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crime are simply not sufficiently costly to justify the expense of additional police officers. Violent crimes, on

the other hand, are extremely costly and consequently even relatively small effects of police on violent crime

would be sufficient to justify additional investment in police. Second, empirical estimates of the police elasticity

of crime can be used in conjunction with prices to assess social optimality, even in a relatively complicated

scenario in which public police crowd out private precautions and those precautions involve externalities.

A. Base Case

Suppose society is comprised of n identical individuals, each of whom confronts a probability of criminal

victimization φ(S), where S is the number of police employed by the government.7 Each individual faces

a victimization cost of k and has assets A that could be spent on consumption. To keep the presentation as

simple as possible, we restrict attention to the case of linear utility.8 Individuals pay a lump-sum tax τ to pay

for police, and the cost of an officer is w. Table 1 shows our estimate of the annual “fully-loaded” cost of a

police officer in 2010 of $130,000.9 On a per capita basis, this works out to $341, or about 1.3 percent of income.

The social planner maximizes the expected utility of the representative agent, subject to the financing

constraint that tax receipts must equal the total wages paid police, or nτ = wS. This implies a social

welfare function of

V (S) = y(S)−C(S) (1)

where C ≡ C(S) = kφ(S) is the expected cost of crime and y(S) = A−τ = A−wS/n is consumption in the

absence of crime and subject to the financing constraint.10The first-order necessary condition for this problem,

which is also sufficient, is of course 0 = V ′(S), but it is convenient to analyze instead the proportional condition

0 = V ′(S)
S

C
= y′(S)

S

C
−C′(S)S

C
≡ −wS

nC
− ε (2)

where ε ≡ ∂ lnC/∂ lnS is the police elasticity of the cost of crime, and y′(S) = −w/n. Next, note that
7We assume that φ(·) is differentiable and strictly convex.
8More generally, a third-order Taylor approximation to utility in conjunction with typical estimates of the coefficients

of relative risk aversion and prudence (Chetty 2006) suggest that linear utility is a good approximation.
9This estimate, which is specific to the 242 large U.S. cities we study empirically below, is based on total police operating

budgets relative to the total number of officers. This is closer to the concept employed in Levitt (1997) (who obtains $133,000 in
2010 dollars) than to the pure marginal cost concept employed in Evans and Owens (2007) (who obtain $73,000 in 2010 dollars).
The data on operating budgets are taken from the Annual Survey of Government (ASG) Finance files, and the data on the number
of officers are taken from the ASG Employment files. To accomodate outliers in the budget data, which are prevalent, we compute
a city-specific median of the per sworn officer budget from 2003 to 2010, after adjusting each year’s budget to 2010 dollars.

10Our definition of expected utility can either be thought of as implying that society is comprised exclusively of potential
victims or as implying that the social planner refuses to dignify the perpetrator’s increased utility, as in Stigler (1970). See
Cameron (1989) for a valuable discussion of these conceptual issues.
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in this framework, an increase in policing improves the welfare of the representative agent when policing

passes a cost-benefit test. Formally,

V ′(S) > 0 ⇐⇒ |ε| > wS

nC
(3)

B. Multiple Crime Categories

Now suppose there are multiple crime categories.11 The probability of victimization is φj(S) and the

cost of crime is kj, where j ranges from 1 to J. This leads to a redefinition of the expected cost of crime:

C(S) =
∑J

j=1 kjφj(S). With these redefinitions, equations (1), (2), and (3) remain the same as above.

However, it is useful to rewrite the aggregate police elasticity, ε, in terms of the elasticities for specific

crime categories. Minor rearrangement shows that the aggregate elasticity is a weighted average of elasticities

for individual crime categories, or

ε =

∑J
j=1 kjφj(S)εj∑J
j=1 kjφj(S)

(4)

where the weights, kjφj(S) are the expected cost of the crime categories and εj = ∂ lnφj(S)
/
∂ lnS is the

police elasticity for crime type j.

The crime-specific elasticities εj are the focus of most of the empirical literature on the effect of police

on crime. Estimates are available for the seven so-called “index offenses” captured by the Uniform Crime

Reports (UCR) system of the Federal Bureau of Investigation (FBI). Table 1 displays the costs associated

with these crimes (kj) as well as their prevalence in the population (φj scaled by 100,000) and the expected

cost (kjφj).
12 Totalling across crime categories yields C = $995, which is about 3.8 percent of per capita

income in our sample. The cost figures in Table 1 thus imply that wS/(nC) is about 0.34.

Some simple arithmetic using the cost figures in Table 1 in connection with the framework sketched

above shows that the key policy question for this literature is not whether police affect crime, but the

extent to which police affect violent crime, particularly murder.13 To appreciate this point, suppose that

11Without loss of generality, we define crime categories to be mutually exclusive so that the probability of being victimized
by no crime is 1−

∑J
j=1 φj(S).

12Analogous to the figure for the cost of police, the prevalence of crime is specific to our sample of 242 cities and pertains
to 2010. The figures on the cost of crime are drawn from the literature, the most recent of which is Cohen and Piquero
(2009), augmented by estimates of the value of a statistical life (VSL). As we discuss below, the $7 million figure we use for
murder is approximately the VSL number used by most large federal and state agencies in calibrating public safety investments.
The ex ante perspective adopted in constructing VSL figures is the appropriate one for this context. Unfortunately, for crimes
other than murder, the only study to utilize an ex ante perspective is Cohen, Rust, Steen and Tidd (2004). Their methodology
involved a contingent valuation survey in which individuals were asked to choose from among several different hypothetical
dollar amounts in order to protect themselves from crime. The resulting cost estimates are much larger—often 1 to 2 orders
of magnitude larger—than those given in Table 1. We use the more conventional victim cost approach to be conservative.

13Levitt (1997) makes a similar point in emphasizing the reliance of his cost-benefit calculation on the magnitude of the
5



the police elasticity of crime was -1 for each property crime category, but 0 for each violent crime category.

Then using equation (4) and the cost and incidence figures from Table 1, we see that the cost-weighted

elasticity would be a scant -0.07—a notable departure from -0.34, the value of the cost-weighted elasticity

that would justify hiring additional police.14

Indeed, if police had no effect on violent crime, then for the cost-weighted elasticity to be -0.34 would

require the elasticities for property crimes to be at least as negative as -6. Elasticities as large as that are

clearly implausible. Nearly all credible studies report property crime elasticity estimates of between 0 and

-1. Fixing all property crime elasticities somewhat optimistically at -1, for the cost-weighted elasticity to

be -0.34 would require the elasticities for violent crime to be at least as negative as -0.31.

Violent crime elasticities are decisive in a social planner’s calculations because violent crimes are so

much more costly than property crimes. The extreme case is murder. Even though it is exceedingly

rare—occurring at a rate one-third that of the second rarest crime, rape, and one-fiftieth that of motor

vehicle theft—murder accounts for fully sixty percent of the per capita expected cost of all crime (Table 1).

This means that the murder elasticity is particularly important to a social planner’s calculations. If the

police elasticities of crime were -1 for all crimes, but 0 for murder, then the cost-weighted elasticity would

still be only -0.3. If more plausibly the police elasticity was -0.75 for all crimes except murder, the murder

elasticity would have to be at least as negative as -0.2 to lead to a cost-weighted elasticity of -0.34.

C . Crowd-out, Externalities, and Heterogeneity

Investments in public police are not the only way individuals seek to protect themselves against crime.

Individuals may purchase a car alarm, upgrade a deadbolt, or pay the higher rent of a safer neighborhood,

all in an attempt to provide safety to themselves and those near them. Public investments in police could

crowd out some of these private investments in precaution. Moreover, private precautions may involve

externalities. These dual considerations suggest that a more detailed analysis is warranted before accepting

the provisional conclusions of the baseline models sketched above.

Consider then a richer model in which heterogeneous individuals undertake private precautions that may

involve externalities. We continue to assume linear utility and lump-sum taxes, and we further assume that

murder elasticity.
14We note that there are certainly benefits from policing that are not captured by the seven index offenses (e.g., arrests

for other crime categories, or emergency medical response). In this section, we are pointing out the effect of hypothetical
changes to elasticities on the cost-weighted elasticity. We do not mean to say that if the cost-weighted elasticity is not as
negative as -0.34 then there should be fewer police. Rather, we mean simply to say that a cost-benefit analysis focused on
the seven index offenses would not justify the existing number of police.
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individuals are in a Nash equilibrium, so that the beliefs of any one individual regarding the precautions

of others is consistent with the beliefs of the others regarding the precaution of the one.

Analogous to the base case discussed above, expected utility is given by yi(Xi, S)−Ci(X1,X2, . . . ,Xn, S)

where yi(Xi, S) = Ai −wS/n− piXi is after-tax wealth net of expenditures on precautions, Ai is assets,

pi is the price of precaution, and Ci(X1,X2, . . . ,Xn, S) = kiφi(X1,X2, . . . ,Xn, S) is the expected cost of

crime.15 We assume any goods that must be purchased in order to obtain precaution are produced under

conditions of perfect competition, implying that the only social value of precaution is in lowering crime.16

In addition to the financing constraint mentioned above, we impose a liberty constraint that the social

planner is unwilling or unable to dictate an individual’s precautions. To motivate the liberty constraint, note

that in the real world a person installing a burglar alarm would not be held liable in tort for the burglary

of her neighbor, even if it could be shown that the cause of her neighbor’s burglary was the installation

of the alarm. That is, the liberty constraint is one that actual governments respect. To clarify that these

social planner calculations are different from an unrestricted social planner’s calculations where precautions

could conceivably be dictated, we refer to the constrained social planner as the state.

The state seeks to maximize average expected utility subject to the financing and liberty constraints.

This can be thought of as (1) delegating to each individual the choice of precaution; (2) restricting beliefs

regarding precautions to be mutually consistent; and (3) maximizing the average equilibrium indirect utility

function over policing. To solve the state’s problem, then, we begin by solving the individual’s problem.

The individual’s first order necessary condition for precaution, which is also sufficient, is pi = −kiφii,

where at some small risk of confusion the second subscript indicates a partial derivative.17 Solving the first

order condition for Xi leads to a reaction function, Xi(X−i, S), where X−i is the vector of precautions

for individuals other than i.18

Under the assumptions above, each individual has a unique best strategy for any given set of beliefs

regarding the actions of other individuals, and we obtain a Nash equilibrium in pure strategies (Fudenberg

and Tirole 1991, Theorem 1.2). Figure 1 shows reaction functions with two individuals under functional

15We assume that φi is differentiable in all arguments and strictly convex in Xi and in S. As before, in the case of multiple
crimes the expected cost of crime can be redefined as

∑J
j=1 kijφij(X1,X2, . . . ,Xn, S).

16Precaution may or may not involve a market transaction. For example, it could entail circumnavigating a dangerous
neighborhood at the expense of extra travel time, or it could also involve the purchase of bicycle lock. In these examples,
the price of precaution is either the cost of the additional travel time or the market price of the lock.

17We assume that precautions and policing are both protective against crime, or that φii < 0 and φiS < 0.
18We suppress the dependence of the reaction function on prices, taxes, and initial assets.
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form assumptions under high and low policing.19 Write equilibrium demand for precaution as Xi(S).
20

Substituting the equilibrium demand functions into the individual’s utility function yields the equilibrium

indirect utility function Vi(S).
21 The state then maximizes V(S) ≡ 1

n

∑
i Vi(S). In this framework, police

affect expected utility through five distinct mechanisms:

1. additional police lower utility by increasing the tax burden (−w/n < 0);
2. additional police increase utility by lowering expenditures on own precaution (−piX′i(S) > 0);
3. additional police lower utility by crowding out own precaution, thereby increasing the probability of

crime indirectly (−kiφiiX′i(S) < 0);
4. additional police increase utility by reducing the probability of crime directly (−kiφiS > 0); and
5. additional police either lower or increase utility by crowding out precautions by persons ` 6= i, either

increasing or decreasing, respectively, the probability of crime externally (the sign of −kiφi`X′`(S) is
ambiguous because the sign of φi` is ambiguous).

The first order condition for the state’s problem, which is also sufficient, reflects these different mechanisms.

For convenience we again analyze the first order condition times S/C. We have

V′(S)S
C

= −wS
nC
−

n∑
i=1

ωiρiηi −
n∑

i=1

ωiεiiηi −
n∑

i=1

ωiεiS −
n∑

i=1

ωi
∑
6̀=i

εi`η` (5)

where ωi = kiφi
/∑n

i=1 kiφi is the fraction of the social expected cost of crime borne by person i,

ρi = piXi(S)/(kiφi) is the ratio of precaution expenses to the expected cost of crime, εiS = φiSS/φi < 0

is the partial elasticity of the probability of crime for person i with respect to policing, εi` = φi`X`(S)/φi

is the partial elasticity of the probability of crime for person i with respect to precaution for person `, and

ηi = X′i(S)S/Xi(S) < 0 is the elasticity of precaution for person i with respect to policing. The five terms

in equation (5) correspond to the five different mechanisms described above.22

We now turn to the task of connecting the state’s optimality condition to observable quantities, in particular

the police elasticity of crime. Estimates of the police elasticity of crime are of two types. The first type is a

total police elasticity, so called because it reflects both the direct reduction in crime due to increasing police as

well as the indirect increase in crime due to reductions to precautions that result from hiring police. The second

type is a partial police elasticity, so called because it holds precautions fixed and thus reflects only the direct

19The example assumes − lnφi(X1,X2, S) = αXi + βX−i + γS, with β < α, which leads to linear reaction functions
Xi(X−i, S) = (1/α) (ln(αki/pi)− βX−i − γS) for i = 1,2. This formulation thus echoes the traditional textbook treatment
of Cournot duopoly with linear demand (e.g., Tirole 1988, Chapter 5).

20Nash equilibrium requires that beliefs be mutually consistent, which implies a set of restrictions leading to equilibrium
demand functions, or the level of precaution demanded by person i as a function of policing, prices, taxes, and assets alone
(i.e., not the precautions of others) and corresponds to the intersection of the reaction functions in Figure 1.

21This is given by Vi(S) = yi(Xi(S), S)− kiφi(X1(S),X2(S), . . . ,Xn(S), S).
22If individuals are taking optimal precautions, then the second and third mechanisms exactly offset (the envelope theorem).

We do not impose the envelope theorem at the outset, because it complicates somewhat the analysis below connecting θ̃
and θ to social welfare. We invoke it below when it simplifies the analysis.
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reduction in crime due to increased police. While the distinction between these estimands has not garnered

much attention in the empirical literature to date, it is important for drawing conclusions about social welfare.

Our study focuses on changes in crime associated with year-to-year fluctuations in policing. Whether

this is more likely to identify a partial or total police elasticity depends on the nature of precautions. If

most precautions are fixed investments, such as deadbolts and burglar alarms, or if precautions take the

form of habits of potential crime victims that are slow to evolve, then our study is more likely to identify

a partial elasticity. If most precautions are able to adjust within a relatively short time frame, such as

a year, then our study is more likely to identify a total elasticity. We show how to calibrate our empirical

findings to our social welfare framework under the extreme cases that (1) precautions fully adjust and (2)

entirely fail to adjust, as well as under the hybrid case that (3) some precautions adjust and others do not.

To begin, note that the total and partial elasticities are given by

θ̃ =
S

C

1

n

n∑
i=1

ki
{
φiiX

′
i(S) + φiS +

∑
6̀=i

φi`X
′
`(S)

}
=

n∑
i=1

ωi
(
εiiηi + εiS +

∑
6̀=i

εi`η`
)

(6)

and θ =
S

C

1

n

n∑
i=1

kiφiS =

n∑
i=1

ωiεiS , (7)

respectively.23 Next, combining equations (5), (6), and (7), we have

V′(S)S
C

= −wS
nC
−

n∑
i=1

ωiρiηi − θ̃ ≡ −wS
nC
− r− θ̃ (8)

= −wS
nC
−

n∑
i=1

ωi
∑
6̀=i

εi`η` − θ ≡ −
wS

nC
− e− θ (9)

where r =
∑n

i=1 ωiρiηi is the crowd-out effect, or the weighted average product of the ratio of precaution

expenses to the expected cost of crime (ρi) and the elasticity of precaution with respect to policing (ηi),

and e =
∑

i ωi
∑
6̀=i εi`η` is the externality effect, or the weighted average change in the crime index that

results from policing crowding out precautions and externally impacting crime (i.e., the fifth mechanism

affecting expected utility described above).

The signs of the crowd-out and externality effects will be important for some of our reasoning. Consider

first the crowd-out effect. While we can imagine that a given individual might perversely increase precaution

with increased policing, we assume that, at least on average in the population, policing crowds out

precautions.24 Since ρi ≥ 0, this implies r ≤ 0.

23Note that in equation (7), we invoke the envelope theorem.
24For example, we can imagine an individual who does not think installing a camera is worth it, because she does not

believe there are enough police to follow up on any leads she might give them.
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The sign of the externality effect is somewhat more ambiguous. On the one hand, we suspect that

most precautions have beggar-they-neighbor effects (i.e., for most i and `, εi` ≥ 0), implying a negative

overall externality effect, or e ≤ 0. On the other hand, there are of course precautions that have positive

externalities, such as LoJack®. Finally, some precautions have aspects of both positive and negative

externalities.25 Consequently, although we have a prior view, when we calibrate this framework to our

empirical analysis, in Section VIII, below, we allow for both positive and negative externality effects.

As noted, equations (8) and (9) are both proportional to the state’s first order condition. Consequently,

the state’s solution can be recast in terms of the total and partial police elasticities, taxes relative to the

expected cost of crime, the externality effect, and the crowd-out effect. Our next task is to sign the terms

that we are unable to estimate (r and e) and then derive inequalities characterizing the social optimum.

Consider first the possibility that our empirical analysis identifies the total elasticity, θ̃, i.e., that precautions

adjust quickly, and define κ̃ = |̃θ|
/
(wS/nC). Rearranging equation (8) shows that

V′(S) > 0 ⇐⇒ θ̃
(
1 + r

/
θ̃
)
< −wS

nC
(10)

Suppose that increasing police is worthwhile in the provisional cost-benefit sense that κ̃ > 1. Since r and θ̃

share sign, the adjustment term 1+ r/θ̃ is bigger than one, and it is conservative to conclude that increasing

police is welfare improving. Intuitively, this follows since increasing police under this scenario has two

benefits for individuals—reduced crime and reduced expenditures on precaution—and only the first benefit

is measured by the police elasticity.

Consider next the possibility that our empirical analysis identifies the partial elasticity, θ, i.e., that

precautions are slow to adjust, and define κ = |θ|
/
(wS/nC), where we note that |θ| > |̃θ| so that κ > κ̃.

Rearranging equation (9) shows that

V′(S) > 0 ⇐⇒ θ
(
1 + e

/
θ
)
< −wS

nC
(11)

Suppose now that increasing police is worthwhile in the provisional cost-benefit sense that κ > 1. An analysis

like that above shows that if e ≤ 0, i.e., if precautions have beggar-thy-neighbor effects on average, then it

is conservative to conclude that increasing police is welfare improving. This makes sense because under

this scenario a typical person’s precaution imposes a negative externality on others which government can

25For example, the Club® has a negative externality in that it may displace car theft to another car (Ayres and Levitt 1998).
On the other hand, each additional car using the Club® raises search costs for the car thief and provides a marginal disincentive
to car theft. As a second example, consider a business installing a security camera. The camera could have a negative
externality in displacing a burglary to another business and a positive externality in deterring a sidewalk robbery.
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mitigate through police hiring. Suppose instead that e > 0, or that precautions have positive externalities

on average. In this scenario, government has an incentive to restrict public policing somewhat, in order to

encourage precaution. We assume that externalities play a smaller role than the direct effect of policing, or

that e < |θ|.26 We then have the bounds 0 < 1 + e/θ < 1, and the conclusion that

V′(S) > 0 ⇐⇒ θ < −wS
nC

1

1 + e/θ
⇐⇒ |θ|

/wS
nC

= κ >
1

1− e/|θ|
(12)

Consequently, the provisional conclusion that increasing police is welfare improving remains correct if

κ >
1

1− e/|θ|
⇐⇒ e

|θ|
<
κ− 1

κ
(13)

In words, if κ > 1, hiring police improves welfare as long as the externality effect is not too big relative to

the partial elasticity. For example, if κ = 2, then additional police are socially valuable unless the externality

effect is half as large as the partial elasticity, and if κ = 1.5, then additional police are socially valuable

unless the externality effect is one-third as large as the partial elasticity.

In the more realistic scenario in which some precautions are quick to respond and others are slow, our study

identifies a weighted average of these two elasticities. A simple way to make this point in the framework above

is to allow a fraction q of individuals to have precautions that adjust slowly and a fraction 1−q of individuals to

have precautions that adjust quickly. Then it is not hard to show that a study like ours identifies a combination

parameter θ ≡ (1− q)θ̃+ qθ. The first order condition for maximizing social welfare is then proportional to

V′(S)S
C

= −wS
nC
− a− θ (14)

where a ≡ qe+ (1− q)r is an adjustment term that reflects both externality and crowd-out effects in

accordance with their prevalence in the population. The analysis above then applies with minor modifications.

III. The Extent of Measurement Error in the Number of Police

We begin our discussion of the nature and extent of measurement errors in police personnel data using

as an example the case of New York City in 2003. The UCR data for New York show 28,614 sworn police

officers in 2003. Relative to the 37,240 and 35,513 sworn officers employed in 2002 and 2004, respectively,

this is a remarkably low number. If the UCR figures are to be believed, New York lost a quarter of their

sworn officers in 2003 and then hired most of them back the next year.27

26Since θ is negative and wS/(nC) is positive, the second inequality in (11) cannot be satisfied if e > |θ|. If e > |θ| regardless
of the level of S, then V′(S) > 0 is never satisfied, and the state is at a corner solution where it is optimal to have no police.

27The UCR data also indicate that New York lost a fifth of their civilian police employees in 2003 and then gained them
all back in 2004, arguing against confusion over sworn officers versus civilian employees.
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An alternative interpretion is that the 2003 number is a mistake. Internal documents from New York

are available that shed light of the UCR records.28 Setting aside the data for 2003, the UCR series and the

internal documents series track reasonably well; after discarding the data for 2003 and 2004, the correlation

is 0.92 in levels and 0.56 in growth rates. The internal documents show that the number of sworn officers

in 2003 was 36,700, not 28,614, indicating that the UCR data is incorrect.

Administrative data on police such as these are difficult to obtain. Some departmental annual reports are

available, but they are not practical for econometric research. Annual reports do not circulate widely and

even for cities and years where they are available, they do not always report the number of officers.29 Trading

off the accuracy of administrative data for the coverage of survey data, we now present a comparison of the

UCR series on the number of sworn officers with a series based on a separate survey collecting information

on police officers, the ASG. These data are collected by the U.S. Census Bureau, rather than the FBI,

and are filled out by officials in city-wide government, rather than by the police department specifically.30

We use the ASG data to construct an annual series on full-time sworn officers for all the cities in our main

analysis sample. We define this sample and give more background on the ASG data in Section V, below.

Figure 2 provides visual evidence of the statistical association between the UCR and ASG series for

sworn officers, measured in logs (panel A) and first differences of logs (“growth rates”, panel B). In panel A,

we observe a nearly perfect linear relationship between the two measures, with the majority of the data

points massed around the 45◦ line. The regression line relating the log UCR measure to the log ASG

measure is nearly on top of the 45◦ line, with a slope of 0.99. Panel B makes it clear that differencing

the data substantially reduces the association between the two series; the slope coefficient for the data

in growth rates is just 0.22. This much smaller relationship is the expected pattern when the true number

of officers changes slowly (Cameron and Trivedi 2005, Section 26.2.5).

Many people are suprised that there are errors in measuring the number of police officers. After all, a great

deal of ink has been spilled on the topic of errors in the measurement of crime, but nearly nothing has been

written on the subject of errors in the measurement of police.31Aside from obvious problems with transcription

28Thanks to Franklin Zimring, the internal documents of the New York City Police Department cited are available at
http://www.oup.com/us/companion.websites/9780199844425.

29See the working paper version for some limited comparisons of the UCR with administrative data and data from annual
reports. An interesting and econometrically problematic pattern in annual reports is the tendency to omit police numbers
when other sources indicate declining police force size.

30The ASG collects information on all city government employees, while the UCR collects information only on police officers.
31Extensive references to the large literature on measurement errors in crime data are given in Mosher, Miethe and Hart

(2011). The degree to which estimates of the total number of police nationally are compromised by measurement errors in the
UCR data has been noted by Eck and Maguire (2000) and by King, Cihan and Heinonen (2011). However, these papers do not
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errors or computer programming errors, errors in measuring police could arise due to (1) transitory movements

within the year in the number of sworn officers, (2) conceptual confusion, or (3) organizational confusion.

Regarding the first source of error, we are not aware of any public-use data sets containing information on

within-year fluctuations in police. However, during the period 1979-1997, a unique non-public dataset on sworn

officers in Chicago is available that allows the construction of monthly counts.32 In that data set, a regression of

the year-over-year growth rate in sworn officers on year indicators yields anR2 of 0.71, suggesting that maybe a

third of the movement in police growth rates is transitory.33This point is particularly relevant, as different data

sources ask for a count of officers as of different snapshots in time, or are ambiguous about the relevant date.

In addition to transitory movements, there may also be conceptual ambiguity over who counts as a sworn

police officer. First, there may be confusion between the number of total employees, which includes civilians,

and the number of sworn officers. Second, newly hired sworn officers typically attend Police Academy at

reduced pay for roughly 6 months prior to swearing in, and there may be ambiguity regarding whether

those students count as sworn officers prior to graduation. Third, due to frictions associated with the hiring

process, there is often a discrepancy between the number of officers the department has authority from city

government to employ (“authorized strength”) and the number of officers currently employed (“deployed

strength”).34 Using auxiliary data from the Law Enforcement Management and Administrative Survey

(LEMAS), described below in Section V, we collected measures of the number of authorized and deployed

sworn officers for selected recent years. These data indicate that the number of deployed sworn officers

ranges from 62 to 128 percent of authorized strength.35

Finally, the UCR measure of sworn police has errors that may be the product of organizational confusion.

For example, the internal documents for New York discussed above list the total number of sworn officers

in the department as well as the number of officers assigned to one of the six largest bureaus.36 For 2003,

that latter figure was 26,367, which is notably below the average daily total staffing of 36,700, but close

to the 28,614 reported to the UCR system. Alternatively, the 2003 number may have reflected ongoing

discuss the potential for measurement errors at the city level to bias estimates of the police elasticity derived from panel data.
32These data are discussed in Siskin and Griffin (1997) and were previously used in McCrary (2007).
33This does not reflect seasonality, as monthly indicators raise the R2 by only 0.0001.
34Typical steps include a written examination, a drug test, a background check, an interview, and a series of physical

and psychological tests (Police Executive Research Forum 2005, Wilson and Grammich 2009).
35The population weighted mean and standard deviation of the ratio are 97 percent and 5 percent, respectively. Numbers

refer to a pooled analysis of all available years of the LEMAS data. The LEMAS data also allow us to discount the possibility
that there is error due to different rules for accounting for full- or part-time workers, as they show that at most 2 percent
of sworn officers work part-time.

36These are patrol (71 percent of total), detective (9 percent), transit (8 percent), housing (7 percent), narcotics (4 percent),
and vice (1 percent). Numbers taken from 2009 data, but other years are similar.
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confusion over the 1995 consolidation of the New York Police Department with the police departments

of the New York City Transit Authority (April 1995) and the New York City Housing Authority (May

1995), which in 2003 together comprised approximately 5,550 officers.37

Since there is little hope of obtaining perfect data, it is reasonable to propose simple models of the measure-

ment process and ask what they might imply about the econometric quantities being measured in the literature.

The workhorse model in this context is the classical measurement error model, which we now introduce.

Suppose that in growth rates the two observed series on police (UCR and ASG) are related to true police as

Si = S∗i + ui (15)

Zi = S∗i + vi (16)

and suppose crime growth rates, Yi, are given by

Yi = θS∗i +X′iγ + εi (17)

Here, Si is the UCR measure in a given city and year, Zi is the ASG measure, S∗i is the “true” police growth

rate or signal, Xi are other covariates measured without error, ui and vi are mean zero measurement errors

that are mutually uncorrelated and uncorrelated with εi, S
∗
i , and Xi, and εi is mean zero and uncorrelated

with S∗i , Xi, ui, and vi. Equations (15) through (17) and the stochastic restrictions just named together

constitute the classical measurement error model (Fuller 1987).

A famous result from the econometric literature on measurement errors (see, for example, Wooldridge

(2002, Section 4.4.2) or Cameron and Trivedi (2005, Section 26.2.4)) relates the probability limit of the

OLS estimate of θ, based on using the covariates Xi and the proxy Si, to the scope of measurement errors

and the relationship between the signal and the included covariates, under the assumptions of the classical

measurement error model:

plimn→∞ θ̂OLS = θ
σ2∗(1−R2)

σ2∗(1−R2) + σ2u
≡ θ π (18)

where σ2∗ is the variance of the signal, σ2u is the variance of ui from equation (15), and R2 is the population

R-squared from a regression of the signal S∗i on the covariates Xi.

This formula stands for three ideas. First, since the reliability ratio, π, is positive but smaller than 1,

OLS will be correctly signed, but too small in magnitude, or attenuated. Second, while it is a staple of

37That is, the individual filling out the form in 2003 may have thought transit and housing officers were not supposed
to be included in the department total. Based on the 2003 internal document (see above), we compute a total of 3,986 officers
uniquely assigned to transit or housing, and applying a department-wide adjustment factor of 36,700/26,367 = 1.39 leads
to an estimated 5,548 transit and housing sworn officers in 2003. Adding that figure back in to the UCR figure of 28,614
yields 34,162 officers, which again is in the ballpark of the correct figure.
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empirical work to see whether a regression estimate is robust to the inclusion of various control variables,

equation (18) indicates that the cure of additional covariates may be worse than the disease of omitted

variables bias. Adding more controls increases the R2, which exacerbates any attenuation bias. This is

intuitive, since controls will explain the signal but fail to explain the measurement error. Third, since the

estimates of θ and γ will generally covary, the bias in the estimate of θ will spill over to result in bias in the

estimate of γ. This also implies that when more than one variable is measured with error, the probability

limit of OLS may no longer be of the correct sign.

Now return to equation (17) and suppose that Xi is measured without error. It is straightforward to

show that under the assumptions given, the coefficient on Si in a regression of Zi on Si and Xi is consistent

for π. The slope in panel B of Figure 2 is thus an estimate of π controlling for no covariates. The indirect

least squares interpretation of IV then shows that IV is consistent for θ, as we discuss in the next section.38

IV. Econometric Approach

The three equation model introduced in Section III.B leads naturally to a simultaneous equations model.

Substituting equation (15) into equation (17) and linearly projecting Si onto Zi and Xi yields

Yi = θSi +X′iγ + ei (19)

Si = πZi +X′iφ+ ηi (20)

where Yi is the year-over-year change in log crime in a given city and year, Si is the year-over-year difference

in observed log police, and Xi is a vector of controls such as the year-over-year change in log revenues

per capita, log population, the demographic structure of the population, as well as year effects or state-year

effects. In this model, ei = εi− θui, and ηi is a linear projection error. This is then a standard simultaneous

equations model where Zi is potentially an instrument for Si.

Estimation of the parameters in equations (19) and (20) proceeds straightforwardly by IV, and we weight

observations by 2010 city population to obtain a police elasticity estimate representative of the typical

person.39 Sufficient conditions for excluding Zi from equation (19) are

38The indirect least squares interpretation of IV is the familiar result that IV is the ratio of two OLS estimates, namely
the reduced form and first stage coefficients. An alternative to IV that is suggested in the panel data literature is to take long
differences (Griliches and Hausman 1986). This approach assumes that long differences are just as likely to be exogenous as short
differences, which is unlikely in this context. In particular, in the medium- to long-term, it is possible that cities may be able to
respond to perceptions of lawlessness by adjusing the size of the police force. The scope for this form of endogeneity is likely to
be much weaker in a short-run context, which is one rationale for the literature’s focus on the short-run police elasticity of crime.

39We are aware of the econometric critique of regression weighting (Deaton 1997, Solon, Haider and Wooldridge 2012).
See Section VI.B, below, for discussion.
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(A1) C[ui, εi] = C[vi, εi] = 0
(A2) C[ui, (S∗i ,X′i)′] = C[vi, (S∗i ,X′i)′] = 0
(A3) C[ui, vi] = 0
(A4) C[εi, (S∗i ,X′i)′] = 0

where ui and vi are the measurement errors from equations (15) and (16), εi is the structural error term

from equation (17), and C[·, ·] is covariance.40

Assumptions (A1) through (A3) assert that measurement errors in the UCR and ASG measures of police

are not associated with the structural error term in equation (17), and are not associated with the true

growth rate in police and the covariate vector Xi, and that the UCR and ASG measurement errors are

mutually uncorrelated, respectively. We discuss empirical implications of assumptions (A1) through (A3)

below. Assumption (A4) would justify running a regression of crime growth rates on police growth rates

and controls Xi, were police growth rates observed without error.41

Under the classical measurement error model, the exact same steps we used to motivate the simultaneous

equations model in equations (19) and (20) can be used to motivate a second simultaneous model with the roles

of Si and Zi reversed and identical parameters in equation (19). This result is apparently new.42 We refer to

IV models that use the ASG measure of police as an instrument for the UCR measure as forward IV estimates

and to models that use the UCR measure of police as an instrument for the ASG measure as reflected.

Since, under the classical measurement error model, both IV estimates are consistent for the police

elasticity of crime, it is possible to pool the estimates, which increases efficiency. To do so, we stack the

orthogonality conditions for the forward and reflected IV programs into the broader set of moments

gi(β) =Wi


Zi(Yi − θ1Si −X′iγ1)
Xi(Yi − θ1Si −X′iγ1)
Si(Yi − θ2Zi −X′iγ2)
Xi(Yi − θ2Zi −X′iγ2)

 (21)

where Wi is 2010 city population in levels and all other variables are as defined before, and we estimate the

parameters using generalized method of moments (GMM). When the parameters θ1 and θ2 and γ1 and γ2

are allowed to differ, estimating those same parameters by GMM is equivalent to estimating them separately

by IV and correcting the standard errors for the common dependent variable. We can also estimate the

40Assumptions (A1) through (A4) together imply that E[Ziεi] = E[Ziui] = 0, which implies that E[Ziei] = 0, where E[·]
is expectation. Assumptions (A2) and (A4) imply that E[Xiei] = 0. Of course, E[(Zi,X′i)′ei] = 0 is the exclusion restriction
justifiying the use of IV with Zi as an excluded instrument and Xi as an included instrument.

41As our aim in this paper is to recover estimates of the police elasticity of crime that correct for measurement error, we
maintain the assumption of (A4), conditional on state-year effects. However, we emphasize that (A4) is not guaranteed to
hold and particularly will not hold in the context of simultaneity bias.

42For example, it is discussed in neither the classic monograph by Fuller (1987) nor in the recent review paper by Chen,
Hong and Nekipelov (2011).
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system imposing the restriction θ1 = θ2 = θ.43 A further benefit of pooling the two IV estimates using

GMM is that the standard GMM test of overidentifying restrictions (Hansen’s J) then provides a test of

the classical measurement error model.

A challenge we face in implementing the above ideas is that population growth is an important confounder,

yet is also likely measured with error. As noted above, measurement error bias may not have the attenuation

bias form if more than one covariate is measured with error. Measurement errors in the population variable

in the UCR data are, to the best of our knowledge, not discussed in the literature, but are an important

consideration in our view. We follow an approach suggested by Lubotsky and Wittenberg (2006) and

include as controls growth rates in both the UCR and ASG population measures.44

V. Data

In this section, we introduce our sample of cities and describe the main sources of information for our data.

Our sample of 242 cities is drawn from all cities with more than 50,000 population each year from 1960-2010

and contains at least one city in 44 of the U.S. states as well as the District of Columbia.45 For each city

in our sample, we collect information from public data sources on a variety of different measures. We obtain

data on crimes and sworn police officers from the UCR. We collect additional information on sworn police

officers from the ASG and from the LEMAS data mentioned above. These data series form the core of our

analysis, but we also collect auxiliary data on city revenues, police payroll, and police operating budget from

the finance files of the ASG; city demographic structure from the Census Bureau; county-level economic data

from the Bureau of Economic Analysis and Internal Revenue Service; and proxies for social disorganization

from the Centers for Disease Control and the National Center for Educational Statistics. We now provide

more detail regarding each of these data sources. We focus our discussion on our measures of crimes, police,

and population, and provide more information regarding our auxiliary data in the online Data Appendix.

43If we additionally seek to impose the restriction that γ1 = γ2 = γ, then redundancy of moments can become an issue.
In a working paper version of this paper, we discuss how empirical likelihood (EL, Owen 2001) is a natural solution to this
problem. Estimates using EL and two-step GMM differ in at most the third decimal place, and we suppress those results
here in the interest of space.

44In the interest of simplicity, we refer to this as “controlling for population” throughout the paper. In a working paper
version of this paper, we present evidence that this procedure is sufficient to avoid bias from failure to control for city population
growth. This additional evidence is based on annual information on city and county births, which are measured with negligible
error. The other obvious approach—-instrumenting both police and population growth with the other measure of police
and population growth—results in nearly identical results.

45Alaska, Idaho, North Dakota, Vermont and Wyoming are unrepresented in our sample. Due to extensive missing data
and various data quality issues, our sample of 242 cities excludes approximately 30 cities meeting the population criterion.
In addition, there are 10 states for which our sample contains only a single city, which is relevant for understanding parameter
estimates that condition on state-year effects.
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The UCR crime data we collect are the standard measure used in the empirical literature. These data

are collected monthly by the FBI and, following the literature, are aggregated to the annual level in our

analysis. Crime measures represent the total number of offenses known to police to have occurred during

the calendar year and are part of the “Return A” collection. The offenses recorded in this system are limited

to the so-called index offenses—murder, forcible rape (“rape”), robbery, aggravated assault (“assault”),

burglary, larceny exclusive of motor vehicle theft (“larceny”), and motor vehicle theft. Time series for each

of the crime rates utilized for each of our cities are shown in Web Appendix Figure 1.

Sworn police are included in both the Law Enforcement Officers Killed or Assaulted (LEOKA) collection

and the Police Employees (PE) collection and represent a snapshot as of October 31st of the given year.

Because of the late date of the measurement of the number of police, it is typical to measure police in year t

using the measure from year t− 1 (cf., Levitt 1997), and we follow that convention here. Consequently,

although we have data on levels from 1960-2010, our regression analyses of growth rates pertain to 1962-2010.

As noted above, to assess the extent of measurement errors in personnel data we augment data from the

UCR with data from the employment files of the ASG. The ASG data provide annual employment counts for

a large number of municipal functions, including police protection. The survey generally provides information

on the number of full-time, part-time and full-time equivalent sworn and civilian employees for each function

and for each municipal government. As with the UCR system, the ASG reports a point-in-time measure of

police. For 1960-1995, the ASG reference period is the pay period including October 12, but beginning with

1997 the reference date has been March 12.46 For selected analyses we also draw upon a third measure of police,

as noted. This measure is drawn from two sources: the Law Enforcement Management and Administrative

Statistics (LEMAS) series and the Census of State and Local Law Enforcement Agencies. These data,

which we refer to simplyas the LEMAS series, have been collected at regular intervals from 1987-2008.47

The measure of city population used in the majority of crime research is from the FBI’s Return A

46No annual ASG survey was conducted in 1996. We impute data for 1996 using the average of the 1995 and 1997 levels.
Other than this one missing year and occasional missing data, information on police is available in both the UCR data and ASG
data for each of these cities for the entire study period. The UCR data provide the number of full-time sworn police officers and
the total number of police officers in each year. The ASG data provide the same information beginning in 1977. Prior to 1977,
the ASG series reports only the number of full-time equivalent (FTE) police personnel, without differentiating between sworn
officers and civilian employees. In order to extend the series, we use the UCR data to generate a city- and year-specific estimate of
the proportion of police personnel who are sworn officers. This was accomplished by regressing the proportion of police personnel
who are sworn on city and year indicators using the 1960-1977 sample and generating a predicted value for the sworn percentage
in each city-year. The ASG FTE numbers before 1977 were then multiplied by the estimated proportion. Time series plots of the
number of full-time sworn officers according to the UCR and ASG measures for each city are provided in Web Appendix Figure 2.

47Data are available for 1987, 1990, 1992, 1993, 1996, 1997, 1999, 2000, 2003, 2004, 2007, and 2008.
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file.48 While this series contains observations for nearly all city-years, it is potentially contaminated by

measurement error, particularly in the years leading up to the decennial Census. The population entries

are contemporaneous; the FBI does not retroactively correct any of the population figures. As noted, we

additionally use the annual population estimate recorded in the ASG. We further smooth both series over

time using local linear regression.49

In subsequent analyses in the paper, we report the elasticity of cost-weighted crimes with respect to police.

Likewise, in Section VIII, we use data on the cost of police and the cost of crime to derive approximate

benefit-cost ratios, both nationally and for specific cities. We pause here to describe briefly data on the cost

of crime to society, with further detail provided in the online Data Appendix. This index of cost-weighted

crimes provides a single aggregate measure of the cost of criminal victimization to society. It is constructed

as the weighted sum across crime types, where the weight assigned to a crime is an estimate of that crime’s

seriousness. Ideally, the weight used would measure the ex ante cost of crime—i.e., the dollar amount a

potential crime victim would pay to reduce their probability of victimization, relative to the change in

the probability. Unfortunately, estimates of the ex ante cost of crime are either unavailable or implausibly

large, except for the crime of murder, where we can take advantage of the rich literature on the value of a

statistical life (VSL) (Viscusi and Aldy 2003, Kniesner, Viscusi, Woock and Ziliak 2012).50 For other crimes,

ex ante measures are not available in the literature, and we instead use estimates of the ex post costs of

crime, which are typically derived from civil jury awards. The value of these civil jury awards captures

both direct costs to crime victims arising from injuries sustained during the commission of the crime, as well

as losses arising from reductions in a victim’s quality of life. The values we employ are those reported in

Cohen and Piquero (2009), currently the standard reference on this topic in the literature, in 2010 dollars.

We turn now to Table 2, which provides summary statistics for each of our two primary police measures

as well as each of the seven index offenses. We additionally report summary statistics for the aggregated

crime categories of violent and property crime, which simply add together the relevant corresponding

individual crime categories, respectively, and for the cost-weighted crime index.

48Note that historically the Census released population estimates for cities only in Census years. Even now with the advent of
the American Community Survey, estimates are not available for all years and when available are smoothed across survey years.

49The working paper version of this paper shows that smoothing these series increases the population elasticity of crime
from roughly 0.25 to roughly 1—almost surely closer to the correct parameter.

50For murder, we use a VSL of $7,000,000. This is the mean value in 2010 dollars of VSL estimates derived from sixty-four
estimates in the extant literature and is typical of the figure used by U.S. government agencies in 2010. For details on these
figures, please see the working paper version of this manuscript. As noted above, we prefer to avoid using the cost of crime
estimates from Cohen et al. (2004) because they are implausibly large. Since our primary conclusion in this paper is that
U.S. cities are underpoliced, using their costs of crime would only amplify our conclusion.
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Descriptive statistics are reported for a sample of 10,589 observations, the universe of data for which

measures of crime, police and population growth rates are nonmissing. The left-hand panel gives statistics

for levels per 100 thousand population and the right-hand panel gives statistics for growth rates.

Several features of the data are worth noting. First, a typical city employs approximately 250 police officers

per 100 thousand population, one officer for every 4 violent crimes, and one officer for every 24 property crimes.

There is considerable heterogeneity in this measure over time, with the vast majority of cities hiring additional

police personnel over the study period. However, there is even greater heterogeneity across cities, with

between city variation accounting for nearly 90 percent of the overall variation in the measure. The pattern is

somewhat different for the crime data, with a roughly equal proportion of the variation arising between and

within cities. Second, the vast majority (91 percent) of crimes are property crimes with the most serious crimes

(murder and rape) comprising less than 1 percent of all crimes reported to police. Similarly, each of the crime

aggregates is dominated by a particular crime type, with assault comprising nearly half of all violent crimes

and larceny comprising nearly sixty percent of all property crimes. This is particularly problematic since

these are the two crime categories that are generally believed to be the least comparable across jurisdictions

and time periods. The cost-weighted crime index is a more robust measure, as it gives more weight to more

costly crimes, and the three measures most accurately measured in the UCR system are murder, robbery,

and motor vehicle theft (Blumstein 2000, Tibbetts 2012). Third, and turning to the growth rates, perhaps

the most relevant feature of the data is that taking first differences of the series comes close to eliminating

time invariant cross-sectional heterogeneity in log crime and log police. For each measure of crime and

police, the within standard deviation in growth rates is essentially equal to the overall standard deviation.51

To assess the extent to which our sample of cities is representative of broader trends in crime and policing

in the country, Figure 3 displays long-run trends in crime and police for our sample of 242 cities and for

all cities from 1960 to 2010. The dotted lines in Panels A present the time series for total violent crimes

per 100 thousand persons while the solid lines present the time series for cost of violent crimes per person.52

Panel B presents the same time series evidence for property crimes while Panel C presents the time series

for total sworn officers. While the levels of crime and police are higher for our sample of large cities than

for all cities, the trends are generally similar.

51Moreover, in results not shown, the first difference of a log per capita measure exhibits essentially no cross-sectional
heterogeneity.

52This is simply the cost-weighted sum of crimes, computed for the subset of violent crimes, relative to the number of
persons and is presented in units of dollars per person.
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Focusing on the trends among our sample of cities, it is clear that regardless of whether crimes are

cost-weighted, the series show a 30 year rise in criminality from 1960 to 1990, followed by a 20 year decline

from 1990 to 2010. The magnitude of these swings is spectacular. For violent crime, costs in 2010 dollars

per person quadrupled from 1960 to 1990 and then fell by half from 1990 to 2010. For property crime,

costs in 2010 dollars per person tripled from 1960 to 1990 and then returned to just above the 1960 cost

by 2010. Notably, our sample of cities, which covers approximately one third of the U.S. population over

the 1960-2010 time period, closely parallels national trends.

Our sample of cities also closely tracks trends in policing. The 1960s is a decade of strong gains in police

strength, from roughly 160 officers per capita to just over 250 officers per capita, with some acceleration

evident after the wave of riots in the period 1965-1968, followed by a slower rate of increase during the first

half of the 1970s. During the second half of the 1970s, we see an era of retrenchment, perhaps related to

urban fiscal problems. From 1980 to 2000, sworn police generally increase, with particularly strong increases

in the 1990s. Since 2000 the numbers are roughly flat, with the exception of 2003, which is driven entirely

by the erroneous estimate for New York. While the financial crisis has led to declining police forces in

most of our cities, most of the decline occurs after 2010.

VI. Results

A. Main Results

The central results of this paper are contained in Table 3. This table presents OLS, IV, and GMM

estimates of the police elasticity of crime for the seven major index crimes and for the three crime

aggregates—violent crimes, property crimes and the cost-weighted crime index. Columns (1)-(4) correspond

to OLS models in which we regress the growth rate in crime on the growth rate in police, conditioning

on population growth and either year or state-year effects. Columns (5)-(8) correspond to IV models, and

column (9) corresponds to GMM models.53,54 In addition to OLS, IV, and GMM estimates of the police

53In Table 3, and in subsequent tables, we report Huber-Eicker-White standard errors that are robust to heteroskedasticity.
We note that the heteroskedasticity robust standard errors are similar in magnitude to robust standard errors, clustered
at the city level. We favor the robust standard errors as they are generally slightly larger in magnitude and hence conservative.

54An alternative to IV and GMM is OLS applied to the subsample excluding obvious errors. For example, out of our primary
sample of 10,589 observations, roughly 1,000 are either zero (potentially consistent with simply filling out the survey with
a copy of the numbers for last year) or are consistent with a growth rate in excess of 20 percent in absolute value (potentially
consistent with a gross error such as New York in 2003). Applying OLS to all but those observations (the “restricted sample”)
improves upon OLS applied to all the data, but is far from the IV estimate. For example, the OLS estimate for the police
elasticity of murder is -0.204 in the primary sample and -0.359 in the restricted sample. The IV estimate using the ASG
as an instrument is -0.889, or more than twice as large as the estimate from the restricted sample (all three estimates control
for two measures of population growth rates and state-year effects). If we perform the same analysis with the ASG measure
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elasticity, the bottom panel of Table 3 presents first stage coefficients.

Consistent with the scatterplots presented in Figure 2, the first stage coefficients are relatively small in

magnitude, indicating that both the UCR measure and the ASG measure contain a great deal of noise once

measured in growth rates. Referring for example, to column (5) where the ASG measure is the instrument

and the UCR measure is the endogenous regressor, we observe that conditional on population growth a

10 percent increase in the ASG measure is associated with only a 1.8 percent increase in the UCR measure.

Column (6) shows that this result is robust to the inclusion of state-year effects with the coefficient value

falling by roughly 10 percent from 0.18 to 0.16. Turning to columns (7) and (8), which present the results

from the reflected first stage regressions, we see that these coefficients are substantially larger in magnitude

than the coefficients in columns (5) and (6). These differing magnitudes are expected since the UCR

measure of police growth rates exhibits less variance than the ASG measure, and since the first stage

coefficient is the covariance between the two measures, relative to the variance of the predicting variable. As

with the forward first stage regressions, results differ only slightly when the state-year effects are added.55

The F-statistic on the excluded police measure is reported below the coefficient estimates. Since the

F-statistics we report are all above 140, standard asymptotic approximations will be highly accurate in

the context of our application. That is, weak instruments are not a concern in this context (for references

to this literature, see for example Cruz and Moreira (2005)).

We turn now to our estimated police elasticities, presented in the top panel of Table 3. Beginning in column

(1), we see that using the UCR measure of police officers, the OLS estimate of the police elasticity of crime is

largest for murder (-0.27), motor vehicle theft (-0.19) and robbery (-0.18). All three elasticities are statistically

significant at conventional significance levels. Overall, the elasticity is greater for violent crime (-0.12) than for

property crime (-0.07). Reflecting the large weight on murder, the cost-weighted crime elasticity is -0.21 indi-

cating that a 10 percent increase in police is associated with a 2 percent decline in the cost of crime to victims.

The OLS estimates in column (2) control for state-year effects rather than just year effects. The

explanatory power of the state-year effects indicates substantial unobserved heterogeneity in crime growth

rates. For most crime types, models including state-year effects have an R2 of about 0.60, which is

remarkably high for a model specified in growth rates. However, the unobserved heterogeneity in crime

growth rates appears to be largely unrelated to changes in police staffing. Comparing the OLS elasticity

as the endogenous regressor, the analogous three estimates are -0.143, -0.171, and -0.572.
55First stage results are similar when we condition additionally on a large number of local-level control variables, as in

Table 5, below.
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estimates in columns (1) and (2) reveals generally minor differences, with the possible exception of murder

and motor vehicle theft, which fall by close to one-third. Conditioning on state-year effects, the largest

elasticities are for murder (-0.20), robbery (-0.20), and motor vehicle theft (-0.13). Violent, property, and

cost-weighted crimes have elasticities of -0.12, -0.06, and -0.14, respectively.

Columns (3) and (4) report results for models in which the growth rate in crimes is regressed on the growth

rate in the ASG measure of police. The coefficients in columns (3) and (4) are all of the same sign as those in

columns (1) and (2). To the best of our knowledge, this is the first time a city-level panel data regression of

crime on the ASG measure of police has been run.56Reassuringly, the results confirm the sign of the estimates

based on the UCR data. While the estimates in columns (3) and (4) are generally smaller in magnitude, this is

expected since the ASG measure exhibits more variance than the UCR measure.57The greater variance of the

ASG measure also explains the somewhat greater precision of the ASG estimates. The OLS police elasticities

are largely similar when the full set of state-year effects are included in column (4), with the exception of

motor vehicle theft which falls by roughly half. Taken as a whole, OLS estimates of the elasticity of crime with

respect to police point to a persistent but modest relationship between changes in police and criminal activity.

We turn now to the IV estimates in columns (5)-(8). These estimates are typically five times larger in

magnitude than the OLS estimates. Referring to column (5), the largest elasticities are those for murder

(-0.80), motor vehicle theft (-0.59), robbery (-0.46) and burglary (-0.22). Violent, property, and cost-weighted

crimes have elasticities of -0.29, -0.15, and -0.61, respectively. The elasticities arising from the reflected

IV regressions reported in column (7) exhibit a similar pattern with elasticities for murder, motor vehicle

theft and robbery of -0.74, -0.51 and -0.49, respectively, and estimates for the crime aggregates are similar.

In columns (6) and (8), we present IV results that condition on state-year effects. Here we report a

violent crime elasticity that is approximately -0.35 and a property crime elasticity that is approximately

-0.17. Depending on whether the forward or reflected estimates are used, the cost-weighted crime elasticity is

between -0.61 and -0.40.58 With regard to the individual crimes, elasticities are largest for murder (between

56Marvell and Moody (1996) use the ASG police measure in regressions of the growth rate in crime on the growth rate
in police at the state level.

57Abstracting from covariates and under the classical measurement error model, the probability limit of the OLS police
elasticity based on Si is given by θV[S∗i ]/V[Si] and that based on Zi is given by θV[S∗i ]/V[Zi].

58We mentioned above that our estimates are essentially the same whether we include both population growth measures,
instrument the one with the other, or instrument the other with the one. For example, the forward IV estimate of the police
elasticity of cost-weighted crimes of -0.614 controls for both population measures. If we instead instrument the UCR measures
of both police and population with the corresponding ASG measures, we obtain an elasticity estimate of -0.613; reversing
the roles of the endogenous regressor and instrument for population yields -0.629. The reflected estimate is similarly robust
to how the two population measures are used. The estimate in Table 3 is -0.403. Instrumenting both ASG measures with
both UCR measures yields an estimate of -0.403 and reversing the roles of the population measures yields an estimate of -0.410.
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-0.57 and -0.89), robbery (between -0.52 and -0.57), motor vehicle theft (between -0.30 and -0.37) and

burglary (between -0.17 and -0.34). While the coefficient on robbery does not change appreciably when

conditioning on state-year effects, coefficients on motor vehicle theft are approximately 30 to 50 percent

smaller with the inclusion of state-year effects, indicating some correlation between police growth rates

and unobserved heterogeneity in the growth rate of motor vehicle theft.

In column (9), we present GMM estimates of the police elasticity of crime.59 These estimates efficiently

combine the information from the forward and reflected IV estimates presented in columns (6) and (8).

The two-step GMM estimates are -0.67 for murder, -0.56 for robbery, -0.34 for motor vehicle theft and

-0.23 for burglary. With regard to the crime aggregates, we report an elasticity of -0.34 for violent crimes,

-0.17 for property crimes and -0.47 for the cost-weighted crime index. These estimates represent our best

guess regarding the police elasticity.

We also calculate Hansen’s J-test of overidentifying restrictions corresponding to the GMM estimates in

column (9). This test provides a measure of the discrepancy between the two parameter estimates.60 Under

the null hypothesis of classical measurement error, the test statistic has a χ2 distribution with 1 degree

of freedom. These test statistics are suppressed in the interest of space but are generally quite small and are

uniformly below the 95 percent critical value of 3.84. This implies that the diffferences between the forward

and reflected IV estimates in columns (5) and (7) and (6) and (8) are consistent with sampling variability.

Generally speaking, Hansen’s J is an omnibus test. Some insight into what aspects of the classical

measurement error model are being tested by Hansen’s J can be obtained by examining the null hypothesis

in more detail. Abstracting from covariates and using the indirect least squares interpretation of IV, the

null hypothesis for Hansen’s J in this context is that the two IV estimators share a probability limit, or

C[Yi,Zi]

C[Si,Zi]
=

C[Yi, Si]
C[Zi, Si]

(22)

Since the denominators for the two ratios in equation (22) are the same, the ratios can only be equal if the

numerators are. Hansen’s J-test is thus a convenient way to test equality of covariances, which is implied

by the classical measurement error model since it implies that both covariances simplify to C[Yi, S∗i ].

A second characterization of Hansen’s J suggests other testing possibilities as well. Write the null

59These estimates correspond to the GMM framework in equation (21).
60In principle, the test statistic is available using several different estimators. We compute the test statistic using two-step

GMM. Because we are unwilling to assert that the variance matrix of the errors is spherical, the two-step GMM estimator
is no longer the efficient estimator in its class, which implies that the test of over-identifying restrictions is not equal to the
minimized value of the objective function. However, the proper test statistic can nonetheless be constructed; see Newey (1985)
for a discussion and the proper formula for this case.
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hypothesis for Hansen’s J as

0 =
C[Yi,Zi]

C[Si,Zi]
− C[Yi, Si]

C[Zi, Si]
=

C[Yi,Zi − Si]
C[Si,Zi]

⇐⇒ 0 =
C[Zi − Si, Yi]

V[Yi]
(23)

where the logical equivalence follows since the ratio can only be zero if the numerator is zero. This latter

characterization emphasizes that the null hypothesis for Hansen’s J-test can also be understood as the

requirement that the outcome not predict the difference in measures. This is implied by the classical

measurement error model because the difference in measures is supposed to reflect only the difference in

measurement errors, and each measurement error is supposed to be uncorrelated with the signal and the

controls (this is assumption (A2)), and with the structural error term (this is (A1)).

This is a helpful characterization because it clarifies what aspects of the classical measurement error

model can and cannot be tested using Hansen’s J-test. Hansen’s J evidently does not test the restriction

that the measurement errors themselves are uncorrelated (this is assumption (A3)). This follows from the

fact that if (A1) and (A2) hold, but (A3) does not, both IV estimators measure the incorrect quantity

of C[Yi, S∗i ]/ (V[S∗i ] +C[ui, vi]).

However, the analysis above suggests a natural method for testing (A3) that takes advantage of the

fact that for some years we possess a third measure of police from the LEMAS survey. Specifically, with

3 measures of police, we can see whether the difference between any two measures is predictable using

a third measure. Since a third measure, say Z̃i, can be written as Z̃i = S∗i + ṽi, where the same properties

are asserted to hold for ṽi as for ui and vi, Si −Zi should be unrelated to Z̃i, Si − Z̃i should be unrelated

to Zi, and Zi − Z̃i should be unrelated to Si. This method of testing (A3) is really a joint test of (A2) and

(A3), since each measure reflects both the signal and the measurement error. Access to a fourth measure

would of course make such an approach even more powerful, but that is infeasible in our application.

Tests along these lines are presented in Table 4. Each column of Table 4 pertains to regressions of

the difference between the growth rates for two police measures on a particular covariate, controlling for

population growth and state-year effects. Column (1) pertains to the difference between the growth rate

in the UCR and ASG measures for the full 1960-2010 sample. Columns (2)-(4) use only the subsample

of years for which the LEMAS measure is available, with column (2) pertaining to the UCR and ASG

series, column (3) pertaining to the UCR and LEMAS series, and column (4) pertaining to the LEMAS

and ASG series.61 Each column of Table 4 presents coefficients from a joint regression of the difference

61As noted above, the LEMAS data are available in 1987, 1990, 1992, 1993, 1996, 1997, 1999, 2000, 2003, 2004, 2007, and
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in police growth rates on the growth rate in each of the seven index crimes (Panel A), the growth rate

in the other police measure (Panel B) and the growth rate in each of our two population measures (Panel

C).62 Under the classical measurement error hypothesis, all the coefficients in the table should be zero.

Referring to Panel A, using the full sample in column (1), we find little evidence of a relationship between

the difference in police growth rates and the growth rate in crime for any of the seven index crimes. Of

the seven t-ratios, only one is above 1 in magnitude. Columns (2)-(4) provide 21 tests of this hypothesis;

none provide evidence against the restrictions of the classical measurement error model. As noted, these

tests amount to joint tests of Assumptions (A1) and (A2), because crime growth rates reflect the signal,

the covariates, and the structural error.

Panel B of Table 4 presents coefficients and standard errors from a regression of a difference in police

measures on the police measure not involved in the difference (e.g., Si−Zi being regressed on Z̃i). As noted,

these tests amount to joint tests of Assumptions (A2) and (A3). The results in this panel may contain some

slight evidence against the classical measurement error model. Specifically, 1 of the 3 tests (UCR-LEMAS)

rejects at the 1 percent level and this may be consistent with mean-reverting measurement error. On the other

hand, the other two tests in Panel B provide little evidence against the classical measurement error model at

the 5 percent level. More broadly, the magnitude of any covariance seems to be small—a 10 percent increase in

the growth rate of a given police measure is associated with only a 0.8 percent change in the measurement error.

In Panel C, we present results from a series of regressions of the growth rate in the measurement errors on

the growth rate of each of our two population measures. In all cases, we find little evidence of a systematic

relationship between measurement errors and population growth rates.

Finally, in the bottom panel of Table 4, we present p-values from a series of F-tests on the joint significance

of all of the variables in predicting the growth rate in the measurement errors. For the full sample, we fail to

reject (p-value = 0.83) that the measurement errors are unrelated to crime, police, and population. For the

LEMAS subsample, we fail to reject the null hypothesis in all three cases (p-values = 0.25, 0.17, and 0.07).

Overall, we interpret the evidence in Table 4 as furnishing little evidence against the assumptions of

the classical measurement error model. There are 39 total tests presented in Table 3; only one of these

tests rejects at the 5 percent level, and no joint test is significant at the 5 percent level.

2008, so for columns (2)-(4) we are using growth rates taken from 1987 to 1990, from 1990 to 1992, from 1992 to 1993, and so on.
62Note that the standard errors on the two population growth rates are quite large due to the high correlation between

them. Joint tests of significance are also presented and are not affected by this multicollinearity. Regressions using only
one population measure have much smaller standard errors are show similar results.
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Since these tests are not commonly used in the literature, there is a question regarding how powerful these

tests are at detecting violations of the classical measurement error model. To address this point, we conducted

a small simulation study designed to mimic the properties our sample. The study shows that the tests

utilized in Table 3 generally have good power. Details of the simulation study are provided in an Appendix.

B. Robustness

Before turning to a discussion of the results presented above, we consider several robustness checks. The

estimates in Table 3 assume the exogeneity of police conditional on population growth and state-year effects.

While state-year effects soak up important time-varying state-level variation, results will nevertheless be

inconsistent if there are time-varying city-level factors which are correlated with both police and crime

growth rates. In Table 5, we explore the extent to which the elasticities reported in Table 3 are robust

to the inclusion of a variety of city-level covariates. Unfortunately, these covariates are not available for

our entire sample period and we thus restrict attention to the 1970-2002 subsample.63

We begin in column (1) by replicating the GMM parameters estimates presented in column (9) of Table

2 for the 1970-2002 subsample of our data. These estimates condition on population growth and state-year

effects. For the 1970-2002 subsample, the violent crime elasticity is -0.22 and the property crime elasticity

is -0.18. The largest elasticities are for murder, robbery, and motor vehicle theft (-0.62, -0.59, and -0.34,

respectively). Interestingly, the coefficients on rape and assault for this time period are perversely signed.

The police elasticity of cost-weighted crimes is -0.43.

In column (2) we add a series of economic covariates that capture the growth rate in personal income

and total employment as well as revenue and employment in 4 leading industrial sectors (construction,

manufacturing, wholesale trade and retail trade). We also include city public expenditures exclusive of

police to capture the impact of other municipal programs which might impinge on crime. In column (3),

we include the lags of each of these variables to capture a potentially lagged response of crime to local

macroeconomic conditions. In column (4), we capture changes in a city’s demographic composition by

adding control variables for the population share of sixteen age-gender-race groups within each city. In

order to control flexibly for the effect of changes in a city’s composition, in column (5) we add squares

and cross-products for each of the demographic subgroups. Finally, in column (6) we add city-specific linear

time trends to capture long-standing crime trends that are independent of growth in police.

63In a working paper version of this paper, we additionally report on the relationship between police growth rates and
these city-level covariates for all available years, documenting small associations in each instance.
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Looking across the columns of Table 5, it is apparent that the estimated elasticities change very little

with the inclusion of the controls. Referring, for example, to the cost-weighted crime index, the estimated

elasticity moves from -0.43 when conditioning only on population and state-year effects to -0.41 when

economic covariates are included. Conditioning also on the lags of the economic covariates brings the

estimated elasticity up to -0.42 while controlling extensively for demographics brings the elasticity back

to -0.39. When time trends are included, the elasticity increases to -0.41, just 2.5 percent lower than the

original elasticity. A similar pattern holds for each of the other crime types with the largest change from

column (1) to column (6) occuring for murder, which falls by roughly 5 percent. The results in Table 5

thus imply a relatively minor role for the confounding of police growth rates with unobserved determinants

of crime growth rates, at least conditional on population growth rates and state-year effects.64

We conducted three final robustness checks that are worth mentioning. First we assess the sensitivity

of the estimates reported in column (9) of Table 3 to the exclusion of several theoretically-motivated groups

of cities—the two largest cities in the sample (New York and Los Angeles), cities that have merged with

their respective counties (e.g., Jacksonville, Nashville, Charlotte and Louisville), and cities which have been

recently found to have misreported data to the FBI’s Uniform Crime Reporting System (e.g., Milwaukee).

When these cities are excluded from the sample, the estimates are nearly identical to those reported in

Table 3. Second, we address the possibility of displacement—the idea that an increase in policing in one

jurisdiction might displace crime to a nearby jurisdiction—by aggregating the data to the MSA level. The

issue of displacement is potentially important because there is little social value in reshuffling criminal

activity. Estimates from the higher level of aggregation are, if anything, somewhat larger than those from

the city level analysis, suggesting displacement is an unlikely explanation for our results unless crime is

as likely to be displaced between MSAs as it is between cities.65 Third, following Solon et al. (2012), we

examine interactions of the police growth rates with population to assess whether our weighted least squares

procedure recovers the average partial effect. These results support the interpretation of our main results

as the police elasticity of crime for a typical person in our sample of cities.66

64In unreported results, we document a similar lack of confounding when state-year effects are replaced by the more
parsimonious year effects.

65The MSA results are presented in Appendix Table 2 of the working paper version of this paper.
66As noted by Solon et al. (2012), weighted least squares will not necessarily estimate the average partial effect in the

presence of unmodeled heterogeneous effects. They suggest an alternate procedure whereby population is interacted with
the main effect of interest. We re-estimated the population-weighted OLS estimates in Table 3 using this formulation,
centering population around the population of the city in which a typical individual lives in our sample, which we write
as w, and including the population weight as an additional regressor. Under a linear approximation to the heterogeneity,
i.e., θ(Wi) = θ(w) + (Wi −w)θ′(w), where the prime indicates differentiation, the coefficient on the growth rate in police
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VII. Discussion

The estimates reported in the previous section of this paper can be thought of as police elasticities that

are robust to errors in the measurement of police. Our preferred estimates are the GMM estimates from

column (9) of Table 3. In this section, we compare our reported elasticities to those in the prior literature.

Table 6 presents selected police elasticities from eight recent papers utilizing U.S. data.67 Each of these

papers explicitly seeks to correct for simultaneity bias, for which our estimates do not adjust. The dominant

methodologies are quasi-experimental, but two papers focus on regression strategies with high quality control

variables (Marvell and Moody 1996, Corman and Mocan 2005). None of these papers discuss the possibility

of measurement errors in police. However, IV and difference-in-difference strategies will correct for both

simultaneity bias and measurement error bias under the classical measurement error hypothesis. The two

papers using regression strategies may nonetheless suffer from measurement error bias.68

An examination of the estimates in these papers reveals four evident tendencies. First, the estimates

are generally negative. Some of the estimates are zero—Levitt (1997) for property crime and Klick and

Tabarrok (2005) for violent crime—but almost none are positive.

Second, the estimates from the quasi-experimental U.S. literature tend to be similar to, or perhaps slightly

larger in magnitude than, our own estimates. It is difficult to know how to interpret this pattern. For

example, there is a good deal of sampling variability associated with each estimate, indicating that not

too much stock should be placed in any differences. Bracketing the issue of sampling variability, however,

one obvious interpretation for the discrepancy is that the papers cited in Table 6 correct for simultaneity

bias, whereas our estimates do not. On the other hand, the samples involve quite different time periods.

For example, when we restrict our analysis to the years analyzed by the very careful study by Evans and

Owens (2007), namely 1990 to 2001, our estimated elasticities are -0.83 and -0.31, for violent and property

crimes, respectively. These are extremely close in magnitude to those reported by Evans and Owens (-0.99

for violent crimes and -0.26 for property crimes), suggesting that perhaps the discrepancies between studies

have somewhat less to do with method and somewhat more to do with the cities and years being studied.

represents the average partial effect. The estimates we obtain are similar to those reported in Table 3. For example, we
obtain OLS estimates (standard errors) for the UCR and ASG measure of of -0.123 (0.042) and -0.092 (0.037) for violent
crime and -0.049 (0.030) and -0.030 (0.026) for property crime, respectively. The degree of similarity between these results
and those in columns (2) and (4) of Table 2 provide little evidence in favor of important unmodeled heterogeneity.

67We note that our focus on U.S. data here excludes several interesting and well-executed papers utilizing data from other coun-
tries, including Di Tella and Schargrodsky (2004), Draca et al. (2011), Machin and Marie (2011), and Vollaard and Hamed (2012).

68On the other hand, Corman and Mocan (2005) use administrative data on the number of police which are presumably
free from measurement error.
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Third, there is considerable variability in the prior literature with regard to whether police have a

larger protective effect on violent crimes than on property crimes. In particular, two recent papers

find violent crime elasticities that are larger than property crime elasticities (Levitt 1997, Evans and

Owens 2007); two find violent and property crime elasticities that are roughly equal (Levitt 2002, Corman

and Mocan 2005); and two find property crime elasticities that are larger than violent crime elasticities

(Klick and Tabarrok 2005, Lin 2009).69 Our estimates are closest to those of Evans and Owens.

Fourth, the estimated elasticities tend to be quite imprecise, with estimated standard errors ranging from

0.2 to 0.7 for violent crimes and 0.2 to 0.9 for property crimes. As a result, it is often the case that even

large elasticities (on the order of 1) cannot be rejected as being different from zero. Similarly, the cross-crime

pattern of the elasticities is difficult to discern. For example, one of the more precise studies is that of

Evans and Owens (2007). In that study, the magnitude of the estimated elasticities and standard errors

suggest that it would be difficult to reject tests of the equality of various crime-specific elasticities. As a

result, though the general pattern of the elasticities is suggestive, it is difficult to draw inferences about even

the most basic policy questions such as the relative effectiveness of police in reducing violent versus property

crimes. The elasticities we report in this research are estimated with considerably greater precision, with

standard errors that are between one-quarter and one-half the size of those reported by Evans and Owens

(2007) and up to an order of magnitude smaller than those reported in other papers. The result is that

we are able to generate considerably stronger inferences regarding the cross-crime pattern of the elasticities.

In Table 7, we formalize this idea and test the equality of all pairs of individual crime elasticities. The table

reports p-values from each of these tests, operationalized by stacking up crime categories into a broader GMM

system. For a given row, a given column reports the p-value associated with a test of the equality of the coeffi-

cient for the crime category on the row and the coefficient for the crime category on the column. The pattern

of the resulting p-values suggests that we can be confident that police reduce murder to a greater extent than

assault and larceny and perhaps burglary. Likewise, the effect of police on robbery is greater than it is for as-

sault, burglary and larceny, and the effect of police on motor vehicle theft is greater than the effect of police on

larceny. Referring to the aggregates, the elasticities for murder and robbery are greater than the property crime

elasticity. We can also reject, at the 10 percent level, the equality of the violent and property crime elasticities.

The cross-crime pattern of the police elasticity estimates could reflect non-classical measurement error,

69We note that Corman and Mocan (2005) employ monthly data on New York, whereas the other papers in the table
employ annual data on multiple cities. This may imply that the estimand from the Corman and Mocan study differs from
that of other studies.
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relative deterrence effects, or relative incapacitation effects. The variety of non-classical measurement error

that could lead to the cross-crime patterns we observe is simple: if reporting to police is increasing in police,

then measured crimes could be increasing in police, even if crimes overall are decreasing in police.70 In

a particularly well-known recent episode, the Sacramento police department responded to deep budget

cuts by announcing they would no longer respond to “burglary, misdemeanors, or minor traffic accidents”

and would only conduct follow-up investigations for murder and sexual assault (Goode 2012). Similar policy

changes have been reported for Camden (Goldstein 2011), Chicago (Spielman 2013), Oakland (Preuitt

and Sanchez 2010), and Stockton (DuHain 2012). Such policies seem likely to result in a reduced reporting

rate. If reporting is affected by changes in police staffing, this should amplify our central policy conclusion.

We show below that the police elasticity of reported crime is negative and large enough in magnitude to

suggest underpolicing. Correcting for reporting bias would lead to police elasticities that are more negative

than those we document and strengthen this conclusion.

The cross-crime pattern of police elasticities may also reflect differences in deterrence and incapacitation

effects across crimes. The deterrence effect of police is that some crimes will not occur, because a person

notes the increase in police presence and thereby is deterred from committing the offense. The incapacitation

effect of police is that some crimes will not occur because additional police will result in arrests, pre-trial

detention, and jail or prison time for the convicted (McCrary 2009). It is clear that deterrence effects could

differ across crime types. To see why incapacitation effects could lead to differences across crimes in elasticity

estimates, note that in an efficient criminal justice system the most serious recidivists are those most likely

to be placed in pre-trial detention and are most likely to be incarcerated if convicted. To the extent that

police focus on the population of serious recidivists, we might indeed expect strong cross-crime differences.

Whether our estimates are similar to or different from those in the preceding literature is important

for getting the magnitude of police elasticities right, but is also interesting because it speaks to the broader

issue of whether simple regression techniques are compromised by simultaneity bias. If our estimates

are deemed to be similar to those reported in prior research, then our research implies a smaller role for

simultaneity than has been suggested by prior studies. If simultaneity bias is a lingering issue, our approach

underestimates the magnitude of the policing elasticity (Nagin 1978, Nagin 1998, Levitt and Miles 2007).

70Levitt (1998a) finds little evidence for this effect in U.S. data, but Vollaard and Hamed (2012) do in British data.
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VIII. Social Welfare Analysis

A. Simple Estimates of the BCR

The results presented in Table 3 represent our best estimate of the elasticity of each type of crime with

respect to police. These elasticities allow us to predict the change in reported crimes expected to arise from a

given percent increase in the size of a city’s police force. However, in allocating scarce resources among a large

number of critical public services a potentially more relevant parameter is the ratio of the benefits to the costs

of hiring additional police personnel. Likewise, the benefit-cost ratio provides intuition regarding whether

U.S. cities are optimally policed. In Section II, we established that even with heterogeneous individuals

making precautionary investments with externalities where policing crowds out private precautions, it is

possible to make strong statements about welfare using the reduced form police elasticity of crime. In

particular, the rule-of-thumb outlined in Section II is that hiring police improves welfare when

|θ|
/wS
nC
≡ κ > 1 (24)

In this section, we use the GMM approach used to estimate the elasticity of crime with respect to police to

estimate the ratio of the benefits (as proxied by averted costs to potential victims) to the costs of police.

Using a VSL of $7 million as the cost of a murder, we estimate a police elasticity of the cost of crime

of -0.47±0.34. This elasticity estimate is based on a model including state-by-year effects and controls

for population (Table 3, column (9)). The cost-weighted elasticity is powerfully affected by the assumed

cost of murder. For example, varying the VSL from $1 to $28 million, our GMM estimate of the police

elasticity of the cost of crime ranges from -0.32±0.18 to -0.55±0.52.

Scaling the cost-weighted elasticity by the ratio of the expected cost of crime to the cost of police

produces an estimate of the 2010 social dollars saved from increasing spending on police by one dollar,

or the benefit-cost ratio (BCR). As with the cost-weighted elasticity, the BCR is sensitive to the monetized

value of an averted murder.71 Figure 4 demonstrates this visually, plotting the BCR on the vertical axis

as a function of possible VSL values on the horizontal axis. The BCR ranges from approximately 0.4 at

a VSL of $1 million to approximately 6.0 at a VSL of $28 million.

To give some sense of what is a reasonable value for the VSL, we superimpose a kernel density estimate of the

density of 64 VSL estimates drawn from the recent literature or currently in use by the federal government.72

71In the literature, it is not uncommon for the results of a benefit-cost analysis of a given policy to depend on the researcher’s
choice between two reasonable alternative values of the cost of a murder.

72See the working paper version of this manuscript for greater detail.
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While the estimates vary considerably, approximately 80 percent of the data lies below $10 million which is

associated with an approximate BCR of 2. At $7 million, the mean value of the VSL, the resulting BCR is

1.63, indicating that, in a typical U.S. city, an additional dollar allocated towards policing would save $1.63

in costs to crime victims. This would be consistent with classical notions of the underprovision of public

goods. On the other hand, as noted there is substantial ambiguity regarding VSL estimates. The estimated

VSL from Ashenfelter and Greenstone (2004) implies a BCR of roughly $0.80, indicating overpolicing.73

B. Police Incapacitation Effects

The estimates in the preceeding sub-sections are valid under the assumption that either (i) the decline in

crime resulting from increased police is entirely due to deterrence or that (ii) the cost of incarcerating offenders

is fixed in the short run so that the downstream cost of incapacitating offenders need not be counted as a cost

of increased police personnel. Here, we re-frame the analysis, treating the expected short-term increase in in-

carceration resulting frommore police as an additional cost of hiring a new officer. Because we are interested in

the short-run costs and benefits of new police hiring, we count only the costs of incarceration that are borne in

the first year. We note that the long run effect on incarceration would be smaller than the effect in the first year,

as the prison population would be smaller due to the lower prevalence of crime (McCrary 2009, equation (34)).

We begin with an estimate of the number of arrests per officer. Using our sample of 242 cities, an officer

in the typical city made 19.45 arrests in 2010.74 Next, we employ an estimate of the conditional probability

of a conviction given an arrest. In 2006, the most recent year available for convictions, there were 14,380,370

arrests made by police officers in the United States while there were 1,132,290 convictions in state courts

and another 81,934 convictions in federal courts.75 Dividing convictions by arrests yields an estimated

conditional probability of a conviction of 8.4 percent. This implies about 1.64 convictions per police officers.

Of defendants sentenced in state courts, 40 percent were sentenced to state prison (with a mean sentence

length of 4.92 years) 28 percent were sentenced to a term in local jail (with a mean sentence of 0.5 years) and

the remaining 32 percent were sentenced to a term of probation or an alternate penalty that did not involve

incarceration. This implies an expected sentence length given conviction of 2.11 years. Using the National

73We note that estimates pertaining to individuals’ labor market behavior tend to yield larger VSL values (on average,
$9.5 million), while estimates from non-labor market behaviors tend to yield much smaller VSL values (on average, $4 million).

74The working assumption here is that a new officer’s productivity, and the lost productivity associated with laying off
an officer, can be approximated using the productivity of an average officer. We obtain 18.7 (20.2) arrests using the UCR
(ASG) officer count, which we average to obtain 19.45.

75The national arrest figure is from FBI (2006), and the conviction and court processing figures here and in the remainder
of this passage are from BJS (2009).
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Corrections Reporting Program data for 2006, we estimate that for the seven index offenses, individuals serve

47.5 percent of their nominal sentence, for an effective sentence per conviction of 0.98 years.76 Thus, a typical

officer is associated with 19.45 arrests, 1.64 convictions, and 0.98 incarceration-years.77 At an incarceration

cost of $33,089 per year, each new officer is thus associated with $32,344 in additional incarceration costs.78

Augmenting the salary figure with this estimate yields a benefit-cost estimate of $1.31 using the $7 million

estimate of the value of a statistical life.

IX. Conclusion

Federal and state governments routinely decide whether to make safety investments (e.g., guardrails

or rumble strips on highways) with the intent of reducing fatalities. In deciding which investments to make,

agencies justify investments by appealing to reduced fatality risk and quantify the tradeoff between dollars

and risk by, for example, being willing to pay $7,000 per capita for a reduction of 1/1,000 in the fatality risk

and $70,000 per capita for a reduction of 1/100 in the fatality risk. This is fundamentally the same as the

decision a city confronts in determining how much to invest in police and suggests, as we have argued, that

the appropriate figure for the elimination of a single murder is $7 million, which is vastly more than that

of even the most expensive property crime, motor vehicle theft. Even factoring in the greater prevalence

of motor vehicle theft relative to murder, the expected cost of murder in 2010 was 27 times that of motor

vehicle theft. As a consequence of these stark discrepancies in costs, the optimal number of police depends

critically on how effective they are at reducing murder.

However, the recent crime literature has focused more on establishing that police reduce crime generally,

rather than the extent to which police reduce violent crimes, or specific crimes such as murder. While these

papers exhibit extraordinary creativity in grapping with the simultaneity bias problem, there nonetheless

remains substantial ambiguity about the effect of police on the most costly crimes. As noted above, some

studies find larger effects for violent crime than for property crime, some studies find the opposite, and

some studies find similar sized effects for violent and property crimes.

In addition to the differing conclusions of different studies, there is ambiguity regarding the findings of

each individual quasi-experimental study due to simple parameter uncertainty, and this is particularly true

76See http://www.bjs.gov/index.cfm?ty=pbdetail&iid=2045, particularly Table 0610.
77Note that we ignore the possible role of pre-trial detention, since time served is typically taken off of any sentence received.
78This figure is based on the ratio of state corrections expenditures in 2007 to the number of prisoners, adjusted to 2010

dollars. See http://www.bjs.gov/index.cfm?ty=pbdetail&iid=4332.
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for murder. Almost none of the papers in the prior literature documents an effect of police on murder that is

distinguishable statistically from no effect at all. However, several contain suggestive evidence that police may

have quite large effects on violent crimes and on murder in particular. The imprecision of the findings in this

literature arises due to two basic factors. First, by design and as is widely appreciated, quasi-experimental

approaches ignore most of the variation in police growth rates. Second, and compounding this challenge,

the most costly crimes are also quite rare, and rare events are difficult to model econometrically.79

We have argued that the central empirical challenge for the literature is not simultaneity bias, as has

been supposed in the recent literature, but instead measurement error bias. This claim has two components.

First, as we show empirically, police elasticities of crime are affected in minor ways by including the controls

routinely cited in the quasi-experimental literature as sources of potential bias: demographic factors, the

local economy, city budgets, social disorganization, and any possible state-level policy changes that have the

same effect across cities within the state. While a fully optimizing city would hire police in anticipation of

crime waves, cities operate under a large number of informational, institutional, and labor market constraints

that prevent these types of adjustments from taking place in the short run.80

The second component to this claim is that there is in fact a high degree of measurement error in the basic

data set on police used in the U.S., the Uniform Crime Reports (UCR). Using a second measure of police

from the Annual Survey of Government (ASG) in conjunction with the classical measurement error model, we

estimate that measurement errors have attenuated prior panel data estimates of the police elasticity of crime

by a factor of four or five. Measurement error bias is thus an alternative explanation to simultaneity bias

for the small police elasticity magnitudes that motivated the quasi-experimental literature in the first place.

Combining the information in the UCR and the ASG, we present a series of measurement error corrected

estimates of the police elasticity of crime. While the ASG data have similar coverage to the UCR data,

they have not been used in panel data regressions on city crime and police rates prior to this work. Our

preferred estimates point to powerful effects of police on crime, including violent crime categories such

as murder. These estimated effects maintain the hypotheses of the classical measurement error model.

79To appreciate the difficulty, consider that the literature generally analyzes city crime and policing rates in growth rates
rather than levels or logs to eliminate time invariant differences across cities. In a typical murder regression, the standard
deviation of residualized growth rates in murder is roughly 8 times that of police, whereas in a standard Mincer regression
in 2010, the standard deviation of residualized log earnings is about 1.2 times that of residualized education. This implies
that to obtain the same level of precision as in a Mincer regression, a crime regression for murder would require roughly
6.7 times as much data—when in fact nearly every crime data set has fewer than 20 thousand observations, i.e., far fewer
observations than are available for a standard Mincer regression.

80The working paper version of this manuscript provides some detail regarding these constraints.

35



In a methodological contribution, we show how the fundamental symmetry of the classical measurement

error model implies that there are two consistent estimators for the parameter of interest, rather than

one, indicating a role for a more efficient generalized method of moments (GMM) procedure. The GMM

framework then also suggests a series of specification tests which, as we demonstrate, have good power

to reject violations of the classical measurement error model. We find little evidence against the classical

measurement error model in these data, ratifying the validity of these methods.

Applying cost-benefit analysis to our estimated police elasticities of crime suggests that U.S. cities were

underpoliced as of 2010, with an estimated return of $1.63 to every dollar invested in policing. The conclusion

that U.S. cities are underpoliced holds in a broad range of circumstances and indeed is valid unless (1) public

policing crowds out private investments in precaution, (2) private precautions have positive externalities on av-

erage, and (3) the externality effect is fully 39 percent as big as the direct effect of police. If instead private pre-

cautions have beggar-thy-neighbor effects on average, the return to a dollar invested in policing exceeds $1.63.

Several considerations suggest that this estimate of the social return to investing in police is, in fact,

conservative. The cost of crime that we have used in quantifying the return to investing in police is limited

to what a victim would be willing to pay to obtain a reduced probability of victimization for murder, rape,

robbery, assault, burglary, larceny, and motor vehicle theft. While these are the only police outputs that are

reliably estimated for our sample of cities over the sample period, these are not the only crimes police are

tasked with preventing and solving. Presumably police activities in these other arenas (e.g., domestic violence

or driving under the influence) are also socially beneficial. Moreover, crime has an extraordinary ripple effect

on economic life, leading to population decline locally (Cullen and Levitt 1999) and to expensive population

and economic reorganization within space (Rosenthal and Ross 2010) as individuals relocate activities to keep

safe. These considerations underscore the primary conclusion of this paper that U.S. cities are underpoliced.

This conclusion is particularly compelling in the wake of the financial crisis, as U.S. cities grapple with

increasingly tight budgets. From 2008 to 2011, nearly three quarters of our sample of 242 cities saw a

shrinking number of officers per capita. Half saw reductions of 5 percent or more, a third saw reductions of

10 percent or more, and a tenth saw reductions of 20 percent or more. Our analysis suggests that while these

staffing reductions certainly save money in a budgetary sense, they are more costly than they might seem.
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Appendix: Power of Tests

In this Appendix, we report on the results of a small simulation study designed to approximate the power
of the tests presented in Table 4. We generate simulated data (Yi, Si,Zi, Z̃i) as

Yi = θS∗i + εi (A.1)

Si = λ1S
∗
i + ui (A.2)

Zi = λ2S
∗
i + vi (A.3)

Z̃i = S∗i + ṽi (A.4)

where the vector (S∗i , εi, ui, vi, ṽi) is distributed jointly normal with zero mean and standard deviations
calibrated to match key features of our data.81 In the simulations, we allow 4 parameters of the data
generating process (DGP) to vary: ρ1, λ1, λ2, and ρ3, where ρ1 is the (constant) correlation between ui
and εi, between vi and εi, and between ṽi and εi, and where ρ3 is the (constant) correlation between ui
and vi, between ui and ṽi, and between vi and ṽi. These 4 parameters control the covariances among the
elements of the vector (S∗i , εi, ui, vi, ṽi).
Note that when ρ1 = ρ3 = 0 and λ1 = λ2 = 1, the DGP is consistent with the classical measurement

error hypothesis. The parameter ρ1 indexes the extent to which Assumption (A1) is violated; λ1 and λ2
index the extent to which Assumption (A2) is violated; and ρ3 indexes the extent to which Assumption
(A3) is violated.82 We maintain Assumption (A4) throughout. For each of 10,000 simulated data sets, we
construct the tests performed in Table 4 and record whether the null hypothesis was rejected.83 This allows
us to examine the power of these tests against specific alternatives.
The results of this analysis are shown in Appendix Figure 1, which contains four panels. Each panel

shows the impact of a departure from the classical measurement error model on the rejection rate for two
tests (“Test A” and “Test B”). Test A is a t-ratio test in a bivariate regression of either Si −Zi, Si − Z̃i,
or Zi − Z̃i on an outcome Yi (i.e., a test of the type discussed in Table 4, Panel A), and Test B is a t-ratio
test where the covariate is not Yi but a third measure of police (i.e., a test of the type discussed in Table
4, Panel B). The four panels in the figure vary ρ1, λ1 and λ2, and ρ3, relative to the baseline of the classical
measurement error model. The curves displayed are power curves corresponding to the tests which have
power against the alternative being displayed. For reference, each panel also shows the average of the
simulated GMM estimates. The true parameter in all scenarios is -0.5.
The figure shows that these tests have generally good power. For example, turning to Panel A, if the

correlation between a measurement error and the structural error is 0.05, the rejection probability for Test A
is roughly 30 percent. This is important, because even a small degree of correlation between a measurement
error and the structural error leads to bias. The power of Tests A is very good for column 1, where we have
our full sample size, but it is notably lower for columns 2 through 4. Our sense is that the measurement
errors are unlikely to be correlated with the structural error, because we did not observe any rejections
in any of the 28 tests in Panel A of Table 4, even those in column 1 where this test has quite good power.

Turning to the results in Panels B and C, we see that mean-reverting measurement error is quite likely
to be detected as λ1 or λ2 depart from 1. Importantly, both Test A and Test B may detect mean-reverting
measurement error. The curve labeled “A-any” is the power of a test which rejects at the 5 percent level if

81We set σ∗ = 0.044, σε = 0.260, σu = 0.047, and σv = 0.070, and σṽ = 0.055. These values roughly match the root mean
square error from IV models for the cost-weighted sum of crimes, the first stage coefficients for the state-year effects, and
the standard deviation of the various police measures after demeaning by state-year.

82Throughout, we maintain zero correlation between (ui, vi, ṽi) and S
∗
i . The parameters λj control the extent to which

a composite error such as ui + (λ1 − 1)S∗i is correlated with S∗i , where Si ≡ S∗i + ui + (λ1 − 1)S∗i and analogously for Zi
and Z̃i. This is the standard form in the literature for discussing violations of (A2) (see, for example, Kim and Solon 2005).

83To match our tests from Table 4, tests corresponding to column 1 are based on simulated data sets of size n = 10,589
and tests corresponding to columns 2 through 4 are based on n = 1,752.
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and only if one or more of the four Tests A reject at the 0.05/4 = 0.0125 level. For a single crime outcome,
this test has power approaching 20 percent for λ1 or λ2 equal to 0.7. We suspect that mean-reverting
measurement errors in our data would thus be detected more decisively, either by rejections in columns
2, 3, and 4 of Table 4, or by at least threshold rejections for one or more crime categories.

Finally, in Panel D, we examine the power of Test B against alternatives rooted in correlated measurement
errors. It is conceivable that the same core (mismeasured) information informs both the ASG and UCR
measures of police. We suspect this happens rarely, as the UCR forms are filled out by employees of the
police department and signed by the police chief, whereas the ASG forms are filled out by the mayor’s office
or city manager’s office. However, it is of course true that the mayor could contact the police department
for the information, in which case any measurement errors would be positively correlated. Nonetheless,
Test B has power to detect correlated measurement errors. We note that to the extent the measurement
errors in police are positively associated, we would understate the true effect of police on crime (cf., the
expectation of the GMM estimates presented in Panel D).
Of course, as with any specification test, there will be a lack of power in specific directions. We have

examined the power to detect local departures from the classical measurement error model, but one could
instead imagine joint departures, and our tests will have little power against some of these joint alternatives.
For example, if (A2) is violated, but the λj parameters differ from 1 by the exact same amount, then
the rejection rate for both Test A and Test B will be 5 percent. Similarly, if (A1) is violated, but the
measurement errors have the exact same covariance with the structural error, then the rejection rate for
Test A will be 5 percent regardless of how large is the covariance with the structural error. This underscores
the importance of validation studies in this area.
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Figure 1. Private Precaution Reaction Functions:
Two Person Case, Low and High Public Policing

 Reaction Function for Person 1

 Reaction Function for Person 2X
 *

2
,L

O
X

 *
2

,H
I

 P
ri
v
a
te

 P
re

c
a
u
ti
o
n
 f
o
r 

P
e
rs

o
n
 2

X
 *

1,LOX
 *

1,HI

 Private Precaution for Person 1

 Low Policing Equilibrium

 High Policing Equilibrium



Figure 2. Two Leading Measures of Sworn Officers:
the Uniform Crime Reports and the Annual Survey of Government
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Note: Panel A plots the relationship between the UCR and ASG measures

of police in logs. Panel B plots the relationship in log differences (“growth

rates”). For ease of visual comparison, in Panel B, we have focused on data

points for which the growth rates are smaller than 50 percent in magnitude.

The vast majority (99.9 percent) of the data are in this space. The regression

slope (0.22) is drawn through the entirety of the data. See text and online

Data Appendix for details.



Figure 3. Aggregate Trends in Violent and Property Crime and Police:
Evidence from the Uniform Crime Reports
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Note: In panels A and B, data on crimes nationally are taken from

http://www.ucrdatatool.gov. In panel C, no such data are available, and we

construct an index using all municipalities ever reporting to the UCR system 1960-2010

and imputation. In all panels, “big cities” refer to the sample of 242 cities analyzed

in the paper. See text and online Data Appendix for details.



Figure 4. Cost-Benefit Analysis
Benefit-Cost Ratio as a Function of the Value of a Statistical Life
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Note: The table plots the value of the benefit-cost ratio calculated using the two-step

GMM procedure that pools the “forward” and “reflected” IV regressions of the growth

rate in each of nine crime rates on the first lag of the growth rate in the number

of sworn police officers, conditional on both the UCR and the ASG measure of the

growth rate in the population size and a vector of unrestricted state-by-year dummies.

For each measure of police, expenditures on personnel are estimated by multiplying

the number of personnel by $130,000, an estimate of the “fully-loaded” annual salary

of a police officer. Victimization costs for rape, robbery, assault, burglary, larceny

and motor vehicle theft are drawn from Cohen and Piquero (2009). As there is a

great deal of variation in extant estimates of the value of a statistical life, the cost of

murder is allowed to vary. Using the solid black line, we plot the benefit-cost ratio on

the vertical axis as a function of the value of a statistical life, plotted on the horizontal

axis in millions of dollars. The horizontal line corresponds to a benefit-cost ratio of

1. In addition, we superimpose a kernel density function that plots the distribution

of the extant estimates of the value of a statistical life. Key estimates include the

$2.1 million VSL estimated by Ashenfelter and Greenstone (2004) (“a”), $3.4, the

mean VSL among studies of non-labor market behavior (“b”), $7 million, the mean

VSL among all studies in the literature (“c”), $7.7 million, the mean VSL used by

various federal agencies for the 2004-2010 period (“d”) and $9.5 million, the mean

VSL among studies of U.S. labor market behavior (“e”). The dotted lines show the

BCR ($1.63) at the mean value of a statistical life ($7 million). The majority of these

estimates are drawn from Viscusi and Aldy (2003). We supplement these estimates

with several that are drawn from the more recent literaure.



Table 1. Costs of Police and Crime

Officers
Cost per 100K Annual Cost

per Officer Population per Capita

Sworn police $130,000 262.7 $341

Crimes Annual
Cost per 100K Expected Cost

per Crime Population per Capita

Murder $7,000,000 9.9 $693

Rape $142,020 30.9 $44

Robbery $12,624 286.4 $36

Assault $38,924 418.9 $163

Burglary $2,104 976.2 $21

Larceny $473 2,623.3 $12

Motor vehicle $5,786 454.3 $26
theft

Grand Total: $995
Income per capita: $26,267

Note: Numbers pertain to a sample of 242 large U.S. cities in 2010, which have a collective

population of 73,820,297. Data on crimes from the Uniform Crime Reports. Data on income

per capita are taken from the American Communities Survey five-year estimates (2007-2011).

Data on costs of police and crime taken from the literature. See text for details.



Table 2. Summary Statistics on Police and Crime

Levels Log Differences

Variable Mean S.D. Min. Max. Mean S.D. Min. Max.

Sworn police, UCR O 245.5 111.6 54.4 786.6 0.016 0.058 -1.359 1.148
(per 100K pop) B 105.7 0.012

W 36.0 0.056

Sworn police, ASG O 257.7 128.0 50.1 779.8 0.016 0.078 -1.401 1.288
(per 100K pop) B 120.4 0.012

W 42.4 0.078

Violent crimes O 972.7 630.5 8.2 4189.0 0.035 0.162 -1.804 1.467
(per 100K pop) B 440.3 0.019

W 451.4 0.161

Murder O 14.6 10.6 0.0 110.9 0.014 0.382 -2.792 2.446
(per 100K pop) B 8.4 0.021

W 6.5 0.382

Rape O 49.0 29.6 0.0 310.5 0.035 0.291 -4.384 4.199
(per 100K pop) B 17.4 0.028

W 23.9 0.289

Robbery O 438.0 344.5 1.1 2,358.0 0.035 0.202 -1.792 1.946
(per 100K pop) B 257.5 0.019

W 228.9 0.201

Assault O 471.1 329.5 1.2 2,761.4 0.037 0.213 -2.833 3.129
(per 100K pop) B 209.5 0.024

W 254.4 0.212

Property crimes O 6,223.4 2,355.0 667.3 18,345.2 0.015 0.113 -1.304 1.248
(per 100K pop) B 1,366.2 0.014

W 1,918.2 0.112

Burglary O 1,671.9 810.9 143.0 6,713.5 0.010 0.149 -1.549 1.411
(per 100K pop) B 433.8 0.018

W 685.1 0.148

Larceny O 3,655.4 1,500.2 84.2 11,590.7 0.017 0.122 -1.435 2.146
(per 100K pop) B 982.6 0.015

W 1,133.7 0.121

Motor vehicle O 896.0 574.5 42.5 5,294.7 0.014 0.169 -1.516 1.447
theft B 428.6 0.016
(per 100K pop) W 435.3 0.169

Cost-Weighted O 1,433.9 904.9 15.36 8,909.2 0.019 0.271 -2.363 3.033
Crimes B 699.6 0.018
($ per capita) W 573.9 0.270

Note: This table reports descriptive statistics for the two measures of sworn police officers used throughout the article as

well as for each of the seven crime categories and three crime aggregates. For each variable, we report the overall mean, the

standard deviation decomposed into overall (“O”), between (“B”), and within (“W”) variation, as well as the minimum and

maximum values. Summary statistics are reported both in levels per 100,000 population and in growth rates. All statistics

are weighted by 2010 city population. The sample size for all variables is N=10,589.



Table 3. Estimates of the Effect of Police on Crime

Least Squares 2SLS GMM
Estimates Estimates Estimates

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Forward Models Reflected Models Pooled
UCR Measure ASG Measure UCR Measure ASG Measure Models

Violent crimes -0.117 -0.120 -0.053 -0.058 -0.289 -0.361 -0.321 -0.336 -0.344
(0.037) (0.040) (0.024) (0.023) (0.128) (0.143) (0.100) (0.106) (0.096)

Murder -0.270 -0.204 -0.148 -0.143 -0.804 -0.889 -0.742 -0.572 -0.666
(0.071) (0.097) (0.047) (0.059) (0.260) (0.364) (0.198) (0.262) (0.238)

Rape -0.066 -0.074 -0.038 -0.054 -0.208 -0.339 -0.181 -0.208 -0.255
(0.069) (0.092) (0.043) (0.050) (0.234) (0.301) (0.188) (0.248) (0.219)

Robbery -0.180 -0.204 -0.085 -0.084 -0.459 -0.521 -0.493 -0.572 -0.559
(0.048) (0.047) (0.032) (0.029) (0.176) (0.177) (0.128) (0.125) (0.117)

Assault -0.052 -0.037 -0.010 -0.013 -0.052 -0.079 -0.143 -0.104 -0.099
(0.044) (0.050) (0.030) (0.035) (0.164) (0.209) (0.120) (0.136) (0.127)

Property crimes -0.071 -0.059 -0.028 -0.030 -0.152 -0.189 -0.195 -0.167 -0.174
(0.028) (0.026) (0.020) (0.015) (0.109) (0.090) (0.077) (0.068) (0.062)

Burglary -0.061 -0.062 -0.041 -0.054 -0.222 -0.339 -0.166 -0.174 -0.225
(0.043) (0.037) (0.027) (0.021) (0.144) (0.128) (0.118) (0.098) (0.089)

Larceny -0.038 -0.025 -0.002 -0.018 -0.012 -0.113 -0.103 -0.070 -0.083
(0.031) (0.027) (0.021) (0.017) (0.115) (0.103) (0.085) (0.074) (0.067)

Motor vehicle -0.187 -0.131 -0.109 -0.047 -0.592 -0.292 -0.514 -0.367 -0.343
theft (0.049) (0.043) (0.031) (0.025) (0.169) (0.151) (0.130) (0.115) (0.101)

Cost-Weighted -0.213 -0.144 -0.112 -0.099 -0.605 -0.614 -0.583 -0.403 -0.473
crime (0.054) (0.071) (0.034) (0.041) (0.184) (0.250) (0.147) (0.192) (0.171)

Instrument: — — — — ASG UCR

First stage — — — — 0.184 0.161 0.364 0.356 —
coefficient (0.014) (0.013) (0.029) (0.029) —

F-statistic on — — — — 169.1 144.7 154.2 146.4 —
excluded instrument

year effects yes — yes — yes — yes — —
state-year effects no yes no yes no yes no yes yes

Note: Columns (1)-(4) report results of a least squares regression of the growth rate in each of ten crime rates on the first lag of the growth rate in the

number of sworn police officers. For each set of models, the first column reports regression results, conditional on both the UCR and the ASG measures of

the growth rate in the city’s population and year effects. The second column adds state-by-year effects. Columns (5)-(8) reports results from a series of 2SLS

regressions of the growth rate in each of ten crime rates on the first lag of the growth rate in the number of per capita sworn police officers. Finally, column

(9) reports generalized method of moments (GMM) estimates of the growth rate in each of ten crime rates on the first lag of the growth rate in the number

of sworn police officers. Below estimates of the effect of police on crime, we report coefficient estimates and standard errors from a least squares regression of

the growth rate in a given measurement of the number of police officers on the the growth rate in the other measurement of police. We also report the

F-statistic on the excluded police measure. All models are estimated using 2010 city population weights. Huber-Eicker-White standard errors that are robust

to heteroskedasticity are reported in the second row below the coefficient estimates.



Table 4. Further Tests of the Classical Measurement Error Model

Full Sample LEMAS Subsample

UCR-ASG UCR-ASG UCR-LEMAS ASG-LEMAS
(1) (2) (3) (4)

A. Growth Rate in Crimes

Murder -0.002 -0.009 0.003 0.010
(0.002) (0.007) (0.005) (0.007)

Rape 0.001 -0.009 -0.002 0.008
(0.004) (0.016) (0.010) (0.014)

Robbery -0.004 -0.021 0.009 0.026
(0.006) (0.020) (0.016) (0.022)

Assault -0.002 0.004 -0.010 -0.014
(0.005) (0.018) (0.013) (0.018)

Burglary 0.014 -0.001 -0.013 -0.011
(0.010) (0.027) (0.022) (0.028)

Larceny 0.002 -0.012 0.006 0.020
(0.012) (0.035) (0.023) (0.033)

Motor vehicle -0.007 -0.021 0.025 0.040
theft (0.008) (0.023) (0.017) (0.023)

B. Growth Rate in Police

LEMAS police -0.083
measure (0.049)

ASG police -0.077
measure (0.026)

UCR police -0.082
measure (0.049)

C. Growth Rate in Population

UCR population -0.055 0.571 0.364 -0.124
measure (0.124) (0.308) (0.213) (0.201)

ASG population -0.035 -0.406 -0.200 0.172
measure (0.108) (0.348) (0.236) (0.236)

D. Joint Tests of Significance

F-test: all variables 0.83 0.25 0.17 0.07
F-test: crime variables 0.82 0.39 0.67 0.08
F-test: police variable 0.09 0.00 0.09
F-test: population variables 0.11 0.39 0.11 0.76

Note: Each column corresponds to a particular difference between measures of the growth rate in police. The heading

for each column gives the sources of the two measures being differenced. The LEMAS data are only available for years

1987, 1990, 1992, 1993, 1996, 1997, 1999, 2000, 2003, 2004, 2007 and 2008, and so columns involving the LEMAS

data correspond to a limited subsample. Each column reports coefficients and heteroskedasticity-robust standard errors

(parentheses) from a single regression of the difference in measures reported in the column heading on the variables

listed in the first column. The coefficients are grouped substantively into panels A, B, and C. Panel D gives p-values

from a series of heteroskedasticity-robust F-tests on the joint significance of each set of variables. Each of the models

controls for state-by-year effects and is weighted by 2010 city population.



Table 5. Robustness of Results to the Inclusion of Covariates:
1970-2002 Sample

(1) (2) (3) (4) (5) (6)

Violent crimes -0.221 -0.216 -0.216 -0.199 -0.208 -0.225
(0.093) (0.094) (0.094) (0.094) (0.096) (0.097)

Murder -0.617 -0.570 -0.588 -0.562 -0.565 -0.583
(0.238) (0.240) (0.240) (0.241) (0.246) (0.248)

Rape 0.020 0.025 0.013 0.035 0.060 0.041
(0.168) (0.170) (0.170) (0.172) (0.176) (0.177)

Robbery -0.595 -0.590 -0.588 -0.589 -0.594 -0.607
(0.114) (0.115) (0.114) (0.115) (0.117) (0.118)

Assault 0.149 0.144 0.148 0.180 0.162 0.151
(0.122) (0.123) (0.125) (0.126) (0.127) (0.128)

Property crimes -0.184 -0.190 -0.187 -0.180 -0.185 -0.198
(0.070) (0.070) (0.070) (0.070) (0.071) (0.070)

Burglary -0.224 -0.223 -0.219 -0.212 -0.202 -0.213
(0.096) (0.097) (0.098) (0.100) (0.102) (0.100)

Larceny -0.092 -0.102 -0.099 -0.095 -0.109 -0.116
(0.078) (0.077) (0.077) (0.077) (0.078) (0.077)

Motor vehicle -0.342 -0.325 -0.339 -0.325 -0.329 -0.345
(0.115) (0.114) (0.112) (0.112) (0.114) (0.116)

Cost-Weighted -0.434 -0.408 -0.415 -0.389 -0.392 -0.411
Crimes (0.159) (0.160) (0.160) (0.161) (0.164) (0.165)

state-by-year effects yes yes yes yes yes yes
economic covariates no yes yes yes yes yes
lagged economic no no yes yes yes yes
covariates
demographic variables no no no yes yes yes
polynomials no no no no yes yes
and interactions
linear time trends no no no no no yes

Note: Each column reports generalized method of moments (GMM) estimates of the growth rate in each

of ten crime rates on the first lag of the growth rate in the number of sworn police officers, conditional on

both the UCR and ASG measures of the growth rate in population, unrestricted state-by-year dummies

and various sets of control variables for the 1970-2002 subsample of our data. The first column reports

GMM parameter estimates, conditional on both the UCR and the ASG measures of the growth rate

in the city’s population and unrestricted state-by-year dummies. The second column adds a series

of economic covariates while the third column adds the first lag of each of these covariates. In the

fourth column, we add demographic controls which capture the proportion of a city’s population that is

comprised of each of sixteen age-gender-race groups. In the fifth column, we add polynomial terms and

interactions of the demographic variables. Finally, in column (6), we add city-specific linear time trends.

All models are estimated using 2010 city population weights. Huber-Eicker-White standard errors that

are robust to heteroskedasticity are reported below the coefficient estimates.



Table 6. Comparison of Estimates of the Police Elasticity of Crime

Cross- Motor
Sectional Violent Property Vehicle

Source Years Units Research Design Crime Murder Robbery Crime Burglary Theft

Marvell and Moody (1996) 1973-1992 56 cities OLS: lags as control -0.24 -0.22 -0.15 -0.30
variables (0.09) (0.06) (0.04) (0.07)

Levitt (1997) 1970-1992 59 cities IV: mayoral elections -0.79 -3.03 -1.29 0.00 -0.55 -0.44
(0.61) (2.03) (1.00) (0.34) (0.67) (0.98)

McCrary (2002) 1970-1992 59 cities IV: mayoral elections -0.66 -2.69 -0.98 0.11 -0.47 -0.77
(0.65) (2.07) (1.09) (0.43) (0.77) (1.08)

Levitt (2002) 1975-1995 122 cities IV: number of -0.44 -0.91 -0.45 -0.50 -0.20 -1.70
firefighters (0.23) (0.33) (0.26) (0.24) (0.26) (0.57)

Corman and Mocan (2005) 1974-1999 NYC OLS: monthly time -0.50 -0.39 -0.28 -0.58
series (1.04) (0.45) (0.23) (0.25)

Klick and Tabarrok (2005) 2002-2003 DC DiD: high terrorism 0.00 -0.30 -0.84
alert days (na) (0.18) (0.25)

Evans and Owens (2007) 1990-2001 2,074 cities IV: COPS grants -0.99 -0.84 -1.34 -0.26 -0.59 -0.85
(0.33) (0.47) (0.52) (0.16) (0.18) (0.35)

Lin (2009) 1970-2000 51 states IV: state sales tax -1.13 -2.73 -1.86 -2.18 -1.59 -4.14
(0.74) (1.31) (1.12) (0.93) (0.80) (1.82)

Our preferred estimates 1960-2010 242 cities measurement -0.34 -0.67 -0.56 -0.17 -0.23 -0.34
error correction (0.10) (0.24) (0.12) (0.06) (0.09) (0.10)

Note: Table reports implied elasticities and standard errors from recent articles employing a novel identification strategy to estimate the effect of police on crime. Under

research design, studies are classified as either using least squares (“OLS”), instrumental variables (“IV”) or differences-in-differences (“DiD”) to identify the effect of

police on crime. In place of the original elasticities reported in Levitt (1997), we have included elasticity estimates from McCrary (2002) which correct for a coding error

in the original paper; McCrary (2002) estimates refer to the estimates using a different measure of mayoral elections. Our preferred estimates which account for the

presence of measurement errors are shown below.



Table 7. Tests of the Equality of Cross-Crime Elasticities

Type Murder Rape Robbery Assault Burglary Larceny Motor Violent Property
Vehicle Crimes Crimes
Theft

Murder - 0.213 0.649 0.036 0.058 0.015 0.181 - .035

Rape - - 0.181 0.485 0.917 0.452 0.689 - 0.731

Robbery - - - 0.002 0.008 0.001 0.120 - 0.001

Assault - - - - 0.382 0.922 0.114 - 0.554

Burglary - - - - - 0.109 0.287 0.295 -

Larceny - - - - - - 0.010 0.010 -

Motor vehicle theft - - - - - - - 0.997 -

Violent crimes - - - - - - - - 0.075

Note: Each element of the table reports a p-value for a test of the equality between the two-step GMM parameters reported in Table 3 for an

exhaustive combination of any two crime categories. For example, the p-value arising from a test of the equality of the pooled murder and burglary

elasticities is 0.058. The p-values are generated using a GMM procedure in which we stack data pertaining to each of the two crime categories.

All models are estimated using 2010 city population weights and condition on two measures of population as well as an unrestricted vector of

state-by-year effects.



Appendix Figure 1. Power of Tests of Classical Measurement Error Model

A. Between m.e. and structural error B. Mean-reverting m.e. in UCR
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C. Mean-reverting m.e. in ASG D. Between UCR m.e. and ASG m.e.
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Note: m.e. = measurement error. Each panel presents the fraction of 10,000 simulated data sets for which a t-ratio test

rejects, as a function of a particular parameter. The parameter ρ1 indexes the correlation between the measurement error

and the structural error (panel A). The parameters λ1 and λ2 index the degree of mean reversion in the mesaurement

errors (panels B, C). The parameter ρ3 indexes the degree of correlation between the measurement errors themselves

(panel D). Two types of t-ratio tests are presented, corresponding to the tests presented in the top two panels of Table 4.

Test A is the t-ratio on the outcome in a regression of the difference in two measures of the variable of interest on

the outcome and corresponds to Panel A of Table 4. Test B is the t-ratio on a third measure in a regression of the

difference in measures on the third measure and corresponds to Panel B of Table 4. There are four such tests examined

corresponding to the columns of Table 4. For example, “A1” corresponds to the t-ratio tests of Panel A of Table 4 for

the first column, i.e., the full sample, whereas “B2” corresponds to the t-ratio tests of Panel B of Table 4 for the second

column, i.e., the LEMAS subsample. The curves with open circles, diamonds, and triangles correspond to rejection rates

for the given scenario. The curve labeled “A-any” is a rejection rate assuming “reject” occurs if any of the four Tests A

reject at the 0.05/4 level. The dashed line with no symbols overlaid is the simulation estimate of the expectation of

two-step GMM (right axis). The true parameter in all scenarios is -0.5, so departures from -0.5 capture estimator bias.

See text for details.


