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Abstract

This paper uses age-at-school-entry policies to identify the effect of female education
on fertility and infant health. We focus on sharp contrasts in schooling, fertility, and
infant health between women born just before and after the school entry date. School
entry policies affect female education and the quality of a woman’s mate and have
generally small, but possibly heterogeneous, effects on fertility and infant health. We
argue that school entry policies manipulate primarily the education of young women
at risk of dropping out of school.
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1 Introduction

Education is widely held to be a key determinant of fertility and infant health. From a theoreti-

cal perspective, several causal channels have been emphasized. First, education raises a woman’s

permanent income through earnings, tilting her optimal fertility choices toward fewer offspring of

higher quality (Becker 1960, Mincer 1963, Becker and Lewis 1973, Willis 1973). Second, under

positive assortative mating, a woman’s education is causally connected to her mate’s education

(Behrman and Rosenzweig 2002), so that the effect of education on household permanent income

is augmented through a multiplier effect. Third, education may improve an individual’s knowledge

of, and ability to process information regarding, fertility options and healthy pregnancy behaviors

(Grossman 1972).

On the empirical side, an extensive literature documents associations between education and fer-

tility and infant health (Strauss and Thomas 1995). However, whether these associations represent

causal relationships has been the subject of debate. Early quasi-experimental infant health research

using differences in education between sisters who become mothers points toward more muted ef-

fects than the cross-sectional relationship, suggesting an important role for selection (Wolfe and

Behrman 1987). On the other hand, more recent quasi-experimental infant health research focused

on primary school construction programs in Taiwan (Chou, Liu, Grossman and Joyce 2007) and

Indonesia (Breierova and Duflo 2004), and on college openings in the United States (Currie and

Moretti 2003), finds that there is a causal effect, and that observational comparisons may even

understate the true causal effect. Recent quasi-experimental fertility papers (Black, Devereux and

Salvanes 2008, Leon 2004) similarly suggest the causal effect is as large as the partial correlation.1

In this paper, we present new evidence on the effect of female education on fertility and infant

health in the United States using school entry policies as an instrument for education. In particular,

we exploit the fact that the year in which a person starts school is a discontinuous function of exact

date of birth. For example, in California and Texas, our two study states, one must be 5 years old

1Oreopoulos, Page and Stevens (2006) present some evidence to the contrary.
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on December 1st (California) or September 1st (Texas) in order to begin kindergarten.2 As a con-

sequence of these policies, individuals born within a day of one another enter school at different

ages and have different levels of education throughout school enrollment. Assuming individuals

born near in time are similar along non-education related dimensions, differences in education at

motherhood for women born near the entry date are exogenous. The crux of our identification

strategy is to compare fertility and infant health outcomes for mothers born just before and after

the school entry date and to relate the magnitude of these differences to the schooling discontinuity.

Using large samples of birth records, we find:

1. School entry policies have large effects on schooling at motherhood: one-fourth of young Texas
mothers born after the school entry date have a year less education than they otherwise would,
had they been born before the entry date. For California, our estimate is one-seventh.

Furthermore, using this variation in education due to the school entry policies, we reach two key

conclusions:

1. Education does not significantly impact fertility: women born just before and after the school
entry date are equally likely to become mothers and give birth at similar ages.

2. Education has generally small, but possibly heterogeneous, effects on infant health: women
born just before and after the entry date give birth to children of similar health, as proxied by
birth weight and prematurity. There is some suggestive evidence of different effects of educa-
tion on low birth weight by race and ethnicity.

Along the dimension of mate quality, we also find that women born just after the entry date have

younger and less educated mates than women born just before. We hypothesize that much of this

effect is due to the way in which school entry policies manipulate an individual’s peer group. Girls

who are born after the entry date will start school at older ages and hence will have young peers.

Implementing our identification strategy requires information on date of birth, which is unavail-

able in most public-use files. We use a recent administrative data set on all births in California and

Texas with information on mother’s date of birth and education, infant health, pregnancy behaviors

2For both California and Texas, school entry policies pertain to the typical age
of kindergarten entry. However, kindergarten is not mandatory in either state. See
http://www.ecs.org./html/educationIssues/EarlyLearning/KDB intro.asp. Neverthe-
less, according to the 1980 Census, over 80 percent of females in California and Texas who are age eligible for
kindergarten attend kindergarten.
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(e.g., smoking and drinking), and paternal characteristics. These data allow us to focus contrasts

narrowly around the school entry date, a challenge for earlier analyses in which either exact date

of birth or large sample sizes were wanting (Angrist and Krueger 1991, Cascio and Lewis 2006).

A narrow focus on individuals born near the school entry date builds on the quarter of birth ap-

proach of Angrist and Krueger (1991). First, it sidesteps the criticisms of Bound, Jaeger and Baker

(1995) regarding seasonality of birth (assuming seasonal patterns are continuous at the school en-

try date). Second, it leads to a precise estimate of the relationship between within-year birth timing

and educational attainment, circumventing statistical problems associated with weak instruments

(Staiger and Stock 1997).

The crucial assumption underlying this approach is that for dates near the school entry date, an

individual’s date of birth is random. This assumption is plausible a priori, since parents are unlikely

to strategically plan the exact date of birth of their child. Moreover, this assumption is testable—

women born just before and after school entry dates should be similar in terms of predetermined,

observable characteristics. We find that they are.

Proper interpretation of our estimates requires consideration of several features specific to our

approach. First, not all children will begin school in the year predicted by school entry policies.

The parents of a child born before the school entry date may hold their child back by a year, and the

parents of a child born after the school entry date may petition for their child to start school a year

before typically allowed, or may start their child in private school. For neither type of child will

schooling progression be affected by school entry policies. This suggests that our estimates may

disproportionately reflect the experience of women from low socio-economic backgrounds, whose

parents are somewhat more likely to comply with school entry policies (Elder and Lubotsky 2009).

Second, even if school entry policies affect a woman’s schooling progression, they may not af-

fect education at motherhood. School entry policies affect education at motherhood for two types

of women: (i) those still enrolled in school, for whom the effect is primarily mechanical, and (ii)

those who have already completed schooling, whose school-leaving decision was age-dependent

(i.e., not just schooling-dependent). For example, a woman who drops out of school at the earliest
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age allowed under a typical compulsory schooling law will have fewer years of education if she

starts school late (Angrist and Krueger 1992).3 This suggests that our estimates may be most rel-

evant for women at risk of dropping out of school. Such women are likely to give birth at earlier

ages than women intent on attaining a specific level of schooling, such as a college degree. Em-

pirically, we find that school entry policies exert the greatest impact on the education of women

giving birth at young ages. Thus, we stratify most of our analysis by age, focusing on women age

23 or younger, for whom our first stage relationship is strongest.

Third, school entry policies potentially affect not just education at motherhood, but also age at

motherhood. This would present an identification problem, since it would lead to two endogenous

regressors, rather than just one. However, surprisingly, we document that school entry policies

affect neither the probability of becoming a mother nor age at motherhood. This is substantively

interesting, and also implies that our approach identifies an education effect unconfounded by se-

lection into motherhood and unconfounded by age at motherhood.

Fourth, school entry policies represent a dual manipulation of schooling and age-for-grade. This

dual manipulation feature of our research design is shared by nearly all schooling research designs,

because education (as conventionally measured) takes time. Hence, conceptual manipulations of

education entail either starting an individual in school earlier, or keeping an individual in school

longer. As we discuss in Section 6, for fertility and infant health outcomes, other research designs

for schooling answer different questions than our research design.

Fifth, education at motherhood may differ from completed education if women return to school

after childbirth. This is important because a temporary reduction in schooling will not neces-

sarily affect permanent household income, whereas a permanent reduction in schooling would

be expected to, because of the labor and mating market returns to schooling. While temporary

and permanent reductions in schooling may have different effects on income, both temporary and

3Age at school leaving laws are not the only plausible reason for dropout decisions to depend on age. Additional
plausible mechanisms include a desire to begin working life, perhaps triggered by minimum work age policies
(Lleras-Muney 2002), the availability of welfare, or contraceptive failure. Indeed, for some years, Texas’ compulsory
schooling law requires individuals to finish the grade they start when they become compulsory schooling age (Texas
Education Code, Section 21.032, 1984, Section 25.085, 1995). In such a circumstance, compulsory school leaving
laws do not lead to differences in education for those starting school at different times.
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permanent reductions in schooling may affect learning and the ability to process information, the

causal pathway emphasized by Grossman (1972), Glewwe (1999), and Lleras-Muney (2002). Aux-

iliary analysis of the National Longitudinal Survey of Youth suggests that older mothers are more

likely to have completed their education, raising the possibility of heterogeneity by age in the ef-

fects of education on infant health. We examine this issue empirically, but find little evidence of

age-based heterogeneity.

The remainder of the paper is organized as follows. In Section 2 we describe the mechanisms

by which education could affect fertility and infant health and briefly summarize the existing lit-

erature on the topic. In Section 3, we discuss our identification strategy, as well as our approach

to nonparametric estimation, model selection, and inference. After describing the data we use in

Section 4, we present the results of our estimation in Section 5. Section 6 presents evidence on het-

erogeneous effects and discusses a variety of important interpretation issues. Section 7 concludes.

2 Conceptual Issues

2.1 Why Should Education Matter?

In broad terms, education may affect a woman’s fertility and child-investment choices through ei-

ther income or learning (Michael 1973). Education increases a woman’s income stream through

both the labor market and the mating market, the latter through assortative mating. In addition

to the income channel, education may improve a woman’s stock of knowledge regarding contra-

ceptive technologies or healthy pregnancy behaviors, either because it augments her knowledge

directly (i.e., educational curricula are important), or because it improves her ability to absorb and

process information generally. We next describe each of these mechanisms in turn.

The income channel operates through the well-documented effect of education on labor earn-

ings. The notion that an exogenous increase in a woman’s income may lead to reduced fertility is

present in the earliest treatments of the neoclassical model of fertility (Mincer 1963, Willis 1973).

In these models, households do not value children per se, but what Willis terms “child services”—

the product of the number of children and the average quality of those children. A key idea is
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that production of child services is time-intensive relative to other activities for the woman. As

the value of a woman’s time rises, she generally substitutes away from consumption that is highly

time-intensive (Becker 1965) and hence desires fewer children. These predicted effects of edu-

cation on fertility map naturally into predicted effects on child quality. Assuming child services

are a normal good, falling fertility in response to rising income requires that child quality be an

increasing function of income. Cross-price effects such as these were first emphasized by Becker

and Lewis (1973) and Willis (1973).

Predictions based on the income channel are further sharpened by positive assortative mating,

or the tendency for men and women of similar education to pair (Behrman and Rosenzweig 2002).

Under this type of stratification, an exogenous increase in a woman’s education leads to a mate of

higher education, further increasing household permanent income through a multiplier effect.

In addition to the income channel, the literature has stressed the role of education in augment-

ing an individual’s stock of health knowledge (Willis 1973). With respect to fertility, Rosenzweig

and Schultz (1989) provide evidence that a woman’s education explains ability to effectively use

contraception. With respect to infant health, Thomas, Strauss and Henriques (1991) show that

education predicts a woman’s ability in regards to, or perhaps interest in, information acquisition

and processing. One of the most frequently-cited examples of this mechanism is smoking (Currie

and Moretti 2003). Through anti-smoking campaigns in schools or health class, children could

learn about the dangers of smoking and be discouraged from adopting the habit. Glewwe (1999)

argues that the most important mechanism for knowledge gain is not directly via curricula; rather

the skills obtained in school facilitate the acquisition of health knowledge. Grossman (1972) for-

malizes these ideas by viewing education as a productivity shifter in the household production

function for health.

Since education can affect infant health through several different channels and the intensity of

these channels may not be the same for all levels of education nor for all subpopulations, the effect

of education on infant health may differ across studies. For example, Currie and Moretti (2003)

use college openings to study the effect of maternal education on infant health. The women whose
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schooling attainment at motherhood is affected by college openings are those women with a high

level of education generally. As we show below, our study focuses on the causal role of education

for women with a low level of education generally. Educational levels that appear to be affected in

our study are in the range of eighth to twelfth grade, with a muted effect on the first two years of

college. This subpopulation is of interest for several reasons. First, the observational infant health

return to education is declining in the level of education. Second, the labor market return to educa-

tion is declining in education (Card 1999). Third, young women at risk of dropping out of school

are frequently the target of specific policies aimed at reducing fertility and improving infant health.

2.2 What Does the Effect of Education Represent?

The model of fertility and child investment outlined above suggests that infant health is a function

of (i) maternal choice variables (e.g., smoking while pregnant) and (ii) maternal endowments (e.g.,

genetic makeup). A general health production function takes the form Y = f(X,W ), where Y is

a measure of the health of a particular mother’s newborn child, X is a vector of maternal choice

variables, and W is a vector of maternal endowments. Elements of W are fixed from the mother’s

perspective. However, a mother’s schooling could affect her health inputs, elements of X . De-

mand for health inputs may be expressed as a general function of resources, endowments, and the

demand for schooling, X = g(S, I,W ), where S denotes schooling and I denotes resources. Re-

sources are meant to be interpreted broadly as non-schooling factors that affect a mother’s choice

of health inputs (e.g., income). Combining, we have

Y = f(g(S, I,W ),W ) (1)

This simple formulation suggests thinking of schooling as potentially affecting infant health

through different mechanisms. First, additional schooling can be thought of as a productivity

shifter (i.e., changing f ). Second, schooling could impact a mother’s health inputs such as mate

selection, income, prenatal care, and smoking (i.e., changingX , or g). Analogous expressions may

be developed relating female education to fertility decisions.
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The first idea of schooling as a productivity shifter is the focus of Grossman’s (1972) model of

health capital. In particular, it is the effect of education on health inputs via health knowledge and

the ability to process information. The second idea of schooling as altering health inputs may be

termed an indirect effect of education.

In this paper, we are unable to distinguish between the direct/Grossman effect and the indirect

effect. Nevertheless, this distinction is important. It highlights the potential for heterogeneous

education effects, as there are several mechanisms by which education could potentially improve

infant health.

3 Methodology

Following the literature, consider a partially linear approximation to equation (1),

Yij = θSij + τ(Wij) + εij (2)

where θ captures the effect of schooling on infant health holding εij and Wij fixed. Here, τ(·) is

a function, and the residual εij is meant to capture unobserved factors potentially affecting infant

health. The subscripts emphasize the grouping structure of our data, with many mothers (indexed

by i) observed with the same birthday (indexed by j), even within single birth cohorts.

3.1 Identification

Identifying the effect of education on infant health requires solving two difficult problems. The

first problem is the endogeneity of schooling. The second problem is sample selection. This second

problem may arise if, for example, education affects a woman’s decision to have children, leading

to a selected sample of those observed giving birth. A regression discontinuity approach will, un-

der continuity assumptions to be discussed, circumvent the endogeneity problem. However, except

in unusual circumstances, it will not circumvent the sample selection problem.

Consider first the endogeneity problem, and suppose that mothers are a random sample of

women. We free up this assumption when we discuss sample selection, below. Linearly project

8



Sij and Yij in the conditional expectation sense:

Yij = m(Rj) + αDj + uij (3)

Sij = n(Rj) + βDj + vij (4)

where Dj = 1(Rj > 0) indicates birth after the school entry date and Rj denotes an individual’s

day of birth relative to the school entry date for the state in which the individual begins school.

For example, Rj = 5 for an individual born 5 days after the school entry date. The function n(r)

is defined to be continuous so that any discontinuity at r = 0 in the conditional expectation of Sij

is captured by the parameter β. It is straightforward to show that α = θβ, by linear projection.

Assuming that β 6= 0, then, identifying θ requires simply identifying α. We refer to the continuity

in r of the conditional distribution function of Wij given Rj = r as “smoothness”. Under smooth-

ness, m(r) ≡ θn(r) + E[τ(Wij)|Rj = r] is continuous at r = 0, and α captures any discontinuity

at r = 0 in the conditional expectation of Yij . Hence θ is identified by the ratio of the discontinuity

at r = 0 in Yij to the discontinuity at r = 0 in Sij . Thus, under smoothness and assuming β 6= 0,

the regression discontinuity approach circumvents the endogeneity problem. These basic points

are formalized in Hahn, Todd and van der Klaauw (2001, Theorem 1).

Consider now the problem of sample selection. We only observe infant health for the subset

of women who decide to become mothers. Nonetheless, under a standard one-sided selection

model, we can consistently estimate population conditional expectations with the inclusion of an

additively separable control function (Gronau 1974, Heckman 1976, 1979). Consistent with this

literature, consider next an estimation equation analogous to the outcome equation (3) but based

only on the observed data, with Pj the conditional probability of giving birth given Rj:

Yij = m(Rj) + αDj + λ(Pj) + νij (5)

where the control function λ(Pj) corrects for sample selection. The specific functional form of

λ(·) depends on distributional assumptions. For example, under bivariate normality of νij and the
9



unobserved component of the decision to become a mother, λ(p) ∝ φ(Φ−1(p))/p or the inverse

Mills ratio (Heckman 1979, Ahn and Powell 1993, Das, Newey and Vella 2003).

Under general conditions, λ(·) is continuous. Continuity of λ(·) and m(·) imply that if the

probability of motherhood is smooth in the mother’s day of birth, then m̃(·) is continuous, where

m̃(Rj) ≡ m(Rj) + λ(Pj). We may thus rewrite equation (5) as

Yij = m̃(Rj) + αDj + νij (6)

This clarifies that if the probability of motherhood is unaffected by school entry policies, the ob-

served discontinuity in infant health identifies α. However, if the probability of motherhood were

affected by school entry policies then m̃(·) would be discontinuous and point identification of α

would not be possible without further modeling.4 An analogous argument shows that if the proba-

bility of motherhood is unaffected by school entry policies, the observed discontinuity in maternal

schooling identifies β. Hence, if the probability of motherhood is unaffected by school entry poli-

cies, there is equivalent sample selection from the left and from the right, and the regression dis-

continuity approach circumvents both the endogeneity problem and the sample selection problem.

We document that the probability of motherhood is a smooth function of day of birth (see Sec-

tion 5, below). This is surprising in light of the negative association between education and fertility

documented in other work (e.g., Hotz, Klerman and Willis 1997). Nonetheless, the substantive im-

plication of these results is supported by our analysis of age at first birth, which shows that age at

motherhood is similarly a smooth function of day of birth.

To the best of our knowledge, school entry policies are the only educational intervention studied

in the literature that do not affect fertility. This simplifies interpretation of our infant health results

for two reasons. First, an effect on the probability of giving birth would create sample selection

problems, as discussed. Second, an effect on age at birth would lead to ambiguities of interpre-

tation. For example, an educational intervention inducing women to attend college would delay

4If there were a discontinuity in the probability of motherhood in day of birth and no instrument for observation
were available, the approach of Lee (2005) could be used to bound the treatment effect.
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fertility mechanically. Since a woman delaying fertility from 18 to 22 on average improves her

baby’s health at birth (Royer 2004), this would again lead to more endogenous regressors than in-

struments. School entry policies are thus a unique setting in which it is possible to isolate the effect

of education on infant health, holding constant fertility choices. However, as we discuss in detail

in Section 6, school entry policies are a simultaneous manipulation of schooling and age relative

to one’s peer group during schooling, and this has implications for the appropriate interpretation

of our estimates.

Much of the recent program evaluation literature adopts a perspective which views α, β, and θ as

random variables rather than as constants in the population (e.g., Card 1999, Appendix A.2). This

leads to additional identification difficulties. However, it is still possible to characterize what is

estimable. As emphasized by Hahn et al. (2001), there is a direct analogy between the probability

limit of a regression discontinuity estimator and the local average treatment effect interpretation of

the instrumental variables estimator (Imbens and Angrist 1994). In particular, under a monotonic

effect of school entry policies on schooling, a regression discontinuity estimator will identify the

effect of schooling on fertility and infant health for those persons whose educational attainment is

causally affected by school entry policies (cf., Angrist and Imbens 1995). This subpopulation is

not necessarily representative of the overall population of interest.

Monotonicity is not guaranteed. The effect of school entry policies on schooling would not be

monotonic if, for example, a woman’s parents would choose to delay her entrance into school if

she were born before the school entry date, but would choose to petition the school district to allow

her to begin school early if she were born after the school entry date. To take another example,

monotonicity would be violated if a woman would eventually complete more schooling if she were

born after the school entry date than she would if she were born before the school entry date. This

could occur if, for example, being older throughout school progression made it easier to complete

more schooling.

On the other hand, as emphasized by Angrist and Imbens (1995), monotonicity is partially

testable, because it implies that at each point of the education distribution, the probability of at-
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taining at least that level of education for individuals born before the cutoff date must exceed the

probability for those born after the date.5 In Section 5, below, we present results from a regression

discontinuity analogue to the estimator given in Angrist and Imbens (1995) for the average causal

response weights. These results corroborate the monotonicity assumption.

3.2 Estimation

Estimation of equation (6) may be accomplished in a variety of ways. The recent empirical regres-

sion discontinuity literature has focused on global polynomial estimators (see, for example, the

references given in Lee and Card 2006). However, Hahn et al. (2001) and Imbens and Lemieux

(2008) advocate an adaptation of local linear regression (cf., Fan and Gijbels 1996). These two

estimation approaches are generally competitive, with differing strengths and weaknesses. As a

practical matter, we have estimated all of our models using both approaches and obtained nearly

identical results. We follow the recommendations of the theoretical literature and present estimates

based on local linear methods. For both reduced-form and instrumental variables estimates, these

local linear methods can be understood as method of moments estimators. Throughout this subsec-

tion, we use the method of moments framework to describe our exact estimation strategy to avoid

confusion over details of our implementation.

Our analysis consists of two parts. First, we estimate the effect of school entry policies on fertil-

ity behaviors including the probability of motherhood and the timing of motherhood. Second, after

establishing that school entry policies do not affect fertility, we turn to estimation of the effect of

education on infant health.

Throughout the empirical analysis, our estimated reduced-form school entry effects are based on

cohort-specific estimates, where each cohort is defined symmetrically about the school entry cutoff

date. For example, the 1975 birth cohort for California is the set of baby girls born in California

182 days before and after December 1, 1975. These cohort-specific estimates are not as precise

as those that pool the information across cohorts. To improve precision and to economize the pre-

5That is, the distribution function of schooling for those born after the school entry date must lie entirely to the
left (or right) of the distribution function of schooling for those born before the school entry date. The key condition
is that the distribution functions cannot cross.
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sentation, we also present pooled estimates overall, along with a test of the implied cross-cohort

restrictions, using minimum chi-square techniques (Malinvaud 1970, Ruud 2000). We generally

fail to reject the restrictions, supporting the choice of pooling across cohorts. Informed by our

conclusion that the reduced-form analysis supports pooling across cohorts, we base our instrumen-

tal variables estimates on the entire main estimation sample. This allows us to avoid estimating

cohort-specific first stage regression models, which is known to lead to statistical problems with

weak instruments (Bound et al. 1995).

A minor complication regarding estimating the effect of school entry policies on the probability

of motherhood arises, because we do not know whether a particular female born on a specific date

later gives birth. We do know, however, the overall fraction of women born on a given day in

California (Texas) observed giving birth in our administrative data for California (Texas), which

proxies for the probability of motherhood and is sufficient for estimation at the group-data level.

The construction of this proxy is described in greater detail in Section 4, below. The estimated

effect of school entry policies on the probability of motherhood corresponds to α̂ in the method of

moments problem

0 =
J∑

j=1

{Pj − α̂Dj − π̂0 − π̂1Rj − π̂2DjRj}Kh(Rj)(1, Dj, Rj, DjRj)
′ (7)

where Pj denotes the fraction of women born on day j who we observe and (1, Dj, Rj, DjRj)
′ is

a (column) vector of covariates including a constant, an indicator for being born after the school

entry date, day of birth relative to the school entry date, and the interaction of the indicator with

relative day of birth. The weighting function Kh(r) = h−1K(r/h) is based on the triangle kernel

K(t) = max{0, 1− |t|}, which is known to be boundary optimal (Cheng, Fan and Marron 1997).

For outcomes where we possess individual-level control variables (e.g., schooling and low birth

weight), we estimate our models at the micro-data level for additional precision. For these out-
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comes, denoted Yij , the method of moments problem is

0 =
J∑

j=1

nj∑
i=1

{
Yij − α̂Dj − π̂0 − π̂1Rj − π̂2DjRj −X′ijπ̂3

}
Kh(Rj)

(
1, Dj, Rj, DjRj,X

′
ij

)′
(8)

where Xij is a (column) vector of background characteristics which are smooth functions of Rj:

the mother’s (i) race/ethnicity and (ii) age (for outcomes other than age). The inclusion of these

controls has no substantive effect on our discontinuity estimates. Web Appendix Table 3 shows that

mother’s race/ethnicity and other background characteristics are related smoothly to day of birth.

Finally, to compare the magnitude of our estimated effects, and to see what kind of effect

sizes our data provide evidence against, we report instrumental variables estimates of the effect

of schooling on infant health outcomes using the discontinuity as the excluded instrument. These

estimates correspond to θ̂ in the method of moments problem

0 =
J∑

j=1

nj∑
i=1

{
Yij − θ̂Sij − π̂0 − π̂1Rj − π̂2DjRj −X′ijπ̂3

}
Kh(Rj)

(
1, Dj, Rj, DjRj,X

′
ij

)′
(9)

As noted above, we do not estimate our instrumental variables models separately by cohort. We in-

stead use the entire main estimation sample and redefine Xij to include indicators for the mother’s

(i) race and ethnicity, (ii) age, and (iii) birth cohort.

3.3 Bandwidth Selection

Implementing local linear regression requires choosing a bandwidth, h. There are many automatic

bandwidth selectors for nonparametric regression. Fan and Gijbels (1996, Section 4.2) provide

a simple automatic procedure which we adapt to the regression discontinuity context.6 We also

implement the Imbens and Lemieux (2008) procedure. This procedure generally corroborates the

Fan and Gijbels procedure, but occasionally chooses the largest considered bandwidth (h = 180).

6This procedure fits a fourth-order global polynomial separately on the left and the right of the point of disconti-
nuity. For either side, the rule-of-thumb bandwidth is c

[
σ̌2(b− a)

/∑
m̌′′(Rj)2

]1/5
where σ̌2 is the mean squared

error for the regression, b− a is the range of Rj , m̌′′(Rj) is the estimated second derivative of the global polynomial
evaluated at Rj , the summation is over the data, and c .= 3.438 is a kernel-dependent constant (see equations (4.3),
(3.20), and (3.22) of Fan and Gijbels (1996)).
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The results of both procedures are presented in Web Appendix Table 2. Each of these automatic

bandwidth selectors chooses a bandwidth that is overly wide for the purposes of hypothesis testing

(Pagan and Ullah 1999, Horowitz 2001). We thus opt for a more conservative, under-smoothed

bandwidth of 50 days throughout. Web Appendix Figure 3 presents a profile of discontinuity

estimates in bandwidths, for our key outcomes of low birth weight, prematurity, and schooling.

3.4 Inference

The local linear regressions described in equations (7) through (9) are weighted least squares and

weighted instrumental variables procedures and hence are amenable to standard regression infer-

ence procedures (cf., Imbens and Lemieux 2008). However, our data have a grouping structure,

with many observations having the same value of the running variable Rj . In such a context, Lee

and Card (2008) suggest the use of clustering on the running variable.7 Following their sugges-

tion, we cluster our standard errors at the level of the running variable and further employ the

finite sample (”HC3”) adjustment suggested by MacKinnon and White (1985).8 We have assessed

the accuracy of this inference approach using simulation, focusing on local linear regression with

h = 50 applied to data generating processes that mimic our own data. The simulation evidence

suggests that the tests presented in this paper (of 5 percent nominal size) enjoy size of 5-6 percent.

4 Data and Sample

We use confidential 1989-2001 Texas and 1989-2002 California natality data, acquired from each

state’s Department of Health. We focus on recent natality data since the standard birth certificate

started collecting the mother’s exact date of birth beginning in 1989. Information on the mother’s

exact date of birth is suppressed on the public-use national Natality Detail Files compiled by the

National Center for Health Statistics. By special permission we obtained access to a version of the

California and Texas data files with this information.
7For our data, the Lee-Card correction factor, adapted to our local linear context, is nearly always zero and is

always small.
8As a practical matter, it is not always easy to obtain correct HC3 standard errors in software, particularly in the

weighted regression case. In such cases we instead use the jackknife at the level of the birthday. MacKinnon and
White (1985) note that HC3 is an approximation to the jackknife.
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These natality files cover the universe of all births occurring in these states, approximately

800,000 births per year. At birth, each mother along with her health care provider completes

an extensive survey, which inquires about maternal and paternal demographic characteristics, ma-

ternal behaviors during pregnancy (e.g., prenatal care), and the health of the infant at birth. For

Texas, but not for California, our natality data are merged with infant mortality information from

death certificates for those infants who died within the first year.

We impose four main sample restrictions. First, our sample consists exclusively of mothers born

in the state in which they gave birth.9 Third, for our infant health analysis, we limit our sample

to mothers who are 23 years old or younger.10 When analyzing the probability of motherhood or

age at birth, we make no age restriction, as we first need to verify that there is no effect on either

before conditioning on age. Third, we focus on first-time mothers. As emphasized by Wolpin

(1997), poor infant health at first birth may causally affect a woman’s decision regarding subse-

quent fertility and child investment choices. In the absence of additional modeling, it will not be

possible to separate the effect of education from the effect of the observed health of the first child.

Analyzing first births also strengthens the plausibility of independence assumptions and leads to

a more homogeneous sample that is more comparable to those used in the literature. Fourth, for

California (Texas) we focus exclusively on potential mothers born between 1969 and 1987 (1986).

Our other sample restrictions affect the estimation sample only slightly. We exclude non-

singleton births, as the meaning or significance of infant health measures such as low birth weight

may vary by plurality (2 percent of the total). Finally, we purge those records missing information

on education and their own day of birth (also 2 percent of the total).

Table 1 provides descriptive statistics for our study states. Throughout our analysis, we examine

Texas and California separately. To get a sense of how selective is our main estimation sample,

we present summary statistics for the overall sample of mothers with singleton births (first column

for each state), the sample of first-time mothers (second column), and the young native mothers

9An ideal analysis would use information on the state in which a mother began her education. We view state of
birth as a reasonable proxy for the state where education begins. According to the 2000 Census, 89.5 percent of 5
year olds born in California still lived in California, and 89.8 percent of 5 year olds born in Texas still lived in Texas.

10The education discontinuity induced by school entry policies is smaller for older women, as noted above.
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sample (i.e., those born in the state in which they birth and who are 24 years old or younger) the

sample used in our main analysis (last column).

Relative to the other sample of mothers, our estimation sample is somewhat negatively selected.

The first-time young native mothers are considerably younger and have worse birth outcomes.

Comparing California and Texas, the years of schooling, age at motherhood, and rates of prematu-

rity are similar, but the rate of low birth weight is roughly 1 percentage point higher in Texas than

in California. In terms of race and ethnicity, African American mothers comprise 14 (19) percent

of our main estimation sample for California (Texas), and for both states over 40 percent of the

mothers are Hispanic.

For our analysis of the probability of motherhood, we merge the number of first-time mothers

in our administrative data born in California (Texas) between January 1, 1969, and December 31,

1988, with the number of women born in California (Texas) on those same dates, calculated from

the public-use Natality Detail Files, 1969-1988, the only years for which daily birth counts by

state are available. The number of women in our administrative data relative to those at risk for

being observed proxies for the probability of motherhood. This measure is more accurate for older

cohorts, because women in more recent cohorts are not observed in our administrative data unless

they give birth at a young age.

5 Results

We present our results in six subsections. First, we consider the impact of school entry policies on

fertility. We find no difference in fertility behaviors for those born just before and after the cutoff

dates. Second, as we observe no differences in fertility behaviors related to school entry policies,

we examine the impact of school entry policies on education at motherhood. These effects are

visually apparent, economically important, and precisely estimated. Third, we examine the impact

of school entry policies on infant health, as proxied by birth weight, gestational length, and infant

mortality. We find little evidence of differences in these outcomes for those born just before and

after the cutoff dates. Fourth, we present instrumental variables estimates of the effect of female

education on infant health. Fifth, we examine the impact of school entry policies on several risk
17



factors for poor infant health. Sixth, we discuss robustness.

5.1 School Entry Policies and Fertility

The effect of education on fertility could manifest itself in terms of the probability of ever be-

coming a mother, the number of children, and the timing of childbearing. As discussed below, for

several cohorts of women we observe a direct estimate of the probability of becoming a mother. We

do not observe completed fertility, as our observation window is too short. However, we observe

age at first birth, a fertility timing measure.

To examine the effect of school entry policies on fertility, we begin with a graphical presentation

of the relationship between a female’s day of birth and the probability of motherhood separately

for California and Texas in Figure 1. Vertical bars are placed at the school entry cutoff date for

each cohort. If school entry policies affect fertility in a consistent way, we should expect to see

a discontinuity in the probability of giving birth at most vertical bars. For California, there is no

consistent pattern. For Texas, there are some suggestive jumps in the figure, but these may not be

significantly different from zero.

To assess whether the jumps in Figure 1 are consistent with sampling variability, we have esti-

mated the jump at the school entry date for each cohort for each state, and we have further disag-

gregated these effects into discontinuities in the probability of giving birth at any specific age. This

approach is flexible, but produces a great many estimates (162 for California and 143 for Texas).

We provide a complete presentation of all 305 discontinuity estimates in Web Appendix Tables 1A

through 1D. Because the 305 estimates are typically small and statistically insignificant, we focus

on summary measures here to economize on space.

Our summary measures are of two forms. The first is a state-specific Wald test for the null hy-

pothesis that the discontinuity estimates across all cohorts and all available ages are jointly zero.

These test statistics, which are distributed chi-square asymptotically, are 122.57 for California (162

d.o.f., p-value = 0.99) and 153.29 for Texas (143 d.o.f., p-value = 0.26).

The second summary measure from this analysis is a series of age-specific discontinuity esti-

mates, pooled across cohorts. These estimates are presented in Table 2. The pooled estimates are
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weighted averages of the cohort specific discontinuities presented in Appendix Tables 1A-1D, and

can be understood as minimum chi-square estimates of the assumed common effect across cohorts.

These pooled estimates are generally small in magnitude, statistically insignificant, and of varying

signs. The data contain little evidence against the pooling restrictions. The p-value for the test of

the cross-cohort restrictions is given below each estimate in brackets; these are above 5 percent for

all but one of the 37 pooled estimates.

Finally, the lower right-hand corner of Table 2 presents summary measures for the probability of

motherhood at age 23 or younger, and for the probability of motherhood at any age. These overall

estimates are estimated with a great deal of precision and give no indication that a woman’s fertility

choices are affected by the timing of her birth relative to the school entry date in her state.11

In summary, we find little evidence that school entry policies affect either the probability of

motherhood or age at first birth. This conclusion has both substantive and statistical implications.

Substantively, the lack of impact of school entry policies on these fertility outcomes indicates a

limited causal role for education in a woman’s fertility planning among women desiring to have

a family young enough that schooling is potentially a binding constraint on age at first birth. For

example, these results are consistent with a biological model in which age of menarche, not ed-

ucational attainment, determines sexual activity and in which use of contraception is unrelated to

the amount of schooling completed to date.12 Statistically, the lack of an impact of school en-

try policies on fertility means that women born just before and after the school entry date form

an equivalently-selected sample and hence can be used to study the effect of education on infant

health without sample selection corrections.

11Further analysis of the effect of school entry policies on fertility is presented in Web Appendix Figures 1 and
2. Web Appendix Figure 1 presents an estimate of the conditional expectation of age at first birth (among those
observed) given birthday. Web Appendix Figure 2 presents the distribution of age effects, and is precisely analogous
to Figure 4, discussed below.

12It is possible that women born after the cutoff date are more likely to become pregnant but also more likely to
obtain an abortion than women born before the date. While we cannot directly test this hypothesis as we have no
direct data on abortions, women in our sample born just before and after the cutoff date report similar numbers of
prior pregnancies (results available from authors).
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5.2 School Entry Policies and Education

Having determined that school entry policies do not appear to alter the probability of motherhood

in our observation window, we can proceed to examine the impact of these policies on educational

attainment. We begin with a graphical presentation of the relationship between schooling and day

of birth separately for California and Texas in Figure 2.13

We highlight two aspects of the estimates in Figure 2. First, for young mothers in both California

and Texas, there is a marked discontinuity in education at motherhood exactly at the school entry

date, as expected. Second, there is no evidence of a discontinuous relationship at any other day

of birth. The juxtaposition of the smoothness of the conditional expectation away from the school

entry date and the sharpness of the discontinuity at the entry date supports the interpretation of the

education discontinuity as directly attributable to school entry policies.

Discontinuity point estimates are given in Table 3. The estimate for California is -0.14, while that

for Texas is -0.24. Note for Texas, we reject the assumption of homogenous effects across cohorts.

This is because, as we discuss later, the first-stage estimates vary with age and age at observation

differs systematically by cohort. The magnitudes of the effect of school entry policies on education

are large relative to other benchmark differences in education. For example, according to the 2000

Census, the national black-white education gap for women is -0.88. To interpret the magnitude of

the education discontinuities, suppose that school entry policies affect schooling by one year or not

at all (i.e., being born after the school entry date reduces schooling by at most one year). Under this

assumption, the education discontinuity estimates the fraction of young women whose education

at motherhood is affected by school entry policies (cf., Angrist and Krueger 1992). Thus, school

entry policies affect education at motherhood for a large 14 (24) percent of young first-time native

mothers in California (Texas).14 Estimates of the impact of school entry policies for young women

are precise, with t-ratios ranging from 9 to 16.

As noted, an interesting pattern in the data is that the education discontinuity is strongest for the

13For these cohorts, the school entry date was fixed at December 1 (California) and September 1 (Texas).
14Unreported results for first-time mothers of all ages are about 30 to 40 percent smaller than that for the main

estimation sample of mothers 23 or younger.
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youngest mothers and weakest for the oldest mothers. Figure 3 provides separate education discon-

tinuity estimates for different ages.15 We supplement these disaggregated discontinuity estimates

with female school enrollment rates for our two study states, calculated from the 2000 Census. The

figure shows discontinuity estimates that decline in magnitude with age as enrollment rates fall.

The age gradient in the education discontinuities is consistent with two stories. One story is

that, for women in the cohorts we study, school entry policies have no impact on completed ed-

ucation, but do manipulate education at motherhood for those whose pregnancy interrupts their

schooling. A second story is that, for women in these cohorts, young mothers are those who drop

out of school as soon as possible, and that older mothers are those whose educational attainment

would not be affected by when they started their schooling because they stop schooling based on

completed schooling rather than age.

Under the first story, our fertility and infant health estimates are due to the direct/Grossman

effect of education. Indirect effects of education through income will not be as relevant because

a woman who anticipates returning to and finishing school will have approximately equal per-

manent income as a woman who completes that same level of schooling prior to beginning her

family. The direct/Grossman effect is operative, however, because one cannot know what one has

not yet learned. Under the second story, our fertility and infant health estimates are due to both a

direct/Grossman effect and an indirect effect.16 The second story thus implies a stronger effect of

education on fertility and infant health than the first.

An important issue for further interpretation of our estimates is the range of education levels

manipulated by school entry policies. This issue is addressed by the curve presented in Figure 4

(Angrist and Imbens 1995). Each open circle at schooling level s represents the estimated percent

of women age 23 or younger who would complete fewer than s years of schooling if born after the

15For this figure only, we use information from pre-1969 cohorts. The inclusion of these additional cohorts greatly
improves the precision of the estimates for older mothers.

16It is possible that the women whose educational attainment at motherhood is affected by school entry policies
have little foresight regarding their permanent incomes. For example, some of these women may be too young to have
ever received any earnings. If such women do not have sufficient foresight, then the effect of education would operate
primarily through a learning channel.
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school entry date but would complete s or more years of schooling if born before.17

If school entry policies manipulate schooling by at most one year, each open circle represents

the estimated percent of young women who would complete s− 1 years of schooling if born after

the school entry date but would complete s years of schooling if born before. Under this latter,

sharper interpretation, 4 percent of California young women and 6 percent of Texas young women

would complete high school if born before the school entry date, but would fail to do so if born

after. In both states, being born before the school entry date induces 2 percent young women to

complete a year of college, when otherwise they would have only completed high school. Figure 4

thus indicates that school entry policies affect not just the number of years of high school a woman

has completed by the time of her first births, but also the number of years of college.

As noted above, Figure 4 is also important because it provides a test of the monotonicity as-

sumption. Under monotonicity, the distribution functions of schooling for those born just before

and after the school entry date should not cross. This pattern is corroborated by Figure 4, because

the curves are positive throughout the support of education.

5.3 School Entry Policies and Infant Health

Proceeding next to our analysis of the policies on health outcomes, we examine the reduced-form

effects of the policies on the incidence of low birth weight, a widely-cited risk factor for poor infant

health (Figure 5).18 As with our analysis of education, we report results for mothers 23 years old

or younger.

Because schooling declines at the school entry date, we expect to see an increased likelihood of

low birth weight at the school entry date. However, the data indicate no obvious break in behavior.

This visual impression is confirmed by point estimates which are generally small and statistically

insignificant (Table 3). The effect for California (Texas) is -0.0006 (-0.0051), which is small rela-

17Practically, these estimates are based on the difference in the empirical cumulative distribution function of
schooling for those born before and after the school entry date, where the empirical cumulative distribution function is
defined using a sharp, rather than the more traditional weak, inequality. We construct these by using a series of linear
probability models with dependent variables 1(Sij < s), each estimated according to equation (8), with s ranging
over the support of schooling.

18See Almond, Chay and Lee (2005) for references.
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tive to the overall incidence of low birth weight of 6 (8) percent.

We next consider the impact of school entry policies on the incidence of premature birth, de-

fined as gestational length of less than 37 weeks. Figure 6 gives an estimate of the conditional

expectation of prematurity in mother’s day of birth. Because prematurity is a negative health out-

come, we expect to see a rise in prematurity at the school entry date. However, the data indicate

no break in behavior. The estimated discontinuities are again small and statistically insignificant

(Table 3). The estimate for California (Texas) is -0.0012 (-0.0029), which is small relative to the

overall incidence of prematurity of 10 (11) percent.19

Our results for low birth weight and prematurity are somewhat surprising in light of the existing

literature. For comparison, a conventional estimate of the effect of education on low birth weight

and prematurity is -0.01 (Currie and Moretti 2003). Given our first stage estimates, we would ex-

pect reduced form impacts of school entry policies on low birth weight and prematurity of 0.0014

(0.0024) for California (Texas). We return to this issue below.

For Texas, information on infant mortality is available. The plot of infant mortality against

mother’s day of birth (available upon request) provides no obvious visual evidence of discontinuity

at the school entry date. However, this may be due to low statistical power—infant mortality

is only one-tenth as likely as low birth weight or premature. Consistent with this, the estimated

discontinuity is large in economic terms (0.0013 compared with an overall incidence of 0.0067 (i.e.,

an infant mortality rate of 6.7 infant deaths per 1000 births)), but statistically indistinct from zero.

Compared to the prior literature (e.g., Chou et al. 2007, Currie and Moretti 2003), our estimates

are surprisingly consistent with a null hypothesis of no effect of education on infant health, as

noted. One possible explanation for this pattern is lack of statistical power. Without a large num-

ber of observations local to the cutoff, in our case the school entry date, the regression discontinuity

design may not have sufficient power to rule out economically interesting hypotheses.

In the Web Appendix, we present a detailed discussion of the sample sizes required to rule out

different null hypotheses, focusing on outcomes studied in the recent literature. Here we mention

19As with the effects for low birth weight, we have examined the effects for a variety of cutoffs (20 weeks, 25
weeks, etc.) and found no effects for these other cutoffs.

23



the setup and conclusions of these power calculations briefly. For a fixed point estimate and null

hypothesis, we compute the minimal percent increase in sample size (relative to our original sam-

ple) required to reject the null hypothesis. Web Appendix Table 4 presents the calculations. Using

our own point estimates as a guide and the Currie and Moretti (2003) estimates as our null hypoth-

esis, our sample is sufficiently large to reject such null hypotheses for maternal smoking, low birth

weight, and prematurity. For prenatal care, our positive estimates actually exceed the size of the

Currie and Moretti (2003) estimate, but to distinguish our estimate from theirs, we need roughly a

30 percent increase in sample size. For infant death, we would require 3 to 4 times as large a sample

to detect an effect given a reasonable null hypothesis (e.g., a null hypothesis of zero). The estimates

of Currie and Moretti (2003) are quite sizable and their use as a relevant null hypotheses may over-

state our ability to detect meaningful economic effects. As such, we consider other null hypotheses.

In many cases (e.g., smoking and low birth weight), we have enough power to detect effects half

of the size of Currie and Moretti (2003).20 See the Web Appendix for further discussion of power.

5.4 The Effect of Education on Infant Health

To understand the magnitude of the reduced-form effects, we now turn to instrumental variables

estimates. These estimates are reported in Table 4 for the infant health outcomes of low birth

weight, prematurity, and infant death (Texas only).

The low birth weight estimate for California (Texas) is 0.0036 (0.0199), with a standard error of

0.0161 (0.0118). As noted above, these estimates are somewhat surprising in light of the findings

in the literature. Pooling our low birth weight estimates for California and Texas provides an over-

all estimate for the two states with greater precision. The pooled estimate is 0.0142 (standard error

of 0.0095), and there is little evidence against the pooling restriction. At the 5 percent level, we

are able to reject all null hypotheses involving an effect size more negative than -0.0014. This is

based on a one-sided test with an alternative hypothesis that the effect is larger than the null. Thus,

for low birth weight, our data and research design provide evidence against the conventional point

20In unreported results, similarly small and insignificant effects are estimated for the incidence of very low birth
weight (birth weight less than 1500 grams), very very low birth weight (birth weight less than 1000 grams), and high
birth weight (more than 4000 grams).
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hypothesis of -0.01.

For prematurity, estimates for both states are smaller in magnitude and estimated with some-

what less precision. The estimate for California (Texas) is 0.0076 (0.0100) with a standard error of

0.0241 (0.0141). The pooled estimate of the effect of female education on prematurity is 0.0094

(standard error of 0.0122), and there is little evidence against the pooling restriction. At the 5

percent level using one-sided tests, we rule out point hypotheses more negative than -0.011. Thus,

for prematurity, our data and research design are somewhat consistent with the conventional point

hypothesis of -0.01.

For infant death, we only have information for Texas. As noted above, this estimate is of the

expected sign and is large in economic magnitude, but is also estimated with very little precision.

While the imprecision in our estimate cautions against strong interpretation, it is interesting to

note that our point estimate is of the same sign and magnitude as that of Chou et al. (2007). These

authors study the effects of junior high school expansion in Taiwan on schooling and infant health.

5.5 School Entry Policies and Risk Factors

Female schooling affects infant health to the extent that schooling affects a mother’s behavior and

that behavior affects the health of her child. To better understand these mechanisms in the context

of our study, we turn now to reduced-form estimates of the impact of school entry policies on risk

factors for poor infant health (Table 3). These may be particularly important in comparing our

results to those in the literature, as “the effect of education” may mean different things in different

studies.

The risk factors we consider in Table 3 may be thought of as falling into three key categories.

The first category, which we term “risky maternal behaviors”, encompasses maternal smoking,

drinking, and sexually transmitted diseases. The second category is comprised of several prenatal

care measures: care during pregnancy, care during the first trimester, and number of visits. The

third category of risk factors pertain to the quality of the infant’s father, as proxied by presence of

father’s information on the birth certificate, his age, and his education.

Estimated impacts of school entry policies on maternal behavior are generally small, of mixed
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sign, and often statistically insignificant. The estimated impacts on maternal smoking in California

suggests that women born after the school entry date are statistically significantly more likely to

smoke than women born before (t-ratio=2.4). While this finding is consistent with conventional

estimates from the literature (e.g., de Walque 2004), the effects for Texas are of the opposite sign.21

For other risk factors, women born before and after the school entry date have similar rates of sex-

ually transmitted diseases in both California and Texas. For Texas, where we observe a measure

of maternal drinking, the effect is the opposite of the expected sign and insignificant.

Turning to the estimates for prenatal care, we see that four of the six estimates are of the ex-

pected sign. Mothers with less education are somewhat less likely to receive prenatal care in the

first trimester, and receive somewhat less of it. However, the estimates are modest in magnitude

when compared to the sample mean. The estimates for Texas are on the cusp of significance, but

those for California are consistent with sampling variability.

In contrast, paternal quality effects are sizable. These estimates show that women born just sub-

sequent to the school entry date have mates who are younger and less educated, on average, than

the mates of women born just before the entry date. These point estimates for both California and

Texas are large and statistically distinct from zero.

These effects are not surprising given the nature of this educational intervention. School entry

policies impact one’s peer group. On average, individuals born immediately before the school en-

try date will have older peers in their grade, whereas individuals born after the school entry date

will have younger peers. Our findings are consistent with the notion that mate selection is primarily

grade-based.

5.6 Robustness

Our identification of the effects of female education hinges on the assumption that women born

before and after the cutoff dates have similar pre-determined characteristics. We can test this as-

sumption by testing the continuity of pre-determined characteristics in day of birth for potential

21The measurement of maternal smoking on the California birth certificate is less direct than that on the Texas birth
certificate. As such, the California measure of smoking may be less reliable.
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mothers. Aside from race and ethnicity, most of the characteristics we observe in our adminis-

trative data could be viewed as a response to assignment to starting grade and therefore are not

useful for testing the research design. However, we may test for continuity of a variety of pre-

determined characteristics using the public-use Natality Detail Files, which record information on

infants and their parents as of birth. We can thus verify the smoothness of a variety of maternal

and grandparental characteristics for women in the risk set for becoming mothers in our sample.

Web Appendix Table 3 gives estimated discontinuities for selected pre-determined characteris-

tics of mothers. Each entry is a discontinuity estimate for a different pre-determined characteristic,

calculated in the same manner as for those in Table 3, but using no auxiliary controls. We find

little evidence of any discontinuity in the maternal characteristics we measure: fraction Hispanic,

fraction black, low birth weight and first month of prenatal care. Similarly, we find little evidence

of discontinuity in the grandparental characteristics we measure: native, parity, child mortality, and

age.22

Finally, we show the profile of our reduced-form discontinuity estimates in the bandwidth cho-

sen, for selected outcomes (Web Appendix Figure 3). As discussed, the data suggest that the ap-

propriate bandwidth for these data is likely in the range 50-100 for most outcomes (Web Appendix

Table 2). Over this range, our estimates are quite stable.

6 Discussion

In this section, we interpret our findings in light of the existing literature. Our comments fall

into two broad categories: sources of potential heterogeneity in the effect of female education on

fertility and infant health, and the potential role of age-for-grade effects in our estimates.

6.1 Heterogeneity

The effect of female education on fertility and infant health is plausibly heterogeneous for several

reasons: (i) background characteristics, such as race; (ii) the level of schooling manipulated, such

as high school versus college; (iii) the mechanisms by which schooling affects infant health, such

22We proxy child mortality by the fraction of the grandmother’s live-born children who were still living at the time
of the mother’s birth.
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as via a direct/Grossman effect or an indirect effect; (iv) the persistence of the schooling differ-

ences induced, since the behavior of forward-looking individuals may depend on both current and

future human capital; and (v) the type of policy manipulation, such as school entry policies which

manipulate when a child begins school, versus school exit policies which manipulate when a child

ends school. We next elaborate on these points.

First, schooling interventions may not impact all subpopulations equally. For instance, Cur-

rie and Moretti (2003) document effects of college openings on white women’s schooling, but

note that there is little to no effect on black women’s schooling.23 In contrast, school entry in-

terventions seem to have more homogenous effects on schooling. Table 5 presents estimates of

the effect of school entry policies on schooling, low birth weight, and prematurity, separately by

race/ethnicity.24 The table indicates generally statistically similar effects on all three outcomes in

both states, but there are some interesting differences. For example, for both states, the effect on

education is somewhat smaller for black women than it is for the other two groups. On the other

hand, these differences are consistent with sampling variability. Effects on prematurity are of sim-

ilar magnitude for different racial/ethnic backgrounds for both states. Effects on low birth weight

likewise are consistent with homogeneity for Texas. The strongest evidence of race/ethnicity differ-

ences in the effects of school entry policies is for low birth weight in California. For black women,

the effect is consistent with education improving well-being and is statistically significant, while

the effect for white non-Hispanic women is of the opposite sign and also statistically significant.

The effect for white non-Hispanic women could be consistent with some of the stress hypotheses

discussed in the medical literature (e.g., Hedegaard, Henriksen, Sabroe and Secher 1993)—i.e.,

more educated women may work in more stressful jobs, leading to an elevant incidence of prema-

turity.

23Angrist and Krueger (1991) similarly document much stronger effects of compulsory schooling for white men
compared to black men, and Lleras-Muney (2005) echoes this conclusion for changes in child labor laws and
compulsory schooling laws. Goldin and Katz (2003) argue that continuation schools, an important factor in the rise
in educational attainment for 1910 to 1940, have similar effects for blacks and whites.

24Because of the smaller sample sizes underlying the estimates in this table, we use a slightly larger bandwidth of
70 days throughout. This is appropriate for a bandwidth selector of order n−1/5 (cf., Porter 2003, Theorem 3(b)),
since several of our estimates are based on 20 percent subsamples (50× 0.2−1/5 ≈ 70).
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Second, if the relationship between schooling and infant health is non-linear, the effect of ed-

ucation will depend on the level of education manipulated by the intervention. Observational

comparisons suggest such a nonlinear relationship, with the biggest health returns concentrated

amongst the lowest-educated. As we have discussed, school entry policies primarily affect the

number of years of high school education (cf., Figure 4). This might suggest that our estimates

should be larger than many of those in the literature, where the recent focus has been more on

research designs that impact college attendance.

Third, for different interventions, the effect of education may operate through different chan-

nels. For example, suppose understanding the fetal health implications of smoking while pregnant

is the dominant mechanism behind education’s impact on infant health, and suppose that expo-

sure to college is required for women to appreciate these fetal health implications (as might occur

through peer effects). Then educational manipulations affecting college attendance only negligi-

bly may have negligible impacts on infant health. In this example, interventions targeting college

would have larger direct/Grossman effects on infant health than would interventions targeting high

school. In addition, interventions targeting college could have larger indirect effects on infant

health than those targeting high school if the number of years of college is more important for

a woman’s financial resources, as might occur through non-linearities in the labor and/or mating

market return to schooling.

These effects may depend on the degree of foresight in the subpopulation affected by the manip-

ulation. Our study focuses on fertility and maternal investment behavior for women 23 or younger.

These women might not invest in maternal behaviors protective of infant health if they fail to an-

ticipate the labor and mating market returns to their schooling. Other studies focus on fertility and

maternal investment behaviors observed at older ages, where women may have already appreciated

the returns to their schooling.

Nonetheless, our data provide some suggestive evidence that the women in our study, while

young, already anticipate the labor and mating market returns to their schooling. For California,

using school entry cutoff dates as an instrument for education, we find that an extra year of educa-
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tion reduces the likelihood of public payment for delivery (e.g., Medicaid) and raises the likelihood

of private payment (e.g., private insurance), leaving self-payment (i.e., out-of-pocket) unaffected.

In most cases, eligibility for public funding is dependent on income. This suggests that, already

at motherhood, the women in our study are experiencing differences in income due to their ed-

ucation. Alternatively, they might anticipate future income differences and exert more effort in

becoming eligible (e.g., completing paperwork). For Texas, again using the school entry dates as

an instrument, we find that an extra year of education lowers the likelihood that a woman receives

prenatal care in a hospital and raises the likelihood that she receives care in a private clinic, leaving

unchanged the likelihood of care in a public health clinic (results available upon request).

Fourth, there is an distinction between education at motherhood and completed education. The

women in our study are young and may have had their educational progression interrupted. This

raises the possibility that these women might return to school after childbearing, in which case our

research design would not capture the effect of completed education, but rather the effect of educa-

tion at motherhood. For other research designs, childbearing might occur at an age where a return

to schooling is unlikely and the research design might measure the effect of completed education

(e.g., Currie and Moretti 2003). The effect of completed education on infant health may be differ-

ent than the effect of education at motherhood on infant health. For example, an intervention that

affects education at motherhood but not completed education should not have an indirect effect of

schooling due to resources (assuming foresight). As another example, an intervention that affects

completed education but not education at motherhood should not have direct/Grossman effects,

because a woman cannot yet know what she has not yet learned.

To understand the dynamics of female schooling decisions following first births, we examined

the patterns of school enrollment and school completion among the sample of women from the

1979 National Longitudinal Survey of Youth (NLSY79) (results available on request). Women

having their first birth before 18 are substantially more likely to return to school than women hav-

ing their first birth after 18. This pattern suggests that for mothers younger (older) than 18, our
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estimates isolate the effect of education at motherhood (completed education).25 Table 5 presents

separate estimates for these two age groups. As suggested by Figure 3, the education discontinuity

is smaller for 18-23 year olds than for those below 18. However, for low birth weight and prematu-

rity, the estimates are statistically indistinct across the two age groupings. This suggests that both

the effect of education at motherhood and the effect of completed education are small for this study.

Fifth, and finally, the effect of schooling may differ depending on the type of intervention in-

volved. Consider two broad types of policies that could increase years of schooling: (i) those af-

fecting school exit decisions (e.g., raise the minimum dropout age) and (ii) those affecting school

entrance decisions (e.g., lower the age at school entry). Even if these policies exert similar effects

on educational attainment, the impacts on fertility and maternal investment behaviors could plau-

sibly differ. Moreoever, even if fertility and maternal investment impacts are quantitatively similar

for school entry and school exit interventions, the economic interpretations may differ.

To understand this point, consider a woman who desires to have children early in life (but after

completing schooling), and who wants to avoid violating compulsory schooling laws (i.e., she will

drop out of school as soon as she lawfully can). A school exit intervention extending the com-

pulsory school leaving age by one year will likely lead such a woman to delay childbearing by a

year. However, this effect represents not just the direct/Grossman effect and the indirect effect, but

also the mechanical delay associated with the woman’s desire to comply with the law. Hence, for

this type of woman, the meaning of the fertility effect of schooling is different depending on the

type of intervention under discussion. Further, this mechanical delay in fertility creates problems

for the identification of the effect of education on infant health, since maternal age is believed

to causally affect infant health. Similar interpretation differences arise when applying these two

research designs to other types of women, as well.26

25Using a longitudinal Texas data set, we estimate that the schooling discontinuity for second-time mothers is 70
percent as large as the schooling discontinuity for those same mothers at first birth. Unfortunately, this panel is too
small to estimate precise reduced-form effects.

26As a second example, consider a woman who has an unplanned pregnancy (e.g., contraceptive failure) while a
freshman in high school and who, due to time constraints, finds herself unable to return to school after childbearing.
Lowering the age at school entry for this type of woman would ensure that she completed all of ninth grade and part
of tenth grade. This additional education would lead to direct/Grossman effects and, assuming foresight, indirect
effects. In contrast, raising the compulsory schooling age for such a woman from 16 to 17 will leave her education
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Thus, school entry interventions do not mechanically affect fertility in the same manner as school

exit interventions, and hence sidestep some of the identification problems outlined. However,

school entry interventions are a dual manipulation of schooling and age relative to peer group, and

this may create identification problems of its own. We take up this issue in the next subsection.

6.2 Age-for-Grade Effects

Our research design exploits the fact that, due to the timing of her birth, a woman born before the

school entry date will typically enter school a year ahead of when she would have entered, had

she been born after the school entry date. However, entering school early implies not just getting

ahead of the pack, but also being younger than the pack. Thus, school entry policies amount to a

dual manipulation of schooling and age relative to peers.27

If relative age is unimportant for behaviors and outcomes, then our comparisons highlight the

effect of schooling alone. However, if relative maturity is important, it could potentially explain

why we find small and insignificant effects of education on fertility and infant health. Within the

economics literature, the consensus is that children who are older in their class perform better in

school than children who are younger (Bedard and Dhuey 2006, Elder and Lubotsky 2009, Cascio

and Schanzenbach 2007, Kawaguchi and Kenkyūjo 2006, Fredriksson and Öckert 2005). In gen-

eral, old-for-grade students have higher test scores, are less likely to repeat grades, and complete

more schooling than young-for-grade students.28 We might thus expect that the effect of schooling

on fertility and infant health and the effect of being young relative to peers on fertility and infant

health are of opposite sign, potentially leading estimates of small magnitude, possibly sufficiently

small as to be consistent with no effect.

While we cannot entirely rule out the hypothesis that age-for-grade effects are offsetting pure

unaffected. Thus, a compulsory schooling research design cannot be used to learn about the infant health impacts of
schooling for this type of woman. A complete discussion of the impacts of these two policy interventions on different
types of women requires an articulated formal model of schooling and fertility and maternal investment behaviors.
We do not have space to present such a model here.

27As noted, this dual manipulation feature of an instrumental variables approach to schooling is intrinsic. For exam-
ple, as noted above, changes in compulsory schooling policies are dual manipulations of schooling and absolute age.

28Because these observations are largely based on within-grade comparisons, there is an ongoing debate whether
this observation should be interpreted as an age-for-grade effect or an absolute age at school entry effect.
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schooling effects, we argue against it on three grounds. First, in terms of test scores, the perfor-

mance gap between younger and older students declines with age—suggesting that the long-run

effects of age-for-grade may be small. Second, in the United States, unlike in some other coun-

tries (Kawaguchi and Kenkyūjo 2006, Fredriksson and Öckert 2005), individuals born immediately

after the school entry cutoff date acquire fewer years of schooling than the individuals born imme-

diately before (Dobkin and Ferreira 2007). This may imply a weakened role of age-for-grade in

the long run for the United States relative to other countries.29

Third, for both California and Texas, we find small and insignificant differences in the proba-

bility of becoming a mother, age at first birth, or infant health. Stipulating that the age-for-grade

effect was of the opposite sign of the education effect, it would be surprising if, in each of these

contexts, the effects were close enough in magnitude as to make the net effect small. Indeed, our

estimated effects of school entry policies on the probability of becoming a mother, age at first birth,

and infant health are approximately zero for all cohorts. It would be all the more surprising if the

age-for-grade effects for each of these outcomes were of the opposite sign of the education effect

for all cohorts.

While there exists this extensive literature on the effect of age-for-grade on education-related

outcomes, we know of no research on age-for-grade effects on fertility or infant health. Moreover,

at least for fertility, the direction of bias to an age-for-grade effect is theoretically ambiguous. On

the one hand, being old for one’s grade could affect social development. In this case, the age-

for-grade effect could be protective against pregnancy, with mature girls resisting the advances of

persuasive boys. On the other hand, being old for one’s grade could make pregnancy more likely if

older girls are more popular than younger girls and if sexual activity is increasing in popularity.30

Even if both education and age-for-grade effects are operative, our empirical results continue

to have an interpretation as the program evaluation of postponing schooling as it pertains to fer-

29Many factors contribute to these cross-country differences. We leave the explanation of these differences to
future research.

30In addition, within a grade, younger girls may look up to older girls and mimic their behaviors. Mimicry renders
ambiguous the sign of the age-for-grade effect, because of dependence on the magnitude of the pure age effect.
Similar ambiguities surround age-for-grade effects on behaviors, such as maternal smoking.
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tility and infant health. This policy evaluation is relevant both to the private decisions of parents

contemplating when their children should start school, as well as to the current debate regarding

the appropriate entry date. Several states have recently moved, or are currently debating moving,

these dates from late in the year to the early Fall (Datar 2006), with the stated rationale of raising

the age of the average kindergartner (Aizenman 2002). While starting children at older ages may

help them cope with the demands of an increasingly rigorous kindergarten curriculum, our results

suggest that, for some girls, doing so makes it more likely that pregnancy will interrupt school

progression at an earlier grade. To the extent that these schooling differences will be permanent,

our results suggest this will lead to reduced completed schooling, mates of lower education and

earnings ability, and diminished lifetime income.31

7 Conclusion

We have argued that, for some women, education may play a more muted role in fertility and child

investment decisions than suggested by the previous literature. Our evidence is based on compar-

isons of outcomes between women born just before and after the school entry date. Compared to

women born just before the school entry date, women born just after the entry date (i) have sub-

stantially lower schooling, as expected, (ii) are equally likely to become mothers, (iii) give birth at

similar ages, and (iv) give birth to similarly healthy infants. That we do not document differences

in infant health is surprising, given the assortative mating results: school entry policies lead to eco-

nomically important differences in the age and education of a woman’s mate. These comparisons

are credible to the extent that confounders are smooth in day of birth for females who are potential

mothers. On prior grounds we find it credible that two individuals born near in time are similar.

To substantiate this point, we have provided evidence that measured pre-determined characteristics

are similar for women born just before and after the school entry date.

31However, it may be difficult to infer from this policy experiment what might be the effects of large changes in the
school entry cutoff date. Our estimates are most closely tied to a policy involving adjusting the school entry date by a
small margin (e.g., from December 1 to November 30). Ideally, we would like to forecast the effects of a policy which
adjusts the school entry date by a larger margin (e.g., from December 1 to September 1, in line with recent policy
changes). However, this is a more challenging identification problem. Such a policy shift alters the age distribution of
the entire classroom and would almost surely be combined with a policy to alter curriculum accordingly. While our
evidence may shed light on the expected effects of such a policy reform, it does not provide a fully credible evaluation.
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Our estimates are specific to the subpopulation of women whose education at motherhood is

affected by school entry policies. These women may be negatively selected, for several reasons.

First, their parents were willing to comply with school entry policies, as is more common among

parents of low socio-economic status. Second, school entry policies affect education at mother-

hood for those women giving birth at young ages with low education generally. Thus, these results

may be difficult to generalize to other subpopulations.32

On the other hand, this may mean that our results are relevant for specific policies. The Na-

tional Campaign to Prevent Teen Pregnancy, a non-profit and non-partisan initiative, emphasizes

the importance of schooling in reducing rates of teenage pregnancy. Our results suggest that such

emphasis may be misplaced. When policymakers envision expensive interventions to raise fe-

male education, they should think carefully of how they expect increases in education to improve

well-being, particularly with teenagers.

Finally, these estimates directly address the fertility and infant health consequences of starting

school early. Parents of children with birthdays near the school entry date may be interested in

these findings, particularly if they view their child as at risk of dropping out of school. Moreover,

there continues to be an active policy debate regarding the appropriate age at school entry, and sev-

eral states have changed the school entry date to earlier in the year in order to raise the average age

of kindergartners. Our results suggest that even if moving back the entry date does succeed in im-

proving the preparedness of some children for an increasingly intensive kindergarten curriculum,

such a policy shift is not without costs and may create both winners and losers.

32In addition, we have emphasized further features of our approach that problematize extrapolation to other contexts.
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Table 1. Descriptive Statistics

California (1989-2002) Texas (1989-2001)

All 
Mothers

First-Time 
Mothers

First-Time 
Native 

Mothers 
Under 24

All 
Mothers

First-Time 
Mothers

First-Time 
Native 

Mothers 
Under 24

% Mothers White Non-Hispanic 26.97 29.32 36.70 35.97 38.57 39.06 

% Mothers White Hispanic 55.76 52.60 45.35 47.69 45.44 41.14 

% Mothers Black 8.26 8.09 14.04 14.19 13.52 19.38 

Mother's education (years) 11.19 11.47 11.57 11.25 11.45 11.19 
[3.00] [2.90] [1.68] [2.66] [2.64] [1.84]

Mother's age (years) 22.44 21.11 18.94 21.87 20.64 18.83 
[4.02] [3.90] [2.23] [3.81] [3.67] [2.26]

% Low birth weight (<2500 grams) 5.07 5.88 6.24 6.38 7.17 7.96 

% Premature (<37 weeks gestation) 9.67 9.66 10.09 9.72 9.55 10.49 

Infant mortality rate NA  NA  NA  0.60 0.58 0.67 
(deaths before 1 year per 1K births)

% Mothers smoking during pregnancy 1.93 1.70 2.83 8.03 6.66 8.49 

% Mothers drinking during pregnancy NA  NA  NA  0.90 0.87 0.97 

% Mothers with STDs 1.26 1.39 1.68 2.76 2.90 3.85 

% Mothers with prenatal care 98.80 99.00 99.05 97.06 97.51 98.02 

% Prenatal care began in 1st trimester 74.77 75.42 73.09 68.83 70.33 67.58 

Number of  prenatal care visits 11.23 11.38 11.39 10.56 10.81 10.78 
[4.10] [4.08] [4.07] [4.56] [4.48] [4.36]

% Father present 87.71 85.90 83.57 78.22 75.42 68.74 

Father's education (years) 11.19 11.39 11.46 11.64 11.86 11.63 
[3.42] [3.45] [2.67] [2.85] [2.78] [1.94]

Father's age (years) 25.97 24.58 21.90 25.49 24.16 21.97 
[5.66] [5.50] [4.09] [5.45] [5.24] [4.12]

% Having first birth 52.02 100.00 100.00 52.02 100.00 100.00 

Observations 3,264,615 1,698,232 641,557 2,112,017 1,098,598 533,165

Notes: Table reports means and standard deviations (brackets) for mothers in 1969 to 1987 (1986) cohorts for
California (Texas).  Mothers with missing education, parity, or birth date values or non-singleton births are excluded. 
Native subsample includes only mothers born in that state.  Father's presence is measured by the presence of  his
educational attainment and birthdate on the birth certificate.



Table 2. Discontinuity in Probability of  Giving Birth at Specific Ages

Age California Texas Age California Texas
13 -0.0003 -0.0001 24 -0.0017 -0.0005 

(0.0002) (0.0003) (0.0019) (0.0015)
[0.96] [0.67] [0.26] [0.01]

{0.0004} {0.0008} {0.0097} {0.0120}
14 -0.0004 -0.0018 25 -0.0003 -0.0030 

(0.0004) (0.0008) (0.0015) (0.0019)
[0.44] [0.98] [0.57] [0.65]

{0.0027} {0.0044} {0.0081} {0.0102}
15 -0.0001 -0.0017 26 0.0008 0.0005 

(0.0007) (0.0009) (0.0015) (0.0023)
[0.54] [0.96] [0.67] [0.85]

{0.0083} {0.0117} {0.0070} {0.0083}
16 0.0004 0.0012 27 0.0003 -0.0007 

(0.0010) (0.0012) (0.0014) (0.0028)
[0.68] [0.64] [0.04] [0.63]

{0.0164} {0.0224} {0.0059} {0.0066}
17 0.0004 -0.0003 28 -0.0015 -0.0021 

(0.0013) (0.0017) (0.0015) (0.0026)
[0.76] [0.22] [0.66] [0.92]

{0.0228} {0.0320} {0.0051} {0.0051}
18 -0.0006 -0.0036 29 0.0002 -0.0024 

(0.0017) (0.0021) (0.0026) (0.0025)
[0.74] [0.65] [0.50] [0.74]

{0.0286} {0.0380} {0.0040} {0.0035}
19 0.0002 -0.0025 30 0.0024 0.0015 

(0.0017) (0.0023) (0.0023) (0.0038)
[0.61] [0.08] [0.61] NA    

{0.0318} {0.0390} {0.0031} {0.0022}
20 -0.0009 -0.0019 31 0.0035 

(0.0019) (0.0023) (0.0042)
[0.96] [0.39] NA    

{0.0263} {0.0332} {0.0020}
21 -0.0027 0.0027 

(0.0016) (0.0021)
[0.69] [0.93]

{0.0200} {0.0253}
22 -0.0003 0.0030 Observed -0.0018 -0.0048 

(0.0017) (0.0020) at 23 or (0.0039) (0.0051)
[0.90] [0.07] Younger [0.99] [0.88]

{0.0154} {0.0193} {0.1848} {0.2411}
23 0.0005 0.0001 Observed -0.0019 -0.0072 

(0.0015) (0.0018) at Any Age (0.0048) (0.0060)
[0.99] [0.55] [0.99] [0.99]

{0.0121} {0.0148} {0.2307} {0.2903}

Note: Standard errors in parentheses.  P-values on cross-cohort restrictions in brackets
below standard errors.  Sample means in braces below p-values.  See text for details.  For
California (Texas), there are 950,272 (664,058) individuals in our study cohorts born
within 50 days of  the school entry date.  



Table 3. Effects of  School Entry Policies:
First Stage and Reduced Form Estimates

California Texas

Fraction 
Observed

Maternal 
Age

Maternal 
Education

Fraction 
Observed

Maternal 
Age

Maternal 
Education

-0.0019 0.0127 -0.1436 -0.0072 0.0147 -0.2427 
(0.0048) (0.0306) (0.0150) (0.0060) (0.0297) (0.0144)

[0.99] [0.70] [0.18] [0.90] [0.09] [0.01]
{0.23} {20.45} {11.58} {0.27} {20.06} {11.19}

951,164 214,608 172,256 664,058 188,692 156,879

Birth Outcomes Birth Outcomes
Low 

Birthweight Prematurity
Infant 
Death

Low 
Birthweight Prematurity

Infant 
Death

-0.0006 -0.0012 NA  -0.0051 -0.0029 0.0013 
(0.0025) (0.0033) (0.0030) (0.0033) (0.0010)

[0.89] [0.48] [0.14] [0.01] [0.53]
{0.06} {0.10} {0.08} {0.11} {0.01}

172,248 164,773 156,771 156,195 156,879

Risky Maternal Behaviors Risky Maternal Behaviors
Mother 
Smokes

Mother 
Drinks

Mother 
Has STDs

Mother 
Smokes

Mother 
Drinks

Mother 
Has STDs

0.0041 NA   0.0020 -0.0013 -0.0020 0.0007 
(0.0017) (0.0015) (0.0034) (0.0011) (0.0025)

[0.90] [0.70] [0.85] [0.69] [0.15]
{0.03} {0.02} {0.08} {0.01} {0.04}

172,194 164,978 138,852 138,663 141,575

Prenatal Care Prenatal Care

Any Care
Care in First 

Trimester
Number of  

Visits Any Care
Care in First 

Trimester
Number of  

Visits
0.0002 -0.0002 -0.0150 0.0020 -0.0095 -0.0928 

(0.0010) (0.0051) (0.0446) (0.0017) (0.0055) (0.0512)
[0.61] [0.67] [0.37] [0.51] [0.77] [0.28]

{0.99} {0.74} {11.40} {0.98} {0.69} {10.77}
170,879 170,364 167,770 153,845 153,834 149,083

Paternal Characteristics Paternal Characteristics
Father 
Present Father's Age

Father's 
Education

Father 
Present Father's Age

Father's 
Education

0.0005 -0.1183 -0.0779 0.0013 -0.2163 -0.0916 
(0.0040) (0.0410) (0.0277) (0.0052) (0.0477) (0.0236)

[0.55] [0.08] [0.14] [0.37] [0.55] [0.39]
{0.84} {21.90} {11.45} {0.68} {21.98} {11.63}

172,256 148,743 151,331 156,879 107,197 105,747

Note: Standard errors in parentheses.  P-values on cross-cohort restrictions in brackets
below standard errors.  Sample means in braces below p-values.  Number of  observations
below sample means. See text for details.



Table 4. IV Effects of  Female 
Education on Infant Health

California Texas Pooled

Low Birthweight 0.0036 0.0199 0.0142 
(0.0161) (0.0118) (0.0095)

{0.06} {0.08} {0.41}
172,248 156,771

Prematurity 0.0076 0.0100 0.0094 
(0.0241) (0.0141) (0.0122)

{0.10} {0.11} {0.93}
164,773 156,195

Infant Death -0.0056 
(0.0045)

{0.01}
156,879

Notes: Standard errors in parentheses. For California and
Texas, sample means in braces below standard errors, and
sample sizes below sample means.  For pooled estimates,
p-values on cross state restrictions in brackets beneath
standard errors.



Table 5. Heterogeneity in Effects of  School Entry Policies
By Race/Ethnicity By Age

White, 
Non-

Hispanic
White 

Hispanic Black
Test of  

Equality

Less Than 
18 Years 

Old
18-23 

Years Old
Test of  

Equality
A. California
Education -0.1455 -0.1634 -0.1209 p=0.45 -0.2832 -0.1006 p<0.001 

(0.0195) (0.0182) (0.0290) (0.0203) (0.0146)
[0.09] [0.14] [0.06] [0.34] [0.52]

{11.87} {11.31} {11.65} {10.10} {12.13}
88,853 110,440 34,572 66,816 176,882

Low -0.0071 -0.0017 0.0155 p=0.02 -0.0009 -0.0007 p=0.97 
Birthweight (0.0032) (0.0029) (0.0074) (0.0042) (0.0024)

[0.85] [0.44] [0.34] [0.78] [0.59]
{0.05} {0.06} {0.10} {0.07} {0.06}
88,849 110,438 34,568 66,813 176,875

Prematurity 0.0007 -0.0064 -0.0024 p=0.48 -0.0050 -0.0001 p=0.45 
(0.0042) (0.0040) (0.0083) (0.0058) (0.0030)

[0.85] [0.16] [0.32] [0.88] [0.01]
{0.09} {0.10} {0.13} {0.12} {0.09}
85,065 105,841 32,954 63,303 169,870

B. Texas
Education -0.2837 -0.2438 -0.2059 p=0.06 -0.3764 -0.1984 p<0.001 

(0.0213) (0.0202) (0.0246) (0.0195) (0.0155)
[0.49] [0.00] [0.52] [0.27] [0.70]

{11.59} {10.79} {11.23} {9.56} {11.87}
83,173 89,147 42,411 63,680 151,991

Low -0.0071 -0.0056 0.0017 p=0.52 0.0006 -0.0073 p=0.18 
Birthweight (0.0037) (0.0041) (0.0069) (0.0051) (0.0029)

[0.76] [0.58] [0.44] [0.31] [0.50]
{0.06} {0.07} {0.12} {0.09} {0.07}
83,120 89,107 42,366 63,642 151,891

Prematurity -0.0019 -0.0078 0.0064 p=0.25 -0.0028 -0.0024 p=0.95 
(0.0042) (0.0046) (0.0073) (0.0064) (0.0031)

[0.06] [0.45] [0.32] [0.04] [0.29]
{0.08} {0.11} {0.15} {0.13} {0.10}
82,863 88,785 42,161 63,345 151,400

Infant 0.0010 0.0005 0.0012 p=0.92 0.0005 0.0010 p=0.82 
Death (0.0014) (0.0011) (0.0020) (0.0017) (0.0009)

[0.73] [0.30] [0.87] [0.19] [0.26]
{0.01} {0.01} {0.01} {0.01} {0.01}
83,173 89,147 42,411 63,680 151,991

Notes: Standard errors in parentheses.  P-value for test of  cross-cohort restrictions in brackets
below standard error. Sample mean in braces below p-value.  Sample size below sample mean. 
Estimates based on bandwidth of  70 days. Column 4 (7) presents p-value on restriction that
discontinuity is equal for the 3 different race/ethnic groups (2 different age groups).



Figure 1. Fraction of Birth Cohort Observed At Childirth: California
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Note: Open circles represent the fraction of all baby girls born in California on the given day observed giving birth in California
between 1989 and 2002. Solid curve is a local linear smoother fit separately for each cohort (h = 50). Cohorts defined
symmetrically about school entry dates, which are indicated by vertical lines. See text for details.



Figure 1 (cont.). Fraction of Birth Cohort Observed At Childirth: Texas
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Note: Open circles represent the fraction of all baby girls born in Texas on the given day observed giving birth in Texas between
1989 and 2001. Solid curve is a local linear smoother fit separately for each cohort (h = 50). Cohorts defined symmetrically
about school entry dates, which are indicated by vertical lines. See text for details.



Figure 2. Education at Motherhood
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Note: Open circles are unconditional averages. Solid curve is a local linear smoother
(h = 50). Estimates based on young women from post-1969 cohorts. See text for details.



Figure 3. Age Profile of Education Discontinuity
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Note: Open squares are estimates from the 2000 Census of the fraction of individuals
of the specified age who were enrolled in school. Solid circles are age-specific estimated
discontinuities in maternal education at the school entry date, based on a bandwidth of 75
days. The solid curve smooths the age-specific estimates using local linear smoothing using
a bandwidth of 5 years. Estimates based on all available cohorts. See text for details.



Figure 4. Distribution of Education Effects
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Note: Open circles represent differences in distribution functions for education for those
born before and after the school entry date. Estimates based on young women from
post-1969 cohorts. Dashed lines indicate pointwise confidence regions. See text for details.



Figure 5. Incidence of Low Birthweight
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Note: Open circles are unconditional averages. Solid curve is a local linear smoother
(h = 50). Estimates based on young women from post-1969 cohorts. See text for details.



Figure 6. Incidence of Prematurity
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Web Appendix

1 Estimates of the Probability of Motherhood by Age and Cohort

Here we expand on the description of Web Appendix Table 1. The table consists of 4 sep-

arate panels: 1A, 1B, 1C, and 1D. Panels 1A and 1B pertain to California; panels 1C and

1D pertain to Texas. For each panel, a row represents a cohort, and each column represents

a specific age at which a mother could be observed in our administrative data.1 The entries

of the table are discontinuity estimates, with standard errors in parentheses.

The marginal rows at the bottom of the table present joint tests of no effect across cohorts,

pooled estimates of the cohort-specific discontinuities, tests of the cross-cohort restrictions,

and sample means.

The last column of panels 1B and 1D gives cohort-specific discontinuities corresponding to

Figure 1 for California and Texas, respectively. None (one) of the cohort-specific discontinu-

ities for California (Texas) are significantly different from zero. The lower right hand corner of

panels 2B (2D) displays the pooled estimated discontinuity in the fraction observed at any age

of -0.0019 (-0.0072). Compared to the overall fraction observed of 0.23 (0.29), these are very

small discontinuities. Neither is statistically significant at conventional levels of significance.

The second-to-last columns of panels 2B and 2D present similarly small and insignificant

estimates for the fraction observed at 23 or younger (i.e., selection into our estimation sam-

ple). The pooled discontinuity estimate for the probability of giving birth at 23 or younger

is -0.0018 (-0.0048) for California (Texas), which is small relative to the mean of 0.18 (0.24).

The other columns of the table present age-specific probabilities of observation. These

are useful to consider, because it is possible that there could be no aggregate change in the

fraction observed, but individuals could be observed at different ages. The age-specific dis-

continuity estimates do not support this hypothesis, however. The estimated discontinuities

are generally small, of fluctuating sign, and statistically indistinguishable from zero. For ex-

1Beneath the cohort label, we present the number of women in these cohorts who are born within 50
days of the school entry date.



ample, 2 (3) of the 162 point estimates for California are positive (negative) and significant,

and 2 (4) of the 143 point estimates for Texas are positive (negative) and significant.

The third-to-last columns of panels 2B and 2D present tests of the hypothesis that the dis-

continuity estimates are jointly zero across all ages, for a given cohort (“test of no effect”).2

For each state and for each cohort, we fail to reject the hypothesis.

For each panel, the third-to-last block of rows presents tests of the hypothesis that the

discontinuity estimates are jointly zero across all cohorts, for a given age (“test of no effect”).

For California, we reject one of these hypotheses (age 28) and for Texas, we reject two of these

hypotheses (ages 22 and 25). These rejections may be spurious, since we are testing many

hypotheses. To test this idea, we also present a test of the hypothesis that the discontinuity

estimates are jointly zero across all cohorts and all ages (bold entry in lower right of panels

2B and 2D). We fail to reject this stringent null hypothesis for both California and Texas.

The second-to-last block of rows presents pooled estimates of the discontinuity in the

probability of being observed, for a given age. These pooled estimates impose potentially

false cross-cohort restrictions. We present the p-value for the test of the hypothesis that the

discontinuity is equal across cohorts (brackets). For all but one age in California and one

age in Texas, we fail to reject the cross-cohort restrictions.

2 Power

In this section, we discuss ex-ante estimates of the sample sizes required to reject point hy-

potheses our own study is not able to rule out. For example, our data do not rule out the

possibility that a one-year increment to schooling reduces infant mortality by -0.001.

We next explain our approach to computing the requisite sample sizes. Because they are

2Estimates and tests pooled across ages ignore the mechanical negative correlation between the indicator
for being age a and the indicator for being age a′ 6= a. Because we have many age categories, this negative
correlation is negligibly small (cf., McCrary 2008). The simulation evidence we have examined shows that
ignoring the negative correlation leads to extremely minor size distortions.



nonparametric in nature, our instrumental variables estimates have variances of the form

V
[
θ̂
]

=
c

nh
(A.1)

where n is our existing sample size, h is the bandwidth and c is a complicated function of

the design matrix and prediction errors.

The estimated standard errors from our data provide a preliminary estimate of c that can

be used to forecast what kinds of magnitudes of standard errors would be associated with

point estimates from larger sample sizes. For example, doubling the sample size is expected

to yield a standard error 70 percent as large as our estimated standard errors, holding the

bandwidth fixed at h = 50.

An alternative approach to forecasting standard errors shrinks the bandwidth with the

sample size. The theoretical econometrics literature suggests that the bandwidth should be

of the order n−1/5 (Porter 2003, Theorem 3(b)). Write h = kn−1/5 for some k and note that

this implies

V
[
θ̂
]

=
c̃

n4/5
(A.2)

where c̃ = c/k. The estimated standard errors from our data and our chosen bandwidth of

h = 50 together furnish an estimate for c̃.

We thus have 2 approaches to power calculations for the regression discontinuity context.

The first approach holds the bandwidth fixed (e.g., h = 50 regardless of sample size). The

second approach shrinks the bandwidth at the theoretically prescribed rate. We turn now

to calculating the sample size needed to reject a specific point hypothesis θ = θ0 under both

approaches, with a focus on tests of 5 percent size.

Under the first approach, for a two-sided test, we write

|θ̂N − θ0|
seN

> 1.96⇐⇒ N − n
n

>
1.962

(θ̂N − θ0)2
ŝe2 − 1 (A.3)



where θ0 is the point hypothesis to be tested, seN is the standard error forecast for the new,

larger sample size N , ŝe is the estimated standard error from our data, and θ̂N is the point

estimate we expect to obtain in the larger sample size.3 (For example, we might choose to

set θ̂N equal to the estimate based on our data (i.e., θ̂), or we might choose to set θ̂N to zero.)

The right-hand side of the second inequality gives the predicted smallest percent increase

in the sample size that will allow rejection of the point null hypothesis H0 : θ = θ0 in favor

of the alternative Ha : θ 6= θ0.

The second approach to power calculations for the regression discontinuity context shrinks

the bandwidth with the sample size. Under this approach, for a two-sided test, we write

|θ̂N − θ0|
seN

> 1.96⇐⇒ N − n
n

>

(
1.962

(θ̂N − θ0)2
ŝe2

)5/4

− 1 (A.4)

Intuitively, if the fixed bandwidth approach suggests that twice as much data (i.e., 100

percent more) is required to reject a particular hypothesis of interest, then the shrinking

bandwidth approach suggests that 138 percent as much data is required (25/4 − 1 ≈ 1.38).4

Appendix Table 4 presents these calculations for selected outcomes, point hypotheses of

interest, and hypothetical point estimates, θ̂N , that would obtain in the larger sample. For

selected outcomes of interest—maternal smoking, prenatal care in the first trimester, low

birth weight, prematurity, and infant death—we present typical point estimates from the

literature (column 1) alongside IV estimates using our data (column 2). The IV estimates

are pooled estimates for California and Texas.

The remaining columns of the table present our power calculations. Column 3 reports the

point estimate we might expect to obtain in the larger sample. Column 4 gives potential

point hypotheses of interest, and column 5 gives the percent increase in sample size needed

3Note c in Equation A.1 will be the same in the old and new sample. Also, we have subtracted 1 from
both sides of the inequality to make this expression in percentage terms.

4Under either approach, these results can be adapted to suit power calculations for one-sided tests.
One-sided tests have alternative hypotheses of the form Ha : θ < θ0 or Ha : θ > θ0. The first type of
alternative hypothesis is interesting when θ̂N − θ0 is positive, and the second type is interesting when
θ̂N − θ0 is negative. One can show that the predicted smallest required percent increase in the sample size
continues to have the form given by these inequalities, but with 1.64 replacing 1.96.



to reject that point hypothesis, using a two-sided test and assuming that the bandwidth is

held fixed at h = 50 (cf., A.3). Column 6 mimics column 5, but reports the percent increase

in the sample size required if the bandwidth were to be smaller than that we use here (cf.,

A.4). Point hypotheses from Currie and Moretti (2003) and Chou, Liu, Grossman and Joyce

(2007) are presented for comparison purposes.

Rows 1 through 4 pertain to maternal smoking. For this outcome, our IV estimate is the

same sign as that in the literature and statistically significant, but smaller in magnitude. We

are interested in knowing what kinds of point hypotheses could be ruled out in larger sam-

ples, assuming that the point estimate in the larger sample was the same as that we obtain

(-0.016). Columns 5 and 6 report that the point hypothesis -0.06 is rejected by our data,

suggesting a smaller impact of schooling on smoking than in the literature. On the other

hand, our data also rule out 0 as a plausible hypothesis. Our power calculations suggest

that only 20 percent more data would be required to rule out a point hypothesis of -0.03.

However, hypotheses such as -0.01 which are close to our point estimate, would be difficult

to rule out even with very large samples.

Rows 5 through 8 pertain to prenatal care in the first trimester. Our IV estimate is again

of the same sign as that in the literature. However, for this outcome, the estimate is not quite

statistically significantly different from zero. We are thus interested in knowing what kind of

a sample size would be required to rule out zero. Columns 5 and 6 report that even a 30-40

percent increase in sample size would be sufficient to rule out zero, assuming that the point

estimate in the larger sample was the same as that we obtain (0.031). Ruling out the Currie

and Moretti (2003) estimate of 0.02 seems infeasible, as does ruling out point hypotheses in

the neighborhood of 0.04. On the other hand, ruling out a large point hypothesis such as

0.06 would be feasible with 50-70 percent more data.

Rows 9 through 16 pertain to low birth weight. For this outcome, our data provide

substantial evidence against the Currie and Moretti (2003) estimate. In particular, our

analysis rejects the point hypothesis of -0.01 and the much smaller point hypothesis of -0.005.



Indeed, if a 70 percent larger sample were collected and the point estimate was equal to what

it is in our data (0.014), we could rule out the extremely small point hypothesis of -0.001.

Rows 13 through 16 consider a similar set of thought experiments regarding power, but

change the assumptions. In particular, in these 4 rows, we assume that in the larger sample

size, we would obtain a point estimate of zero. With such a point estimate, it would be

possible to reject the Currie and Moretti (2003) estimate only with much more data, and

rejecting smaller point hypotheses such as -0.005 and -0.001 is likely not feasible.

Rows 17 through 24 pertain to prematurity. For this outcome, the typical point hypothesis

from the literature is on the edge of the confidence region based on our data. For exam-

ple, the two-sided confidence region is [−0.014, 0.028] and the one-sided confidence region

is [−0.011, 0.009]. In a 50-70 larger sample with the same point estimate, we would reject

the Currie and Moretti (2003) estimate of -0.01. To rule out a hypothesis of -0.005 would

require much more data than we have.

Rows 21 through 24 consider a similar set of thought experiments, but assume that in

the larger sample the point estimate would be zero rather than 0.009. Ruling out point

hypotheses of -0.02 and -0.01 would be feasible under such a scenario, but ruling out smaller

point hypotheses would be unlikely.

Rows 25 through 32 pertain to infant death. Currie and Moretti (2003) do not estimate

the effect of education on this outcome. While the country context may be quite different,

Chou et al. (2007) report an estimate of -0.005. The table shows that, using our research

design, very large sample sizes are necessary to make precise statements about the effect of

schooling on infant death.



Web Appendix Table 1A.  Discontinuity in Fraction Giving Birth at Specific Ages, by Cohort: 
California, Ages 13 through 23

13 14 15 16 17 18 19 20 21 22 23

1969 cohort -0.003 -0.007 0.002 0.001 
46,190 (0.009) (0.004) (0.008) (0.003)

1970 cohort 0.004 -0.005 -0.005 -0.005 -0.003 
46,190 (0.006) (0.005) (0.007) (0.003) (0.005)

1971 cohort 0.000 -0.002 -0.008 0.001 0.001 0.000 
40,464 (0.004) (0.009) (0.009) (0.004) (0.004) (0.003)

1972 cohort 0.008 -0.005 -0.005 0.007 0.001 0.001 0.002 
39,762 (0.004) (0.011) (0.004) (0.009) (0.004) (0.007) (0.007)

1973 cohort 0.006 0.000 0.010 0.000 -0.002 0.002 -0.003 0.001 
38,594 (0.003) (0.008) (0.006) (0.005) (0.004) (0.004) (0.006) (0.003)

1974 cohort -0.001 0.001 0.000 -0.002 0.011 -0.002 -0.006 -0.003 0.003 
41,154 (0.002) (0.006) (0.004) (0.006) (0.005) (0.004) (0.005) (0.008) (0.003)

1975 cohort -0.002 0.006 0.001 -0.002 0.003 -0.004 0.004 0.003 -0.002 0.001 
41,666 (0.002) (0.003) (0.003) (0.004) (0.005) (0.005) (0.010) (0.005) (0.003) (0.003)

1976 cohort 0.000 -0.001 -0.003 -0.002 0.003 0.002 0.001 0.004 -0.001 0.002 -0.001 
44,132 (0.000) (0.003) (0.002) (0.007) (0.004) (0.005) (0.004) (0.004) (0.006) (0.004) (0.007)

1977 cohort 0.000 0.001 0.000 0.001 0.005 -0.002 -0.002 0.000 -0.005 0.002 0.002 
45,410 (0.001) (0.002) (0.002) (0.004) (0.006) (0.007) (0.007) (0.005) (0.004) (0.004) (0.003)

1978 cohort -0.001 0.001 -0.004 -0.002 -0.001 0.002 -0.002 0.000 -0.006 0.000 
46,940 (0.001) (0.001) (0.003) (0.004) (0.004) (0.004) (0.010) (0.003) (0.008) (0.004)

1979 cohort -0.001 0.001 0.001 -0.002 -0.001 -0.007 -0.002 -0.002 -0.005 
50,968 (0.001) (0.001) (0.002) (0.003) (0.003) (0.004) (0.004) (0.006) (0.005)

1980 cohort 0.000 -0.001 -0.002 -0.004 -0.006 0.001 0.002 -0.004 
52,566 (0.001) (0.001) (0.002) (0.003) (0.006) (0.005) (0.004) (0.004)

1981 cohort -0.001 0.001 0.001 0.002 0.000 -0.006 0.001 
54,956 (0.000) (0.001) (0.002) (0.002) (0.006) (0.007) (0.004)

1982 cohort 0.000 -0.001 -0.001 0.002 0.003 0.001 
55,898 (0.001) (0.002) (0.002) (0.003) (0.003) (0.003)

1983 cohort -0.001 -0.001 0.001 0.002 -0.001 
56,090 (0.000) (0.001) (0.004) (0.003) (0.002)

1984 cohort 0.000 -0.001 0.000 0.001 
58,884 (0.001) (0.001) (0.003) (0.002)

1985 cohort 0.000 -0.002 0.000 
61,919 (0.000) (0.001) (0.001)

1986 cohort 0.000 0.001 
62,574 (0.000) (0.001)

1987 cohort 0.000 
65,915 (0.000)

Test of  no effect 9.88 13.02 10.05 8.98 7.69 7.74 9.20 4.71 9.74 4.32 2.40
p-value, no effect [0.63] [0.37] [0.61] [0.70] [0.81] [0.80] [0.69] [0.97] [0.55] [0.93] [0.98]

Pooled Estimates -0.0003 -0.0004 -0.0001 0.0004 0.0004 -0.0006 0.0002 -0.0009 -0.0027 -0.0003 0.0005 
Standard Errors (0.0002) (0.0004) (0.0007) (0.0010) (0.0013) (0.0017) (0.0017) (0.0019) (0.0016) (0.0017) (0.0015)
p-value, [0.96] [0.44] [0.54] [0.68] [0.76] [0.74] [0.61] [0.96] [0.69] [0.90] [0.99]
  cohort restrictions
Means {0.0004} {0.0027} {0.0083} {0.0164} {0.0228} {0.0286} {0.0318} {0.0263} {0.0200} {0.0154} {0.0121}



Web Appendix Table 1B.  Discontinuity in Fraction Giving Birth at Specific Ages, by Cohort: 
California, Ages 24 through 31

Test of  
No Effect

Observed 
at 23 or

Observed 
at Any

24 25 26 27 28 29 30 31 [p-value] Younger Age

1969 cohort -0.006 0.001 0.001 0.000 0.000 0.001 0.004 0.004 10.28 -0.003 0.004 
46,190 (0.003) (0.003) (0.003) (0.003) (0.002) (0.003) (0.004) (0.004) [0.59] (0.026) (0.038)

1970 cohort -0.001 -0.004 -0.003 0.001 0.000 0.004 0.001 8.42 -0.015 -0.012 
46,190 (0.003) (0.006) (0.003) (0.004) (0.003) (0.003) (0.002) [0.75] (0.007) (0.013)

1971 cohort -0.005 0.005 0.004 0.004 -0.004 -0.005 9.38 -0.005 -0.006 
40,464 (0.005) (0.003) (0.005) (0.003) (0.003) (0.007) [0.67] (0.027) (0.040)

1972 cohort 0.006 0.001 -0.002 -0.007 -0.003 16.62 0.010 0.005 
39,762 (0.003) (0.004) (0.005) (0.003) (0.004) [0.16] (0.034) (0.045)

1973 cohort -0.004 0.002 0.001 0.002 8.65 0.017 0.019 
38,594 (0.008) (0.003) (0.003) (0.003) [0.73] (0.019) (0.030)

1974 cohort -0.002 -0.004 0.003 12.93 0.000 -0.005 
41,154 (0.005) (0.004) (0.002) [0.37] (0.025) (0.034)

1975 cohort -0.002 -0.002 8.17 0.008 0.006 
41,666 (0.009) (0.003) [0.77] (0.016) (0.024)

1976 cohort 0.001 4.38 0.004 0.001 
44,132 (0.004) [0.98] (0.028) (0.028)

1977 cohort 3.95 0.002 0.005 
45,410 [0.97] (0.021) (0.020)

1978 cohort 3.80 -0.014 -0.015 
46,940 [0.96] (0.021) (0.021)

1979 cohort 9.46 -0.015 -0.015 
50,968 [0.40] (0.017) (0.017)

1980 cohort 6.16 -0.011 -0.011 
52,566 [0.63] (0.023) (0.023)

1981 cohort 4.52 -0.001 -0.001 
54,956 [0.72] (0.016) (0.016)

1982 cohort 2.59 0.003 0.003 
55,898 [0.86] (0.010) (0.010)

1983 cohort 2.02 -0.002 -0.002 
56,090 [0.85] (0.011) (0.011)

1984 cohort 0.99 -0.002 -0.002 
58,884 [0.91] (0.006) (0.006)

1985 cohort 7.29 -0.003 -0.003 
61,919 [0.06] (0.003) (0.003)

1986 cohort 2.96 -0.001 -0.001 
62,574 [0.23] (0.002) (0.002)

1987 cohort 0.00 -0.001 -0.001 
65,915 [0.98] (0.001) (0.001)

Test of  no effect 2.40 9.89 4.87 3.72 9.97 2.50 2.14 1.05 122.57 10.38 6.24 
p-value, no effect [0.97] [0.19] [0.56] [0.59] [0.04] [0.47] [0.34] [0.30] [0.99] [0.94] [0.99]

Pooled Estimates -0.0017 -0.0003 0.0008 0.0003 -0.0015 0.0002 0.0024 0.0035 -0.0018 -0.0019 
Standard Errors (0.0019) (0.0015) (0.0015) (0.0014) (0.0015) (0.0026) (0.0023) (0.0042) (0.0039) (0.0048)
p-value, [0.26] [0.57] [0.67] [0.04] [0.66] [0.50] [0.61] NA [0.99] [0.99]
  cohort restrictions
Means {0.0097} {0.0081} {0.0070} {0.0059} {0.0051} {0.0040} {0.0031} {0.0020} {0.1848} {0.2307}



Web Appendix Table 1C.  Discontinuity in Fraction Giving Birth at Specific Ages, by Cohort: 
Texas, Ages 13 through 23

13 14 15 16 17 18 19 20 21 22 23

1969 cohort 0.006 -0.006 -0.005 0.001 
32,522 (0.007) (0.009) (0.008) (0.004)

1970 cohort -0.005 -0.014 0.005 0.001 -0.004 
33,938 (0.013) (0.012) (0.008) (0.010) (0.006)

1971 cohort -0.009 -0.005 -0.006 0.003 0.011 -0.002 
33,258 (0.008) (0.005) (0.005) (0.010) (0.004) (0.005)

1972 cohort 0.000 -0.007 -0.004 -0.006 0.002 0.010 -0.003 
31,286 (0.005) (0.006) (0.011) (0.009) (0.006) (0.005) (0.004)

1973 cohort 0.000 0.002 0.005 -0.003 -0.002 0.004 -0.007 0.008 
30,924 (0.004) (0.007) (0.004) (0.009) (0.011) (0.005) (0.004) (0.005)

1974 cohort -0.001 0.005 -0.003 -0.006 -0.001 -0.010 0.001 0.006 0.004 
31,806 (0.003) (0.004) (0.006) (0.009) (0.005) (0.006) (0.005) (0.004) (0.004)

1975 cohort -0.002 -0.006 0.002 0.000 -0.001 -0.003 0.004 -0.002 0.000 -0.002 
31,794 (0.005) (0.005) (0.004) (0.007) (0.006) (0.010) (0.004) (0.005) (0.005) (0.004)

1976 cohort -0.002 -0.003 -0.001 0.002 -0.010 0.002 0.015 0.003 0.004 0.006 -0.001 
32,776 (0.002) (0.003) (0.003) (0.006) (0.006) (0.005) (0.005) (0.010) (0.006) (0.005) (0.007)

1977 cohort 0.000 -0.001 0.000 0.005 -0.001 -0.007 -0.002 0.009 0.008 0.004 
33,298 (0.001) (0.003) (0.004) (0.003) (0.006) (0.007) (0.006) (0.006) (0.006) (0.005)

1978 cohort 0.001 -0.002 -0.004 0.004 0.010 -0.003 -0.002 -0.005 0.006 
35,035 (0.001) (0.002) (0.003) (0.004) (0.005) (0.008) (0.005) (0.007) (0.004)

1979 cohort 0.001 0.000 -0.003 -0.002 0.009 -0.008 -0.001 0.000 
37,521 (0.001) (0.002) (0.003) (0.004) (0.005) (0.004) (0.005) (0.004)

1980 cohort 0.001 0.001 -0.002 0.004 -0.006 0.000 -0.013 
39,878 (0.001) (0.003) (0.003) (0.003) (0.005) (0.006) (0.005)

1981 cohort -0.001 -0.003 0.002 -0.004 0.001 -0.003 
41,689 (0.001) (0.001) (0.003) (0.003) (0.005) (0.009)

1982 cohort 0.001 -0.003 -0.001 0.001 -0.004 
43,526 (0.001) (0.002) (0.002) (0.004) (0.003)

1983 cohort -0.001 -0.003 -0.002 -0.002 
42,507 (0.002) (0.002) (0.002) (0.004)

1984 cohort 0.000 -0.002 -0.002 
44,303 (0.001) (0.002) (0.002)

1985 cohort 0.000 -0.002 
44,143 (0.001) (0.002)

1986 cohort 0.000 
43,854 (0.001)

Test of  no effect 7.77 14.72 7.16 9.33 13.22 10.54 17.95 10.73 6.41 18.88 5.92
p-value, no effect [0.73] [0.20] [0.79] [0.59] [0.28] [0.48] [0.08] [0.47] [0.78] [0.03] [0.66]

Pooled Estimates -0.0001 -0.0018 -0.0017 0.0012 -0.0003 -0.0036 -0.0025 -0.0019 0.0027 0.0030 0.0001 
Standard Errors (0.0003) (0.0008) (0.0009) (0.0012) (0.0017) (0.0021) (0.0023) (0.0023) (0.0021) (0.0020) (0.0018)
p-value, [0.67] [0.98] [0.96] [0.64] [0.22] [0.65] [0.08] [0.39] [0.93] [0.07] [0.55]
  cohort restrictions
Means {0.0008} {0.0044} {0.0117} {0.0224} {0.0320} {0.0380} {0.0390} {0.0332} {0.0253} {0.0193} {0.0148}



Web Appendix Table 1D.  Discontinuity in Fraction Giving Birth at Specific Ages, by Cohort: 
Texas, Ages 24 through 30

Test of  
No Effect

Observed 
at 23 or

Observed 
at Any

24 25 26 27 28 29 30 [p-value] Younger Age

1969 cohort -0.001 -0.003 -0.002 0.005 -0.001 -0.002 0.001 3.87 -0.008 -0.009 
32,522 (0.004) (0.005) (0.004) (0.004) (0.004) (0.004) (0.004) [0.97] (0.016) (0.038)

1970 cohort 0.005 0.002 0.000 -0.001 -0.003 -0.003 5.93 -0.017 -0.018 
33,938 (0.004) (0.004) (0.004) (0.004) (0.003) (0.003) [0.88] (0.031) (0.043)

1971 cohort 0.009 -0.006 0.004 -0.005 -0.002 18.61 -0.007 -0.009 
33,258 (0.005) (0.004) (0.005) (0.009) (0.006) [0.07] (0.008) (0.022)

1972 cohort -0.003 -0.006 0.002 -0.001 9.74 -0.008 -0.023 
31,286 (0.005) (0.004) (0.008) (0.004) [0.55] (0.044) (0.047)

1973 cohort -0.001 -0.005 -0.002 9.29 0.010 -0.006 
30,924 (0.003) (0.007) (0.004) [0.60] (0.038) (0.040)

1974 cohort -0.003 -0.001 9.24 -0.005 -0.010 
31,806 (0.004) (0.003) [0.60] (0.035) (0.042)

1975 cohort -0.010 16.32 -0.011 -0.017 
31,794 (0.003) [0.13] (0.034) (0.037)

1976 cohort 14.72 0.016 0.019 
32,776 [0.20] (0.024) (0.030)

1977 cohort 9.27 0.021 0.014 
33,298 [0.51] (0.031) (0.033)

1978 cohort 11.24 0.000 0.000 
35,035 [0.26] (0.021) (0.021)

1979 cohort 9.28 0.001 0.001 
37,521 [0.32] (0.021) (0.021)

1980 cohort 12.70 -0.025 -0.025 
39,878 [0.08] (0.014) (0.014)

1981 cohort 10.66 -0.011 -0.011 
41,689 [0.10] (0.024) (0.024)

1982 cohort 5.55 -0.020 -0.020 
43,526 [0.35] (0.009) (0.009)

1983 cohort 3.50 -0.003 -0.003 
42,507 [0.48] (0.008) (0.008)

1984 cohort 1.90 -0.005 -0.005 
44,303 [0.59] (0.005) (0.005)

1985 cohort 1.35 -0.005 -0.005 
44,143 [0.51] (0.008) (0.008)

1986 cohort 0.11 0.000 0.000 
43,854 [0.74] (0.002) (0.002)

Test of  no effect 5.92 18.91 6.14 1.37 1.76 1.20 1.14 153.29 12.85 11.90 
p-value, no effect [0.66] [0.01] [0.41] [0.93] [0.78] [0.75] [0.57] [0.26] [0.80] [0.99]

Pooled Estimates -0.0005 -0.0030 0.0005 -0.0007 -0.0021 -0.0024 0.0015 -0.0048 -0.0072 
Standard Errors (0.0015) (0.0019) (0.0023) (0.0028) (0.0026) (0.0025) (0.0038) (0.0051) (0.0060)
p-value, [0.01] [0.65] [0.85] [0.63] [0.92] [0.74] NA [0.88] [0.99]
  cohort restrictions
Means {0.0120} {0.0102} {0.0083} {0.0066} {0.0051} {0.0035} {0.0022} {0.2411} {0.2903}
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Web Appendix Table 3. Tests of  Overidentification:
Continuity of  Baseline Characteristics

California

Maternal Characteristics
Low First Month

Hispanic Black Black* Birthweight* Prenatal Care*
-0.0031 -0.0025 -0.0017 -0.0012 -0.0036 
(0.0069) (0.0044) (0.0025) (0.0023) (0.0160)

[0.25] [0.52] [0.96] [0.55] [0.65]
{0.42} {0.13} {0.10} {0.07} {2.76}

214,608 214,608 576,421 575,213 576,421

Grandparental Characteristics*
Native Child Age at Childbirth
Born Parity Mortality Mother Father
0.0049 0.0188 0.0003 0.0255 0.0607 

(0.0044) (0.0127) (0.0004) (0.0546) (0.0534)
[0.14] [0.22] [0.59] [0.62] [0.87]

{0.70} {2.08} {0.01} {25.68} {28.60}
513,213 575,379 573,466 576,421 558,994

Texas

Maternal Characteristics
Low First Month

Hispanic Black Black* Birthweight* Prenatal Care*
0.0051 -0.0020 0.0030 -0.0001 -0.0300 

(0.0077) (0.0056) (0.0035) (0.0023) (0.0188)
[0.93] [0.68] [0.77] [0.71] [0.91]

{0.39} {0.18} {0.15} {0.08} {2.95}
188,692 188,692 551,294 550,760 551,294

Grandparental Characteristics*
Native Child Age at Childbirth
Born Parity Mortality Mother Father
0.0023 0.0015 0.0003 -0.0248 -0.0481 

(0.0040) (0.0109) (0.0004) (0.0635) (0.0664)
[0.99] [0.57] [0.08] [1.00] [0.96]

{0.85} {2.15} {0.01} {24.61} {27.86}
502,761 551,074 551,069 551,294 475,450

Notes: Standard errors in parentheses.  P-values for null hypothesis that discontinuity equal
across cohorts in brackets beneath standard errors.  Sample means in braces below p-values. 
Sample sizes below sample means.  Stars indicate that estimates are based on public-use files.



Web Appendix Table 4.  Power Calculations

Presumptive Needed Increase in Sample Size

Outcome Row
Currie and 

Moretti
Estimate 
(Std. Err.)

Point 
Estimate 

(θN)

Point 
Hypothesis 

(θ0)

Fixed 
Bandwidth 
Approach

Shrinking 
Bandwidth 
Approach

Maternal Smoking 1 -0.06 -0.016 -0.016 -0.060 Rejected Rejected
2 (0.008) -0.030 16% 21%
3 -0.010 660% 1162%
4 0 Rejected Rejected

Prenatal Care in 5 0.02 0.031 0.031 0 29% 37%
   1st Trimester 6 (0.018) 0.020 910% 1702%

7 0.040 1471% 3027%
8 0.060 49% 65%

Low Birth Weight 9 -0.01 0.014 0.014 -0.010 Rejected Rejected
10 (0.010) -0.005 Rejected Rejected
11 -0.001 50% 65%
12 0 71% 96%

13 0 -0.010 247% 373%
14 -0.005 1287% 2577%
15 -0.001 34577% 149540%
16 0 NA NA

Prematurity 17 -0.01 0.009 0.009 -0.020 Rejected Rejected
18 (0.012) -0.010 52% 68%
19 -0.005 175% 255%
20 0 548% 933%

21 0 -0.020 42% 55%
22 -0.010 469% 779%
23 -0.005 2177% 4875%
24 0 NA NA

Infant Death 25 NA -0.006 -0.006 -0.010 294% 455%
26 (0.004) -0.005 22653% 88270%
27 -0.001 266% 407%
28 0 147% 209%

29 0 -0.010 Rejected Rejected
30 -0.005 208% 307%
31 -0.001 7589% 22667%
32 0 NA NA

Notes: Table presents estimated percent increases in sample size necessary to reject specified hypotheses, under various
assumptions on the point estimate that would be obtained in a larger sample.  For details on calculations, see text.



Web Appendix Figure 1. Age at First Birth
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Note: Open circles are unconditional averages. Solid curve is a local linear smoother
(h = 50). Estimates based on post-1969 cohorts. See text for details.



Web Appendix Figure 2. Distribution of Age Effects
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Note: Open circles represent differences in distribution functions for age for those born
before and after the school entry date. Estimates based on post-1969 cohorts. Dashed lines
indicate pointwise confidence regions. See text for details.



Web Appendix Figure 3. Selected Reduced Form
Discontinuities by Bandwidth
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Note: Estimates based on young women from post-1969 cohorts. See text for details.
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