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Abstract

In the single-IV model, researchers commonly rely on t-ratio-based inference, even
though the literature has quantified its potentially severe large-sample distortions. Build-
ing on Stock and Yogo (2005), we introduce the tF critical value function, leading to
a standard error adjustment that is a smooth function of the first-stage F-statistic. For
one-quarter of specifications in 61 AER papers, corrected standard errors are at least 49
and 136 percent larger than conventional 2SLS standard errors at the 5-percent and 1-
percent significance levels, respectively. tF confidence intervals have shorter expected
length than those of Anderson and Rubin (1949), whenever both are bounded.
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Consider the commonly employed single-variable, just-identified instrumental
variable (IV) model, with outcome Y , regressor of interest X , and instrument Z,1

Y = βX +u, where(1)

C (u,Z) = 0, C (Z,X) 6= 0.

Conducting hypothesis tests and constructing confidence sets for β with correct
significance and confidence levels has been pursued for several decades. In this
setting, the validity of the Anderson-Rubin test (henceforth, AR) is well established
(Anderson and Rubin, 1949)2, and results expressing its advantages and optimality
come in several flavors.3

Despite these findings, applied research, with rare exceptions, instead relies on
t-ratio-based inference. Many studies have shown, numerically or theoretically,
that the t-ratio test for IV significantly over-rejects and associated confidence in-
tervals under-cover in situations when instruments are not sufficiently strong.4 To
deal with this problem, researchers have relied upon the first-stage F-statistic as a
pre-test for instrument weakness. Staiger and Stock (1997) and Stock and Yogo
(2005) provide a framework for precisely quantifying the distortions in—and there-
fore correcting—inference, with the use of the first-stage F-statistic. Importantly,
although much of the econometric literature considers the general case of the over-
identified model with multiple instruments, Stock and Yogo (2005) make clear that
the distortions in inference also occur in the single instrumental variable, just-

1It will be shown that all of our results apply to the single excluded instrument case more
generally, allowing for other covariates and variance estimators that accommodate departures from
i.i.d. errors, such as heteroskedasticity-consistent, clustered, or time series approaches. Throughout,
we use V (·) and C(·, ·) to denote population variance and covariance, respectively.

2Staiger and Stock (1997) show that AR-based inference delivers correct size/confidence with
nonnormal and homoskedastic errors under arbitrarily weak instruments. Stock and Wright (2000),
among others, show that AR-based inference is valid under more general error structures.

3The test of Anderson and Rubin (1949) in the just-identified case has been shown to minimize
Type II error among various classes of alternative tests. These include classes of either unbiased tests
(whose rejection probabilities under all alternatives are larger than that under the null) or invariant
tests (which remain the same after transforming the data linearly). This is shown for homoskedastic
errors, by Moreira (2002, 2009) and Andrews, Moreira and Stock (2006), and later generalized to
cases for heteroskedastic, clustered, and/or autocorrelated errors, by Moreira and Moreira (2019).

4See, for example, Nelson and Startz (1990), Bound, Jaeger and Baker (1995), and Dufour
(1997), and an earlier discussion by Rothenberg (1984). For a simple STATA program that demon-
strates the inaccuracy of the standard approximation compared to the "weak-iv" asymptotic approx-
imation, see http://www.princeton.edu/∼davidlee/wp/SupplementarytF.html
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identified case—a common case for applied work, and the exclusive focus of the
current paper.5

Unfortunately, the implementation and interpretation by practitioners of the ap-
proach and results of Staiger and Stock (1997) and Stock and Yogo (2005) has typ-
ically been imperfect or deficient. For example, pre-testing using the rule-of-thumb
F-statistic threshold of 10 is commonplace, rather than the actual values provided
in Stock and Yogo (2005) tables. Or, practitioners erroneously refer to the interval
β̂ ± 1.96 · ŝe

(
β̂

)
as a “95% confidence interval” (after pre-testing using F > 10

as a diagnostic), even though the Bonferroni bounds of Staiger and Stock (1997)
make clear that using F > 16.38 from Stock and Yogo (2005) implies that such an
interval is in fact an 85% confidence interval.6,7

In the current paper, focusing on the single-instrument case, we meet practi-
tioners “where they are” by introducing a new method of inference using only the
first-stage F statistic and the 2SLS t-ratio. Rather than relying on a fixed pre-
testing threshold value, we show how to smoothly adjust t-ratio inference based on
the first-stage F statistic. In its simplest form, this amounts to applying an adjust-
ment factor to 2SLS standard errors based on the first-stage F with the adjustment
factors provided in tables below for 95% and 99% confidence levels. We refer to
this procedure as the tF procedure and list some of its advantages here.

First, smooth adjustment yields usable finite confidence intervals for smaller
values of the F statistic. In particular, for 95% confidence, finite adjustment fac-
tors are available for any value of F > 3.84. This puts the smooth adjustment
approach on equal footing with AR, which yields bounded 95% confidence inter-
vals for F > 3.84. Second, the confidence levels specified with the tF adjustment

5This single-variable case includes applications such as randomized trials with imperfect com-
pliance (estimation of LATE, Imbens and Angrist (1994)), fuzzy regression discontinuity designs
(see discussion in Lee and Lemieux (2010)), and fuzzy regression kink designs (see discussion in
Card et al. (2015)).

6We write β̂ for the IV estimator and ŝe(·) for the estimated standard error of an estimator.
7In their formulation, Staiger and Stock (1997) point out that this inferential statement requires

a pre-commitment to a confidence set that is the entire real line in the event that F<16.38. Hall,
Rudebusch and Wilcox (1996) show that over-rejection can be even worse in the presence of pre-
testing for weak instruments. Andrews, Stock and Sun (2019) also discuss in detail the practice of
selectively dropping specifications when first-stage F-statistics do not meet a particular threshold,
and show that severe distortion can result.
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factors leave little room for practitioner misinterpretation. These confidence levels
incorporate the effects of basing inference on the first-stage F ; again, this puts the
confidence interval on equal footing with AR, or other procedures that have zero
distortion. Third, even though the tF critical value function tends to infinity as F

approaches 3.84 from above (e.g., for the 5 percent test), any alternative function
that is uniformly below the tF critical value function in a neighborhood of 3.84
leads to over-rejection for some data generating process.

Fourth, our table of adjustment factors is “robust” to commonly considered er-
ror structures (e.g., heteroskedasticity or clustering). That is, no further adjustment
is needed for these scenarios as long as the same type of robust variance estima-
tor is used for the first-stage as for the IV estimate itself. Fifth, we compare the
tF approach to AR based on expected confidence interval length. Given the well-
established power properties of AR, our results here are surprising: conditional on
F > 3.84, the expected length of the AR interval is infinite, while that of the tF

interval is finite. Sixth, the tF adjustment can be easily applied to re-assess studies
that have already been published, provided that the first-stage F-statistic has been
reported, and does not require access to the original data.

In order to gauge the likely magnitude of tF adjustments in applied research
going forward, we use a sample of studies recently published in the American Eco-

nomic Review (AER) that utilize a single-instrument specification. For at least one-
quarter of the specifications where the first-stage F-statistic is reported or can be
computed from the published tables, applying the tF adjustment to the standard
errors leads to an increase in confidence interval lengths of at least 49 and 136 per-
cent for 5-percent and 1-percent significance levels, respectively. We observe that
among the specifications for which F > 10 and t2 > 1.962 (for the null hypothe-
sis that the slope coefficient is zero)—which without our adjustment would likely
have been deemed “statistically significant”—the use of tF adjustment would cause
about one-fourth of the specifications to be statistically insignificant at the 5-percent
level. We conclude therefore that these adjustments are likely to have a substantive
impact on inferences in applied research that employ t-ratio inferences.

The paper is organized as follows. Section I uses recent papers published in
the AER to characterize current inferential practices for the single-instrument IV
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model. In Section II, we first describe the tF procedure—the critical values, the
main results on power, and its application to our sample of studies. Section III
describes how the results stated in Section II are derived. Section IV concludes.

I Inference for IV: Current Practice

To motivate our emphasis on improving t-ratio-based inference, this section doc-
uments facts about current practice for the single instrumental variable model, as
reflected by recent research published in the American Economic Review. We later
use this sample of studies to gauge to what extent our proposed adjustments could
make a difference in practice.

Our sample frame consists of all AER papers published between 2013 and 2019,
excluding proceedings papers and comments, yielding 757 articles, of which 123
include instrumental variable regressions. Of these 123 studies, 61 employ single
instrumental variable (just-identified) regressions.8 Consistent with the conclusion
of Andrews, Stock and Sun (2019), this confirms that the just-identified case is an
important and prevalent one, from an applied perspective.

From these papers, we transcribe the coefficients, standard errors, and other
statistics associated with each IV regression specification. Each observation in our
final dataset is a “specification,” where a single specification is defined as a unique
combination of 1) outcome, 2) endogenous regressor, 3) instrument, and 4) com-
bination of covariates. The dataset contains 1311 specifications from 61 studies;
among those studies, the average number of specifications is 21.5, with a median of
9, and with 25th and 75th percentiles of 4 and 21, respectively. The purpose of our
dataset is to fully characterize specifications that are reported in published studies.9

Each specification is placed into one of four categories, as shown in Table 1,
according to the types of regressions for which coefficients and standard errors

8Specifically, we include papers that exclusively employ just-identified specifications with one
endogenous regressor and presented 2SLS results in the main text; i.e., we exclude a paper if it
contains over-identified models, and we exclude papers if the only mention of a just-identified IV
model is in an appendix.

9See Andrews, Stock and Sun (2019) for a more in-depth comparison of AR and t-ratio-based
inference.
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Table 1: Current Practice Implementing IV Estimation, Published Papers from AER

No Yes Total
Two-Stage Least Squares 445 132 577

(0.339) (0.101) (0.44)
[0.251] [0.088] [0.339]

Two-Stage Least Squares and First Stage 247 212 459
(0.188) (0.162) (0.35)
[0.204] [0.154] [0.358]

Two-Stage Least Squares and Reduced Form 13 7 20
(0.01) (0.005) (0.015)

[0.024] [0.035] [0.059]
Two-Stage Least Squares, First Stage, and Reduced 
Form 181 74 255

(0.138) (0.056) (0.195)
[0.15] [0.094] [0.244]

Total 886 425 1311
(0.676) (0.324) (1)
[0.628] [0.372] [1]

Combinations of regressions reported First Stage F-statistic?

N=1311. Drawn from 61 published papers. Each observation represents a unique combination
of outcome, regressor, instrument, and covariates. Unweighted proportions are in parentheses, and
weighted proportions are in brackets, where the weights are proportional to the inverse of the number
of specifications in the associated paper.

are reported: the coefficients and standard errors from 1) only the 2SLS, 2) the
2SLS and first-stage regression, 3) the 2SLS and the reduced-form regression of
the outcome on the instrument, and 4) the 2SLS, the first-stage, and the reduced
form. In addition, we identify whether or not, for each specification, the first-stage
F-statistic is explicitly reported (as indicated by the first two columns in Table 1).10

For each configuration, Table 1 reports the number of specifications, proportions
(in parentheses), and weighted proportions (in brackets) where the weight for each
specification is the inverse of the total number of specifications reported from its

10We include in the second column F-statistics that were actually reported by authors as the
"Kleibergen-Paap" (henceforth, KP) statistic from Kleibergen and Paap (2006), rather than as an F-
statistic. As noted in Andrews, Stock and Sun (2019), in the case of a single endogenous-regressor
with single instrument, KP = F . In our sample, about 39 percent (weighted) of the F statistics in
the second column were reported as KP statistics.

5



study. Henceforth, unless otherwise specified, when we refer to proportions, we
refer to the weighted proportions since we wish to implicitly give each study equal
weight in the summary statistics that we report.

Table 1 shows that the most common combination among the eight possible
types is the reporting of 2SLS coefficients without explicitly reporting the first-
stage F-statistic, representing about a quarter of the specifications. The second
most-common practice is to report both the 2SLS and the first-stage coefficients
without reporting the F-statistic (about 20 percent), but it should be clear that the
F-statistic can be derived from squaring the ratio of the first-stage coefficient to its
associated estimated standard error. The least common reporting combination is
2SLS and the reduced form, without reporting the first-stage F (2.4 percent).

In our analysis of the data, in order to maximize the number of specifications
for which we have a first-stage F-statistic, we compute it from the reported first-
stage coefficients and standard errors, but whenever this is not possible, we use the
explicitly reported F-statistic.11

Figure 1 displays the histogram of the F-statistics in our sample on a logarith-
mic scale. The weighted 25th percentile, median, and 75th percentiles are 14.23,
45.84, and 225, respectively. The figure shows that most of the reported first-stage
F-statistics in these studies do pass commonly cited thresholds such as 10.12 More
detail on these specifications is provided in Table 2, which is a two-way frequency
table for whether or not the square of the t-ratio for the hypothesis that β = 0 ex-
ceeds 1.962, and whether or not the computed F statistic exceeds 10 (a commonly-
used or cited threshold). Overall, the table indicates that for about 60 percent of
the specifications, the estimated 2SLS coefficient would be “statistically signifi-
cant” under the practice of using a critical value of 1.96 and a first-stage F-statistic

11We find that among studies in which both the reported and computed F-statistic are available,
about 63 percent of the time the two numbers are within 5 percent of one another. For those speci-
fications in which the reported F̂ is the only F-statistic available, there are some situations where it
is not entirely clear whether the F-statistic is the first-stage F ; it is possible that they are F-statistics
for testing other hypotheses.

12Consistent with the pattern observed in Andrews, Stock and Sun (2019), we observed in our
sample that among those specifications where the F (or KP) statistics were explicitly reported, KP
statistics were somewhat smaller: the weighted median KP statistic was 14.23, and among all the
reported statistics below 10, about 61 percent were reported as KP statistics.
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Table 2: t2 and First-stage F-statistics, Conventional Critical Value, Rule of Thumb
Threshold of 10

F<10 F≥10 Total
 t2 ≥1.962 64 408 472

(0.076) (0.482) (0.557)
[0.104] [0.595] [0.699]

t2<1.962 41 334 375
(0.048) (0.394) (0.443)
[0.062] [0.238] [0.301]

Total 105 742 847
(0.124) (0.876) (1)
[0.167] [0.833] [1]

N=847. Unweighted proportions are in parentheses, and weighted proportions are in brackets. See
notes to Table 1. All specifications use the derived F-statistic, and when not possible, the reported
F-statistic. F-statistics can be derived for specifications that report nonzero standard errors in the
first-stage; 6 specifications that report (rounded) first-stage standard errors of zero and do not report
F-statistics are excluded.

threshold of 10 as a basis of trusting the inference.
We recognize that the null hypothesis of β = 0 may not always be the hypoth-

esis of interest across all the studies. Furthermore, in our data collection, we do
not make any judgments as to the extent to which any particular regression speci-
fication is important for the conclusions of the article. Indeed, in some cases, the
2SLS specification is used for a “placebo” analysis, where insignificant results are
consistent with the identification strategy of the paper. In that spirit, it is beyond the
scope of our paper to determine whether or not any particular study’s overall con-
clusions are still supported despite any changes to the statistical inferences caused
by using the corrections that we describe below. Instead, we focus more narrowly
on gauging to what extent the tF critical values are likely to impact the length of
confidence intervals in research going forward, using a recent sample of published
studies to guide and inform that estimate.

Most importantly, we observe from our sample that AR test statistics or AR con-
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Figure 1: Distribution of First-stage F-statistics
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N=847 specifications. Scale is logarithmic. All specifications use the derived F-statistic or, when not
possible, the reported F-statistic. F-statistics can be derived for specifications that report nonzero
standard errors in the first-stage. Six specifications that report (rounded) first-stage standard errors
of zero and do not report F-statistics are excluded. Proportions are weighted; see notes to Table 1.
Dashed lines correspond to the 25th (14.23), 50th (45.84), and 75th (225) percentiles of the distribu-
tion. The shaded region denotes the range between the 0.5th and 99.5th percentiles of a non-central
χ2

1 distribution with a non-centrality parameter equal to 142.6.

fidence regions are reported for less than 3 percent of the specifications, despite the
fact that the econometric literature has noted that AR inference is valid and robust to
weak instruments and has a number of other attractive properties; see the discussion,
for example, in Andrews, Stock and Sun (2019). It is this stark difference between
theoretical considerations and practice that motivates our focus. We surmise that
practitioners may elect to use t-ratio inference, not because they believe it has supe-
rior properties compared to AR-based inference, but rather because it is presumed
that any inferential approximation errors associated with the conventional t-ratio
are minimal or acceptable. Or practitioners may presume that the inference has
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the intended significance or confidence level, as long as the observed first-stage F-
statistic is sufficiently large—even though Stock and Yogo (2005) explicitly point
out that using 1.96 critical values can lead to over-rejection (or under-coverage)
even with the use of their critical values for the F-statistic.

tF inference eliminates this known and quantified distortion, taking as given the
common practice of computing the 2SLS and standard errors and providing critical
values that result in the intended significance or confidence levels.

An additional and separate motivation for exploring alternatives to AR is that,
if our sample is any indication, there are likely hundreds of other published studies
that use the single-instrument IV model, most of which do not use AR-based infer-
ence. In many cases, it may be prohibitively costly to obtain the original data to
assess how inferences might change when using AR. The adjustment we introduce
below allows one to adjust the reported 2SLS standard error solely on the basis of
the already-reported (or implicitly computed) first-stage F-statistic.

II Valid t-based Inference: Theoretical Results and
Empirical Implications

This section states our main theoretical findings, emphasizing the motivation for
the tF procedure, and how to use the critical value tables in practice. We defer
the derivations of our results to Section III, and details of the proofs to the Online
Appendix.

We begin by briefly reviewing the inferential problem with the t-ratio for IV , as
already established in the econometric literature. This motivates tF as a solution
to that problem. We then present the tF critical values for the 5 percent and 1 per-
cent levels.13 Since the use of the tF critical values allows one to achieve intended
significance and confidence levels, we then present some results on how the power
of the tF procedure compares to that of AR. Finally, we describe how the applica-

13We focus the specific cases of obtaining valid tests at the 5 percent and 1 percent significance
levels and the corresponding 95 percent and 99 percent confidence intervals, because these standards
of evidence are commonly used in applied research. However, it will be clear in Section III that our
formulas can be adapted to analyze other levels of significance or confidence levels.
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tion of the tF adjustments impacts the statistical inferences in our sample of AER

studies.

II.A The tF procedure: Notation and Motivation

We begin with the notation for the structural and first-stage equations including
additional covariates:

Y = Xβ +Wγ +u

X = Zπ +Wξ + v

where W denotes the additional covariates which can include a constant correspond-
ing to an intercept term. Without loss of generality, we assume orthogonality be-
tween W and each of Y,X ,Z.14

The key statistics are given by

t̂ ≡ β̂ −β0√
V̂N

(
β̂

) and f̂ ≡ π̂√
V̂N (π̂)

, F̂ = f̂ 2

where β̂ is the instrumental variable estimator. V̂N

(
β̂

)
represents the estimated

variance of β̂ , which can be a consistent robust variance estimator to deal with de-
partures from i.i.d. errors, including one- or two-way clustering (e.g., see Cameron,
Gelbach and Miller (2011)). t̂ is the usual t-ratio, where we first consider the distri-
bution of this statistic when the null hypothesis is true, but later on, when discussing
power in greater detail, we make the distinction between the true value β and the
(possibly false) hypothesized value β0. f̂ is the t-ratio (for the null hypothesis that
π = 0) for the first-stage coefficient, and its square is equal to the F-statistic, which
we denote F̂ .

14All of our results allow for covariates, since one can redefine Y , X , and Z as the residual from
regressing each of those variables on W . Using these residuals after partialing out the covariates
delivers the exact same point estimates, and standard errors, as if 2SLS was employed including the
covariates.
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The traditional argument for t-ratio inference is as follows. Under the null hy-
pothesis t̂2 d→ t2. That is, the argument is that in large samples, a good approxi-
mation of the statistic t̂ is the random variable t, a standard normal, with its square
therefore being a chi-square with one degree of freedom. This approximation un-
derlies the use of the standard normal critical values±1.96 for testing hypotheses at
the 5 percent level. More generally, the critical values±√q1−α are used for tests at
the α level of significance, where q1−α is the (1−α)th quantile of the chi-squared
distribution with one degree of freedom.

What has been established and understood in the theoretical literature for quite
some time—but perhaps not fully internalized by practitioners more broadly—is
that 1) the use of a standard normal to describe the distribution of the random vari-
able t can lead to systematically distorted inference even with very large samples,
and 2) the magnitude of the distortion can be precisely quantified. More specifi-
cally, it has been understood in the econometric literature that even when samples
are large, t has a known non-normal distribution, which in some cases might be
"close" to the standard normal, but in other cases, the deviation from normality can
be significant.

Specifically, Stock and Yogo (2005) derive a formula for using Wald test statis-
tics based on 2SLS (and other k-class estimators). In the just-identified case with
one endogenous regressor, their results show that t2 under the null can be seen as
a function of two jointly normal random variables. With some re-arrangement of
terms, the two normal variables can be seen as f and tAR, where f̂ d→ f and f has
mean f0 ≡ π√

1
N AV (π̂)

and unit variance, where AV (π̂) is the asymptotic variance of

π̂ and tAR is a standard normal with AR = t2
AR. The correlation ρ of f and tAR is the

correlation of Zu and Zv.15

Their t2 formula allows one to precisely quantify the degree of distortions in
inference from using the rule t2 > q1−α to reject the null hypothesis. Based on this
formula, Panel (a) of Figure 2 provides a visualization of this relationship: it graphs
rejection probabilities—the probability that t2 > 1.962 under the null hypothesis—

15When the data are homoskedastic, ρ simplifies to the correlation between u and v. Stock and
Yogo (2005) use a homoskedastic model.
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for different values of E[F ] and ρ , where E [F ] = f 2
0 +1.16 The figure illustrates that

with low values of ρ (e.g., 0 or 0.5)—a lower degree of “endogeneity”—the t-ratio
rejects at a probability below the nominal 0.05 rate. On the other hand, for ρ = 0.8,
for example, the rejection rate can be as large as 0.13, when the instrument is close
to irrelevant. In the extreme, with a maximal value of ρ equal to 1, the rejection
probability tends to 1 as instruments become arbitrarily weak. The true significance
level (size) of any test is by definition the maximum rejection probability across all
possible values of the nuisance parameters – here, ρ and E [F ]. Thus, the test based
on t2 > q1−α clearly has incorrect size, as widely understood in the econometric
literature. Indeed Stock and Yogo (2005) explicitly provide the quantity represented
by the red circle in Figure 2 Panel (a): when ρ = 1 and E [F ] = 6.88, the rejection
probability is 0.10; it represents the minimum value of E [F ] one needs to assume
in order for the ±1.96 critical values will lead to significance level of 0.10.

Even though one does not know the values of ρ or E [F ], Staiger and Stock
(1997) and Stock and Yogo (2005) propose to use the observed first-stage F̂ . Re-
expressing the t2 formula in Stock and Yogo (2005) in terms of f and tAR, as men-
tioned above, we can determine

pairs of critical values c∗ and F∗ such that

Pr
[
t2 > c∗,F > F∗

]
≤ α

for a pre-specified significance level α . This amounts to a "step function" critical
value function: if F < F∗, set c∗ = ∞ (accept the null); otherwise, use the value
c∗ as the critical value for t2.17 Put equivalently, this implies a confidence interval
procedure that sets the confidence interval to the entire real line if F < F∗, and
otherwise uses ±

√
c∗× (standard error) for the confidence interval.

16As we explain in detail in Section III, rejection probabilities displayed in Figure 2 Panel (a) can
be computed directly from integral expressions, and are accurate up to the precision of numerical in-
tegration. To provide assurance that our formulas and numerical integration give correct answers, we
additionally performed Monte Carlo simulations, and we plot examples of those results as diamonds
in Figure 2. Those results match quite closely with our theoretical calculations.

17This approach is in the same spirit as the Bonferroni confidence regions discussed in Section
4B of Staiger and Stock (1997). Using their approach, captured by their Equation (4.2), one can
use F∗ = 16.38 (as reported in Stock and Yogo (2005)) and c∗ = 1.962 to obtain intervals with 85
percent confidence, while remaining agnostic about the true strength of the first stage.
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Figure 2: Rejection Probabilities for t2 and tF

(a) Pr[t2 > 1.962] vs. E[F ], for selected values of ρ

(b) Pr[t2 > c0.05(F)] vs. E[F ], for selected values of ρ

Note: The x-axis scale is ln(E[F ]). The red circle in panel (a) corresponds to the quantity reported in
Stock and Yogo (2005). A black diamond represents the rejection probability from 250,000 Monte
Carlo simulations, each with a sample size of 1,000.
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Utilizing the same analytical expressions in Stock and Yogo (2005), this paper
introduces the tF critical value function cα (F) such that

Pr
[
t2 > cα (F)

]
≤ α

for a pre-specified significance level α , where cα (F) is a smooth function of F ,
instead of a step function.18 As we will show below, inference based on tF has sig-
nificant power advantages over inference based on a test that uses constant thresh-
olds c∗,F∗; furthermore, tF confidence intervals will have shorter expected length
compared to that of AR when both are bounded intervals.

II.B The tF procedure: critical values and valid inference

Table 3 Panel A reports numbers that reflect the shape of the function c0.05 (F).
Specifically, corresponding to each value of the first-stage F-statistic (the first line
of numbers in each row), is the corresponding critical value

√
c0.05 (F) for |t| (the

second line of numbers in each row).
√

c0.05 (F) tends to infinity as F tends to
1.962 from above, and it is strictly decreasing in F until reaching a minimum, the
constant value of 1.96, when F reaches around 104.7.

The third line of numbers in each row normalize the critical values by 1.96,
and therefore represent a standard error adjustment factor. Adjusted standard er-
rors can be constructed using the table as follows: 1) Estimate the usual 2SLS
(e.g., robust, clustered, etc.) standard error, 2) multiply the standard error by the
adjustment factor (third line of numbers in each row) in the table correspond-
ing to the observed first-stage F̂ statistic. This adjusted standard error should be
called a “0.05 tF standard error”, and can be used for constructing the t-ratio for
testing a particular hypothesis, or for constructing 95% confidence intervals using
β̂±1.96×(“0.05 tF standard error”). Since the table contains selected values from
an underlying convex function, to compute intermediate values, a conservative ap-
proach would be to linearly interpolate between the selected values. As an example

18Similar in spirit to the Bonferroni approach discussed in Section 4B of Staiger and Stock
(1997), the probability considered is an unconditional one. See Chioda and Jansson (2005) for
an analysis of inference conditional on the observed F-statistic.
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of this interpolation, if the first-stage F̂ is 10, one would multiply the estimated stan-
dard error by 1.727+ 10.253−10

10.253−9.835× (1.767−1.727) = 1.751 to obtain the “0.05 tF

standard error”.19

It is important to note that these “adjusted standard errors” are valid only for
0.05 significance or 0.95 confidence levels. Different adjustments are needed for
different significance/confidence levels. We report the analogous critical values and
adjustment factors for corresponding selected values of F , for significance (confi-
dence) levels of 0.01 (0.99), another commonly-used standard in applied research,
in Table 3 Panel B.

The table shows that the
√

c0.01(F)
2.576 function has a similar pattern, but three im-

portant differences. First, the adjustment factor now has a vertical asymptote at
F = q0.99 = 2.5762. Second, c0.01 (F) declines until F = 252.34, at which point

the adjustment factor is 1.059. Finally, we note that
√

c0.01(F)
2.576 is uniformly strictly

above
√

c0.05(F)
1.96 . This implies that from a reporting convenience standpoint, one

could choose to report only the “0.01 tF standard errors” by using the adjustments
in Table 3 Panel B, and the intervals β̂ ± 2.576× (“.01 tF standard error”) and
β̂±1.96×(“0.01 tF standard error”) would be assured of confidence levels at both
the 99th and 95th percent levels. The cost for this reporting convenience is that the
latter interval would be unnecessarily conservative.

19We have also posted code at http://www.princeton.edu/∼davidlee/wp/SupplementarytF.html to
allow more precise computation of the adjustment factor for any given value of F̂ .
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Table 3 Panel A: Selected Values of tF Critical Values,
√

c0.05 (F), and tF Standard
Error Adjustments,

√
c0.05 (F)/1.96

F 4.000 4.008 4.015 4.023 4.031 4.040 4.049 4.059 4.068 4.079

18.656 18.236 17.826 17.425 17.033 16.649 16.275 15.909 15.551 15.201

9.519 9.305 9.095 8.891 8.691 8.495 8.304 8.117 7.934 7.756

4.090 4.101 4.113 4.125 4.138 4.151 4.166 4.180 4.196 4.212

14.859 14.524 14.197 13.878 13.566 13.260 12.962 12.670 12.385 12.107

7.581 7.411 7.244 7.081 6.922 6.766 6.614 6.465 6.319 6.177

4.229 4.247 4.265 4.285 4.305 4.326 4.349 4.372 4.396 4.422

11.834 11.568 11.308 11.053 10.804 10.561 10.324 10.091 9.864 9.642

6.038 5.902 5.770 5.640 5.513 5.389 5.268 5.149 5.033 4.920

4.449 4.477 4.507 4.538 4.570 4.604 4.640 4.678 4.717 4.759

9.425 9.213 9.006 8.803 8.605 8.412 8.222 8.037 7.856 7.680

4.809 4.701 4.595 4.492 4.391 4.292 4.195 4.101 4.009 3.919

4.803 4.849 4.897 4.948 5.002 5.059 5.119 5.182 5.248 5.319

7.507 7.338 7.173 7.011 6.854 6.699 6.549 6.401 6.257 6.117

3.830 3.744 3.660 3.578 3.497 3.418 3.341 3.266 3.193 3.121

5.393 5.472 5.556 5.644 5.738 5.838 5.944 6.056 6.176 6.304

5.979 5.844 5.713 5.584 5.459 5.336 5.216 5.098 4.984 4.872

3.051 2.982 2.915 2.849 2.785 2.723 2.661 2.602 2.543 2.486

6.440 6.585 6.741 6.907 7.085 7.276 7.482 7.702 7.940 8.196

4.762 4.655 4.550 4.448 4.348 4.250 4.154 4.061 3.969 3.880

2.430 2.375 2.322 2.270 2.218 2.169 2.120 2.072 2.025 1.980

8.473 8.773 9.098 9.451 9.835 10.253 10.711 11.214 11.766 12.374

3.793 3.707 3.624 3.542 3.463 3.385 3.309 3.234 3.161 3.090

1.935 1.892 1.849 1.808 1.767 1.727 1.688 1.650 1.613 1.577

13.048 13.796 14.631 15.566 16.618 17.810 19.167 20.721 22.516 24.605

3.021 2.953 2.886 2.821 2.758 2.696 2.635 2.576 2.518 2.461

1.542 1.507 1.473 1.440 1.407 1.376 1.345 1.315 1.285 1.256

27.058 29.967 33.457 37.699 42.930 49.495 57.902 68.930 83.823 104.67

2.406 2.352 2.299 2.247 2.197 2.147 2.099 2.052 2.006 1.96

1.228 1.200 1.173 1.147 1.121 1.096 1.071 1.047 1.024 1.00

√𝑐.05(𝐹)

√𝑐.05(𝐹) / 1.96

The top number in each of the ten rows is the first-stage F statistic, the middle number is the corre-
sponding critical value,

√
c0.05 (F), and the bottom number in each row is the corresponding value

of
√

c0.05 (F)/1.96, where we write 1.96 as a shorthand for Φ−1(0.975). Numerical values in each
pair are rounded up (e.g., 4.0051 rounds up to 4.006).

We verify that the tF adjustment achieves the intended significance level of 5
percent in Panel (B) of Figure 2, which is analogous to Panel (A), plotting rejection
probabilities for the tF procedure for the same values of ρ and f0. The curves
are accurate up to the precision of our numerical integration. To provide some
additional assurance that our formulas and numerical computations are correct, as
in Panel (A), the diamonds represent Monte Carlo simulation rejection rates, which
line up with the curves, as expected from the theory.
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Table 3 Panel B: Selected Values of tF Critical Values,
√

c0.01 (F), and tF Standard
Error Adjustments,

√
c0.01 (F)/2.576

F 6.670 6.673 6.676 6.679 6.682 6.685 6.689 6.693 6.697 6.701

91.097 87.924 84.862 81.907 79.054 76.301 73.644 71.079 68.604 66.214

35.366 34.135 32.946 31.798 30.691 29.622 28.591 27.595 26.634 25.706

6.706 6.711 6.717 6.723 6.729 6.736 6.743 6.751 6.759 6.768

63.908 61.683 59.535 57.461 55.460 53.529 51.664 49.865 48.129 46.453

24.811 23.947 23.113 22.308 21.531 20.781 20.058 19.359 18.685 18.034

6.778 6.788 6.799 6.811 6.824 6.837 6.852 6.867 6.884 6.901

44.835 43.273 41.766 40.312 38.908 37.553 36.245 34.983 33.765 32.589

17.406 16.800 16.215 15.650 15.105 14.579 14.072 13.581 13.109 12.652

6.920 6.941 6.963 6.986 7.011 7.038 7.066 7.097 7.129 7.164

31.454 30.358 29.301 28.281 27.296 26.345 25.428 24.542 23.687 22.863

12.211 11.786 11.376 10.980 10.597 10.228 9.872 9.528 9.196 8.876

7.202 7.242 7.285 7.331 7.380 7.432 7.489 7.549 7.614 7.683

22.066 21.298 20.556 19.840 19.149 18.482 17.839 17.218 16.618 16.039

8.567 8.269 7.981 7.703 7.435 7.176 6.926 6.685 6.452 6.227

7.757 7.836 7.922 8.013 8.111 8.216 8.329 8.451 8.581 8.721

15.481 14.942 14.421 13.919 13.434 12.966 12.515 12.079 11.658 11.252

6.010 5.801 5.599 5.404 5.216 5.034 4.859 4.690 4.526 4.369

8.872 9.035 9.210 9.399 9.603 9.824 10.062 10.320 10.600 10.904

10.860 10.482 10.117 9.765 9.425 9.097 8.780 8.474 8.179 7.894

4.217 4.070 3.928 3.791 3.659 3.532 3.409 3.290 3.176 3.065

11.235 11.595 11.988 12.418 12.889 13.407 13.979 14.610 15.312 16.094

7.619 7.354 7.098 6.851 6.612 6.382 6.160 5.945 5.738 5.538

2.958 2.855 2.756 2.660 2.567 2.478 2.392 2.308 2.228 2.150

16.969 17.953 19.067 20.333 21.783 23.455 25.399 27.680 30.383 33.624

5.345 5.159 4.980 4.806 4.639 4.477 4.321 4.171 4.026 3.885

2.076 2.003 1.934 1.866 1.801 1.739 1.678 1.620 1.563 1.509

37.560 42.416 48.511 56.324 66.592 80.502 100.069 128.950 174.370 252.342

3.750 3.620 3.494 3.372 3.254 3.141 3.032 2.926 2.824 2.726

1.456 1.406 1.357 1.309 1.264 1.220 1.177 1.136 1.097 1.059

√𝑐.01(𝐹)

√𝑐.01(𝐹) / 2.576

The top number in each of the ten rows is the first-stage F statistic, the middle number is the corre-
sponding critical value,

√
c0.01 (F), and the bottom number in each row is the corresponding value

of
√

c0.01 (F)/2.576, where we write 2.576 as a shorthand for Φ−1(0.995). Numerical values in
each pair are rounded up (e.g., 6.6712 rounds up to 6.672).

II.C The tF procedure: power comparisons to AR and step rules

In this subsection, we state our results on power, deferring derivations, proofs, and
further discussion to Section III and the Online Appendix. Since the tF and AR

tests (as well as rules like t2 > c∗,F > F∗ with appropriately chosen c∗ and F∗)
can deliver inferences at the same intended significance/confidence levels under the
same asymptotic approximation, it is natural then to investigate the relative power of
these test procedures. For the purposes of this power comparison, we set c∗ = 1.962

and use the minimum F∗—104.7—needed to ensure a test with significance level
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Figure 3: Power curves for ρ = 0.5 and f0 = 3

Note: A black diamond represents the rejection probability, from 250,000 Monte Carlo simulations,
each with a sample size of 1,000.

0.05. We summarize the results below. Note that in our comparisons, we focus
only on procedures that allow the researcher to be completely agnostic about the
nuisance parameters.20

We produce standard power curves by generalizing the analytical expressions
for the probability of rejection to depend on an additional parameter—a normal-
ized deviation β −β0, where β is the true parameter, while β0 is the hypothesized
value.21. We then compute the rejection probabilities with respect to this quan-
tity for different scenarios according to the combination of nuisance parameters,
ρ and f0. Any combination of ρ and f0 could be investigated: we illustrate these

20For example, the approach of Kocherlakota (2020) requires the researcher to assume a lower
bound for f0 for inference and thus is not among the approaches we consider.

21Specifically, the normalized β −β0 is the unnormalized β −β0 divided by

√
E[Z2u2]√
E[Z2v2]
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traditional power curves for the nine combinations given by the three values of
ρ = 0,0.5,1 and the three values of f0 = 1,3,9.22

Figure 3 plots the power curve under the scenario ρ = 0.5, f0 = 3 (which cor-
responds to E [F ] = 10). It shows that tF and AR have roughly similar power, but
neither uniformly dominates the other.23 In particular, when the alternative value
of β is sufficiently larger than β0, then tF becomes slightly more powerful, while
the opposite is true when β is smaller than β0. An example of what this means for
practitioners is that if the null is β0 = 0, and ρ > 0 (which would imply that the OLS

estimand is upward biased when errors are homoskedastic), then the probability of
rejecting that null will be slightly higher for tF than for AR if the true effect is suffi-
ciently positive.24 Both tF and AR have a substantial power advantage over the step
rule c∗ = 1.962,F∗ = 104.7. This latter observation should not be surprising since,
in the scenario that E [F ] = 10, the probability that F would exceed F∗ = 104.7 is
extremely low.

Appendix Figure A2 in Appendix A.9 includes power curves for the other eight
scenarios for ρ, f0. The pattern of results mirror those described above, with the
additional observations that 1) the power curves for AR are consistently higher for
ρ = 0, and 2) the differences between tF and AR (for any ρ) are negligible with
f0 = 9, but 3) the dependence of the relative power between tF and AR on the
sign of β − β0 remains apparent with high endogeneity (ρ = 1). The threshold
rule continues to have low power in the nine scenarios we consider, which is not
surprising since, even with E [F ] = 92 + 1 = 82, the probability that F exceeds
104.7 continues to be relatively low. As f0 increases so that the instrument is much
stronger, the power curves for the step rule, tF , and AR all become closer to one

22To provide additional assurance in our theoretical derivations and implementation of numerical
integration was carried out correctly, we overlay (as the diamonds in each graph) the results from
Monte Carlo simulations, where we generate the underlying data according to each scenario and
selected values of β − β0 and compute the fraction of the time, over 250,000 Monte Carlo draws
of sample sizes of 1,000 each, that each of the tests reject the null hypothesis. All of the results
line up well with the theoretical values as computed from our analytical expressions for rejection
probabilities.

23Note that while AR has known power optimality among unbiased tests, tF is not unbiased. The
degree of bias can be seen in the power graphs.

24Note that the power curves are symmetric with respect to ρ; that is, when ρ = −0.5 then the
power curve looks identical except the x-axis would be labeled β0−β .
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another.
Given that neither AR nor tF uniformly dominates the other across all values of

β −β0 for fixed values of the nuisance parameters, we turn to a different and intu-
itive summary measure of power: the expected length of the confidence intervals
for AR and tF conditional on F > q1−α . The reason why we focus on the condition
F > q1−α is that it is a necessary and sufficient condition for both the tF and AR

confidence sets to be bounded intervals; when F < q1−α , both the AR and tF con-
fidence sets are unbounded (i.e. have infinite length). The nonzero probability that
F < q1−α implies that the tF and AR confidence sets will have infinite uncondi-

tional expected length. Conditional on the event F > 1.962, it is immediately clear
that the step rule of c∗ = 1.962,F∗ = 104.7 will also have infinite expectation since
104.7 > 1.962.25

For any realization of the data, the tF and AR confidence sets behave simi-
larly in the following sense: either both are bounded intervals (this happens when
F > q1−α ) or both are unbounded (this happens when F ≤ q1−α ). Thus, to com-
pare expected lengths, we compare only the realizations of data that yield bounded
intervals for both methods. That is, we compute expected conditional lengths con-
ditional on F > q1−α . Surprisingly, our theoretical investigation reveals that the
conditional expected length of the AR confidence interval is infinite. We show, by
contrast, the conditional expected length for the tF interval is finite. We show be-
low that this is true uniformly across all possible values of the nuisance parameters.
This has a very straightforward implication for practitioners. Conditional on the
event that they produce bounded intervals (which occurs with identical probabili-
ties), the expected length of the tF confidence interval will always be shorter than
the expected length of AR confidence intervals.

These findings are more fully described in Section III and proven in the Ap-
pendices C.2 and C.3. Here, we provide a simple visual of this result via a Monte
Carlo exercise, shown in Figure 4.26 Using the same data generating process from

25Indeed, Gleser and Hwang (1987) and Dufour (1997) show that in models which allow for non-
(or nearly non-) identification, such as the IV model, any inference procedure with correct coverage
must have infinite unconditional expected length.

26We use the Monte Carlo design from the discussion on single-variable IV in Angrist and Pis-
chke (2009a), and discussed in Angrist and Pischke (2009b).
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Figure 3, we run repeated Monte Carlo simulations of sample size 1,000 each. For
each draw, we keep only those draws such that F̂ > 1.962, and when this occurs
we compute the length of the AR and the tF confidence interval. For each speci-
fied number of Monte Carlo draws, we compute this conditional average using all
accumulated draws up to that point. We do this four times, using an independent
set of draws each time. The figure exhibits the patterns that one would expect to
see if the conditional expected length were infinite for AR and finite for tF inter-
vals: even after 500,000 draws, the conditional averages for AR do not appear to
be converging. Furthermore, there are occasional sharp discontinuities, which is
expected from a distribution of lengths with thick tails that are associated with the
infinite conditional mean.27 Meanwhile, the tF conditional averages for the four
replications are essentially on top of one another and converge relatively quickly to
the conditional mean of approximately 3.55.

II.D The tF procedure: Impact on Applications

We now turn to gauging how the tF adjustments to the standard errors would impact
practice, using our sample of recent AER papers as a guide. We take the computed
or reported F-statistics from the specifications in Figure 1, and assign the corre-

sponding adjustment factor
√

cα (F)√
q1−α

. Figure 5a is the (weighted) histogram for the
reciprocal of the 0.05 tF adjustment factor, which represents the degree to which
the reported standard errors are understated.28 It shows significant mass at values
close to 1 (no understatement); the median reciprocal is 0.902 (understated by about
10 percent) while the 25th percentile reciprocal is 0.672 (understated by about 33
percent). The weighted mean value is 0.801, implying that the typical study is
understated by about 20 percent.

Turning to the question of the magnitude of the implied inflation factors, our

27Recall that the Strong Law of Large Numbers states that the sample average converges to the
expected value with probability one if it is finite. Furthermore, an application of the second Borel-
Cantelli lemma also shows that the sample average does not converge with probability one if the
population expectation is not finite.

28We focus on the reciprocal because the adjustment factor itself has some very large numbers.
For any given study, we know that its true average will be infinite because there will always be some
positive probability that F < q1−α .
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Figure 4: Monte Carlo Simulated Expected Length of tF and AR intervals, Condi-
tional on F>1.962, ρ = 0.5, f0 = 3
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Note: Points on each curve represent the conditional expected length, using the specified number of
accumulated Monte Carlo draws, for tF (lower four lines) and AR (upper four lines). Each of the
four lines corresponds to an independent set of Monte Carlo draws.

sample of studies suggests that for one-quarter of specifications, the tF adjustment
would increase confidence intervals, at a minimum, by a factor of 1/0.672≈ 1.49,
i.e., tF confidence intervals would be at least about 50 percent wider. To under-
stand this magnitude, it is helpful to recall that conventional 99 percent confidence
intervals are about 57 percent longer than 90 percent confidence intervals. Another
basis of comparison comes from our examination of a small subset of the studies
for which we could obtain the microdata. For those studies that used clustered stan-
dard errors, we computed non-clustered standard errors and found that the clustered
standard errors were about 25 percent larger. We conclude from these comparisons
that, in practice, ignoring the tF adjustment would be an error roughly equivalent
to using a 90 percent confidence interval while calling it a 99 percent confidence
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Figure 5a: Distribution of 1.96√
c0.05(F)

for AER sample

N = 847 specifications. The x-axis is the ratio of Φ−1(0.975) to the F-dependent value
√

c0.05(F).
All specifications use the derived F statistic and when not possible, the reported F statistic from
the paper. The 6 specifications that report (rounded) first-stage standard errors of zero are excluded.
Proportions are weighted; see notes to Table 1. Dashed lines correspond to the (weighted) 25th

(0.672), 50th (0.902), and 75th (1.00) percentiles of the distribution.

interval, or substantially more severe than using non-clustered standard errors when
clustered standard errors are appropriate.

Figure 5b repeats the exercise for the 0.01 tF adjustments and finds more signif-
icant degrees of adjustment: in one-quarter of the specifications, the tF adjustment
would be expected to increase confidence intervals by at least a factor of 2.36, and
the median adjustment factor would be 1.38.

Finally, to gauge how assessments of statistical significance are likely to be im-
pacted by the use of the tF critical value function, Figure 6 plots all of the specifi-
cations from Table 2 in t2, F space (using the one-to-one transformations t2/1.962

1+t2/1.962
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Figure 5b: Distribution of 2.576√
c0.01(F)

for AER sample
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N = 847 specifications. The x-axis is the ratio of 2.576 to the F-dependent value
√

c0.01(F). See
notes to Figure 5a. Dashed lines correspond to the (weighted) 25th (0.424), 50th (0.727), and 75th

(0.936) percentiles of the distribution.

and F/10
1+F/10 for the vertical and horizontal scales to allow visualization of the full

range of those statistics). It also plots the tF critical value functions for the 5 per-
cent (black) and 1 percent (gray) levels of significance.29 The size of each circle
is proportional to the share of total specifications from the same study. The black
dots represent the specifications that have a relatively low F-statistic (<10) or that
have t2 less than 1.962. Arguably, under current practice, researchers would have

29For this exercise, we further restricted the sample of specifications to those where the reported
sample size for the first-stage was identical to the reported sample size for the 2SLS estimate. We
have observed that it is quite common for researchers to report first-stage regressions and F statistics
on samples that do not match (typically they are larger) the samples used for the 2SLS regression.
The graph and the numbers reported below are quite similar if we do not make this additional
restriction.
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generally viewed the black circles as statistically insignificant estimates by virtue
of either the observed t-ratio or the F-statistic.30 While most of these black circles
would remain insignificant using the tF adjustment, at the 5% level, some, by being
above the tF critical value function would become significant.

Figure 6: Statistical Significance in AER sample, using c0.05(F) and c0.01(F)
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1+t2/1.962 and horizontal scale is F/10
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is proportional to the weight described in Table 1. The solid black and gray lines are critical value
functions c0.05(F) and c0.01(F), respectively. The black circles denote cases where t2 < 1.962 or
F < 10. The blue circles represent those that are not significant using c0.05(F). The purple circles
represent those that are significant at the 5 percent level using c0.05(F) but are not significant at the
1 percent level using c0.01(F). The red circles represent those that are significant at the 1 percent
level using c0.01(F).

The remaining specifications (blue, purple, and red circles), under current norms,
would most likely have been viewed as statistically significant. Of these, 24 percent

30We use the threshold 10 here not because it is a special threshold with respect to the theory
regarding size distortions. Instead, we use it because 10 appears to be the most commonly referenced
threshold in applied work.

25



(the blue circles) are in fact statistically insignificant at the 5 percent level, when
the tF critical values are applied; the remaining 76 percent (purple and red circles)
remain significant at the 5 percent level.

The proportional impact of the adjustments is larger for a higher standard for
statistical significance, the 1 percent level. That is, among the specifications such
that t̂2 > 2.732, F̂ > 10—which arguably would have commonly been interpreted
as statistically significant at the 1 percent level—about 34 percent of them are sta-
tistically insignificant after applying the tF critical value function.

Although it is beyond the scope of our paper to suggest whether any of the
overall conclusions of the studies in our sample would be altered in light of these
adjustments, we do conclude that the tF adjustments could be expected to make
a nontrivial difference in inferences made in applied research—in some cases not
making much of a difference at all, but in other cases making a large difference.

Finally, we note that if the only hypothesis of interest is the null that the coef-
ficient of interest is equal to zero, then one can simply conduct a test of whether
the reduced form coefficient (in the regression of Y on Z) is zero. Indeed, this is
equivalent to the AR test. On the other hand, if there is an interest in computing
confidence intervals, then one requires information contained in the first-stage re-
gression (which is used by both AR and tF).

II.E A Priori Restrictions on ρ

The conventional frequentist approach to statistical inference requires, by defini-
tion, that for a test at the 5 percent level of significance, the maximum rejection
probability under the null hypothesis over all possible values of nuisance parame-
ters is 0.05. We follow this conventional approach and ensure that the tF procedure
is valid for any possible value of E[F ] and ρ .31 While the particular values |ρ|= 1
are useful in derivations to provide a worst case, valid inference applies to all val-
ues of ρ between -1 and 1. Thus, for the just-identified IV model, being agnostic

31Our setting allows for heteroskedastic, clustered, and/or autocorrelated errors. Nevertheless,
the parameter ρ simplifies to the usual endogeneity coefficient Corr (Y −Xβ ,X−πZ) which prac-
titioners have in mind if errors are (conditionally on Z) independent and homoskedastic.
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about E[F ] and ρ is a requirement for practitioners who wish to rely solely on the
textbook IV assumptions that C (Z,u) = 0 and C (Z,X) 6= 0.

Adding restrictions beyond the textbook IV assumptions, for example, with a

priori information on the parameter ρ , is possible. As referenced in Subsection
III.A, one could ask, “What additional assumption about ρ could be imposed on
the data generating process to allow the ±1.96 critical values to deliver a valid
5-percent test?”

Both Lee et al. (2020) and Angrist and Kolesár (2021) calculate that using 1.96
critical values delivers a valid 5 percent test as long as one additionally assumes that
ρ is less than 0.565 in absolute value.32 A researcher’s choice between adopting the
conventional frequentist approach (i.e., adjusting the standard errors via tF , or via
AR inference) or a priori assuming that |ρ| ≤ 0.565 (i.e. leaving the 2SLS standard
errors unadjusted) ultimately does not follow from any econometric result; instead it
rests entirely on how comfortable one is with those additional a priori assumptions.

The plausibility of any restriction on ρ depends on the specific context. Angrist
and Kolesár (2021) provide three examples in which they argue for making the |ρ|<
0.565 assumption. Using bounds on |ρ| larger than 0.565 is also possible, which
changes the interpretation: as Angrist and Kolesár (2021) point out, the ±1.96
critical values, and assuming that |ρ| ≤ 0.76 corresponds to a 10-percent level of
significance.33 In Appendix A.8.1, we provide the necessary inflation factors to the
±1.96 critical values to achieve 5-percent and 1-percent levels of significance for
bounds like 0.76 and other |ρ| bounds between 0.565 and 1.

A separate and open empirical question is what magnitudes of ρ one might ex-
pect to see in practice. It is of course impossible to make definitive quantitative
statements about the true magnitude of ρ or β , since they are both unknown param-
eters; also a full meta-analysis is beyond the scope of this paper. Nevertheless, as
discussed in Appendix A.8.3, it is possible to use data to obtain a valid confidence

set on ρ . The data from our sample of AER studies show that 1) the confidence

32Note that the necessary bound on |ρ| depends on the desired signifiance/confidence level. For
example, if 1/99 percent signifiance/confidence is intended using the nominal 2.576 critical value
for the t-ratio, then the necessary bound on |ρ| is 0.435, as reported in Lee et al. (2020).

33A 5-percent rejection rate with a precisely quantified over-rejection distortion of 5 percent
means, by definition, a 10 percent test.
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intervals for ρ include a broad range of values, with 24 percent of the specifica-
tions including values as large as 0.9 in absolute value, and that 2) in 18 percent
of the specifications, the data would have rejected the hypothesis that |ρ| ≤ 0.565.
Appendix A.8.2 also points out that assuming |ρ| ≤ 0.565 is equivalent to plac-
ing bounds on β .34 For this same sample, about 30 percent of the time, assuming
|ρ|< 0.565 is tantamount to assuming a priori that β is not equal to zero.

Whether or not one explores specific restrictions on ρ , it seems both costless—
and not overly cautious—to report the tF standard error or confidence intervals
(or AR confidence sets) as a standard inference benchmark. Such a benchmark
is aligned with relying solely on the traditional IV assumptions, and also allows
one to assess the gains in precision that come from imposing an assumption like
|ρ| ≤ 0.565.

III Derivation of Theoretical Results

This section explains how we derive all of the theoretical results discussed in Sec-
tion II. Subsection III.A introduces the notation and shows how to analytically com-
pute the rejection probabilities for rules that use the t-ratio, whether it be for rules
like t2 > q1−α , or t2 > c∗,F > F∗, or t2 > cα (F). We do this for the case when the
null hypothesis is true (for analyzing size control) and for when the alternative is
true (for analyzing power). Subsection III.B defines the tF critical value function,
formally states some of its properties, and describes relevant proofs. Subsection
III.C formally states the results on the conditional expected length of the AR and tF

confidence sets and describes relevant proofs. The details of all of the proofs of the
results of this Section can be found in the Online Appendix.

34As noted by Van de Sijpe and Windmeijer (2021) this follows from the definitions of the re-
duced form and structural covariance matrices. See their equation (7) and the discussion in their
Section 4.
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III.A Notation and Preliminaries: Rejection probabilities for t-
ratio-based rules

We begin by introducing some additional notation. Define

t̂AR (β0)≡
π̂

(
β̂ −β0

)
ŝe
(

π̂

(
β̂ −β0

)) =
π̂

(
β̂ −β0

)
√

V̂N

(
π̂β

)
−2β0ĈN

(
π̂β , π̂

)
+β 2

0 V̂N (π̂)

û0 = (Y −Xβ0)−Zπ̂

(
β̂ −β0

)
ρ̂ (β0)≡

Ĉ (Zû0,Zv̂)√
V̂ (Zû0)

√
V̂ (Zv̂)

where β0 is a hypothesized value for β and t̂AR (β0) is a “t-ratio form” of the statis-
tic of Anderson and Rubin (1949), so that t̂2

AR (β0) = AR. V̂N

(
π̂β

)
,ĈN

(
π̂β , π̂

)
,

and V̂N (π̂) are elements of the estimator for the variance-covariance matrix of the
reduced form and first-stage estimators π̂β and π̂ , respectively. û0 is the “AR

residual”, i.e., the residual from regressing Y −Xβ0 on Z. Turning to the nota-
tion for ρ̂ (β0), note first that as we explain further in Appendix A.1, V̂ (·) and Ĉ (·)
(i.e., without a subscript of N) denote estimators of the middle or “meat” part of
“sandwich”-type variance estimators. This allows our approach to flexibly accom-
modate various HAC approaches such as heteroskedastic or autocorrelated errors
or one- or two-way clustering. As examples of this notation, if we consider the
homoskedastic case, ρ̂(β0) is just the empirical correlation between the AR resid-
ual and the first-stage residual; in the heteroskedastic case, it is the same but after
multiplying both residuals by the instrument.

A key equation in our analysis is

t̂2 =
t̂2
AR (β0)

1−2ρ̂ (β0)
t̂AR(β0)

f̂
+

t̂2
AR(β0)

f̂ 2

which is a numerical equivalence that can be shown using the definitions above and
with some re-arrangement of terms, as shown in Appendix A.4.
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From these definitions and the above relationship, it is shown that under the
weak-IV asymptotics of Staiger and Stock (1997), we obtain

(2) t̂2 d→ t2 = t2 (tAR (β0) , f ,ρ (β0))≡
t2
AR (β0)

1−2ρ (β0)
tAR(β0)

f +
t2
AR(β0)

f 2

,

where(
tAR (β0)

f

)
∼ N

 f0
∆(β0)√

1+2ρ∆(β0)+∆2(β0)

f0

 ,

(
1 ρ (β0)

ρ (β0) 1

)(3)

∆(β0) =

√
V (Zv)√
V (Zu)

(β −β0) and ρ (β0) =
ρ +∆(β0)√

1+2ρ∆(β0)+∆2 (β0)
,

where ρ =C(Zu,Zv)/
√

V (Zu)V (Zv) is the population correlation between Zu and
Zv.35 Thus, the squared t-ratio will converge in distribution to a random variable
t2, which is itself a function of the random variables tAR (β0) and f , which are
themselves jointly bivariate normal with unit variances and correlation ρ (β0). Note
that when the null hypothesis is true, β = β0 implies that ∆(β0) = 0 and ρ (β0) = ρ .

These relationships hold true for error structures that depart from i.i.d., but when
we consider the specific case of homoskedasticity, the formula in (2) can be shown
to yield equation 2.22 in Stock and Yogo (2005).

Remark. The econometric literature has long established the existence of dis-
tortions in inference that occur when using the t-ratio for IV . Equation (2) is yet an-
other way to see the same result. Specifically, the conventional asymptotic approx-
imation implicitly treats t2 as a chi-squared with one degree of freedom—which is
the distribution of the numerator in (2) and therefore, essentially, ignores the de-
nominator in (2) by treating f as infinite. But, as Figure 1 illustrates, in our sample
of studies, half of the time F̂ = f̂ 2 is less than 46.

We use the expressions above to compute rejection probabilities for different
test procedures that reject the null hypothesis when t2 > k (F), where k (F) is a

35In the display, to simplify the presentation, we present notation for ∆(β0) for the heteroskedas-
tic case rather than the most general HAC case. Details of these derivations extended to the general
HAC case are contained in the Online Appendix.
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general critical value function that could depend on F :

Conventional t-ratio test: k (F) = q1−α

Single F threshold test: k (F) =

{
c∗ if F > F∗

∞ if F ≤ F∗

tF critical value function: k (F) = cα (F)

In all cases, the rejection probability can be expressed as

Pr∆(β0),ρ, f0

[
t2 > k (F)

]
=
∫ ∫

1
[
t2 (x,y,ρ (β0))> k

(
y2)]

(4)

×ϕ

(
x− f0

∆(β0)√
1+2ρ∆(β0)+∆2 (β0)

,y− f0;ρ (β0)

)
dxdy

where 1 [·] is the indicator variable, and ϕ (·, ·;r) is the bivariate normal density with
means zero, unit variances, and correlation r.

This expression allows us to compute rejection probabilities up to the accuracy
of numerical integration. We use these computations to 1) illustrate the magni-
tude of inferential distortions caused by the usual t-ratio procedure (Figure 2 Panel
(A)), 2) verify that the tF critical value function controls the significance level,
as intended (Figure 2 Panel (B)), and 3) construct power functions (Figure 3 and
Appendix Figure A2).36

Remark. In addition, expression (4) also allows us to answer the following
questions: 1) What restrictions on the nuisance parameter space f0,ρ could one
impose so that the usual t-ratio procedure has the intended significance level?37 2)
For single threshold rules, what minimal threshold for F∗ could one use if c∗ is
set to the nominal value q1−α? and 3) How do these answers change for different
significance levels? Appendix A.7 (and a previous version of our paper, Lee et al.

36Note that it is straightforward to use the mean shift in tAR (β0) from expression (3) to compute
the power function for AR.

37Kocherlakota (2020) develops a method that incorporates nuisance parameter information in a
t-ratio test.
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(2020)) provides answers to these questions.

III.B Construction of the tF critical value function

Our objective is to obtain a critical value function cα (F) that smoothly adjusts
according to the first-stage F-statistic and that also controls size, i.e., it has the
property that

Pr∆(β0)=0,ρ, f0

[
t2 > cα (F)

]
≤ α

for all ρ and f0 6= 0. Deferring details to Appendix B, we now outline the construc-
tion of such a function cα (F), which – as is apparent from Tables 3 Panel A and
3 Panel B – consists of an initial strictly decreasing segment ranging from q1−α to
some point, followed by a flat function beyond that point. This plateau structure
is motivated by practical considerations, since researchers may desire a constant
critical value function as long as the F statistic is large enough.

The first step of our construction – the decreasing segment of the critical value
function – stems from the conjecture of Stock and Yogo (2005) that for small, fixed
values of f0 (when instruments are “weak”), the “worst case” null rejection prob-
ability occurs when ρ = ±1.38 This leads to obtaining a function cα (F) such that
the null rejection probability under ρ =±1 is exactly equal to α ,

(5) Pr∆(β0)=0,|ρ|=1, f0

[
t2 > cα (F)

]
= α

for some set of small values of f0. To simplify exposition, we focus on the case
where ρ = 1 and f0 positive.39

The following fact is central to our construction of the tF critical value function:
when ρ = 1, tAR is a linear function of f , and therefore Equation (2) reduces to

t2 =
f 2 ( f − f0)

2

f 2
0

38In Appendix B, we substantiate this conjecture.
39However, all the discussion below for ρ = 1 and f0 positive applies symmetrically for ρ =−1

and/or f0 negative.
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which is a quartic function in f , uniquely indexed by the single parameter f0. This
quartic function has the shape of a "W", with one trough located at f = 0, the other
trough at f = f0, and an interior peak at f = f0/2. Furthermore, the magnitude of
the location and height of the interior peak of the "W" function is monotonically in-
creasing in | f0|. Three examples of this "W"-shaped quartic function are illustrated
in Figure 7, which plots t2 as a function of f as the blue, red, and gray curves,
corresponding to three values of f0, labeled f ′0, f ′′0 , and f ′′′0 .40

The case of ρ = 1 greatly simplifies the expression of the null rejection prob-
ability for any critical value function (as in Equation (4)). The expression now
involves a single random variable, f , which is normally distributed with mean f0

and unit variance. That is, we can now characterize the null rejection probability
by the probability that f takes on a value for which the quartic t2 curve is above
the critical value function. For any continuous and decreasing (in f 2) critical value
function (that eventually plateaus), there exists an interval of values of f0 for which
the "W" curve and the critical value function intersect only twice. The acceptance
probability is then simply Φ

(
f̄ ( f0)− f0

)
−Φ

(
f ( f0)− f0

)
, where the intersections

between the two curves are denoted by f̄ ( f0) and f ( f0). For example, for the blue
curve in Figure 7 (corresponding to f0 = f ′0) the acceptance probability is equal to
the probability that f lies in the interval given by [ f

(
f ′0
)
, f̄
(

f ′0
)
].41

We use this simple form of the acceptance region to define a decreasing function
c̃α(·), which will be coincident with the eventual critical value function. Specifi-
cally, we seek a decreasing function (in f 2) that intersects each of the "W" functions
(indexed by f0) at two points, f̄ ( f0) and f ( f0),where Φ

(
f̄ ( f0

)
− f0) − Φ( f ( f0)−

f0) = 1−α . This definition can be expressed more formally as the function c̃α(·)

40The figure uses the transformation (t2/1.962)
1+(t2/1.962)

for the vertical axis to aid visualization of the
curves.

41Figure 7 also shows that, for large values of f0, the rejection region is not necessarily an
interval, such as for the gray curve (represented by f0 = f ′′′0 ).
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Figure 7: Construction of the tF Critical Value Function
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1+(t2/1.962)

.

satisfying the following system of equations:

f̄ ( f0)
2 ( f̄ ( f0)− f0

)2

f 2
0

− c̃α

(
f̄ ( f0)

2
)
= 0(6)

Φ
(

f̄ ( f0)− f0
)
−Φ

(
f ( f0)− f0

)
= 1−α

f ( f0)
2 ( f ( f0)− f0

)2

f 2
0

− c̃α

(
f ( f0)

2
)
= 0

for a set of small values of f0.
Whether or not there exists any continuous and decreasing function c̃α

(
f 2)

satisfying this system of equations is not obvious and is technically challenging to
prove. We defer those details to Appendix B. Here, we apply the results in the
appendix to illustrate how we construct the desired critical value function.
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We are able to obtain a “local” solution to (6) as the critical value function
increases without bound, which occurs as f 2 ↓ q1−α . In particular, from Lemma 9(i)
in Appendix B, as f 2 ↓ q1−α , the function c̃α( f 2) behaves as

(7) c̃α( f 2) =
q3

1−α

f 2−q1−α

−

(
3q1−α −

q2
1−α

2
+

q3
1−α

6

)
+O

(√
f 2−q1−α

)
.

This equation is derived from applying a theorem from Fefferman (2021).42

With equation (7) in hand, constructing the decreasing part of the tF critical
value function is straightforward. We provide a graphical explanation of the proce-
dure in Figure 7, focusing on the leading case of α = 0.05.43 We start with a set
of points ( f , c̃0.05( f 2)), defined over the small interval f ∈ [−1.96− ε,−1.96) for
ε > 0. This interval is motivated by the theoretical result in equation (7), and specif-
ically is based on that equation’s leading terms. For each point over that interval, the
third equation in (6) can be used to solve for f0, allowing f to be relabeled f ( f0).
Then, the second equation in (6) can be used to solve for f̄ ( f0). Finally, the first
equation in (6) can be used to solve for c̃0.05( f̄ ( f0)

2). This mapping produces a seg-
ment of the function defined on an interval that is longer than [−1.96− ε,−1.96).
Due to symmetry of the function c̃0.05( f 2) in f , one can use this extended version of
the function, c̃0.05( f 2), as a new starting segment and repeat the process.44 Figure 7
illustrates one iteration of this mapping starting with the shorter critical value func-
tion segment given by the segment AA∗ on the left and the corresponding extended
segment given by the segment AA∗∗ on the right. These segments terminate at the
blue "W" function and show how the blue endpoint on the left (A∗) maps to the blue
endpoint on the right (A∗∗).

This process can be iterated to produce incremental extensions to the curve
c̃0.05(·), as long as the associated "W" curves intersect the extended curves only

42See also Baldomá et al. (2007) and Baldomá, Fontich and Martín (2020).
43The "W" functions in Figure (7) do not depend on α , but the critical value curves do. The

approach we outline here for α = 0.05 can be applied more generally for other values of α . In
Appendix B, we give details regarding other values of α and discuss some differences that may
arise.

44With some abuse of notation, we will use c̃α(·) to refer to both the original function that exists
according to Lemma 9 as well as every extension of that function as described above.
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twice. It traces out a decreasing segment until the curve terminates at a very specific
endpoint – where the "W" curve, whose "right arm" passes through the endpoint,
posseses an interior “hump” that is tangent to the critical value function, as depicted
in Figure 7 by the red curve, corresponding to f0 = f ′′0 . Therefore, the set of val-
ues | f0| ≤ f ′′0 are precisely the “set of small values" of f0 (referenced above) for
which Equation (5) and the system of equations (6) hold. In principle, one could
alternatively attempt to extend the decreasing segment further (as illustrated by the
extended dashed line in the figure), so that the rejection probability continued to be
equal to 0.05 for f0 > f ′′0 . It is clear, however, that for such values (e.g., f0 = f ′′′0 in
the figure) the associated "W" curve (e.g. the gray curve) will intersect the critical
value function more than two times, and therefore the system (6), which presumed
two intersection points, could not be used. We do not attempt this extension for
technical reasons explained in greater detail in Appendix B.1.

The second, and more straightforward, step in constructing the tF critical value
function is to determine where, along function c̃α

(
f 2), the critical value function

plateaus. There are many candidates: for example, one could use the piece-wise
function that passes through ABC in the figure, where the segment passing through
BC could potentially start on any point on the (thick or thin) solid black line. Among
all the plateaus that control size, the choice of a lower plateau will lead to a more
powerful test; therefore, we define the tF critical value function cα (F) to be the one
with the lowest possible plateau that controls rejection probabilities to be less than
or equal to α , for all values of ρ and f0. In practice, we use numerical integration
of the expression in (4) to compute these rejection probabilities, as illustrated in
Figure 2, for a grid of values for f0 and ρ to verify size control.45 For α = 0.05, our
numerical analysis indicates that size is controlled to be 0.05 when the critical value
function, represented by the function that passes through AB′C′ in Figure 7, has
the plateau level set to equal the chi-square critical value 1.962. For α = 0.01, the
construction of the decreasing segment of the critical value ends before the function
falls below the chi-square critical value of 2.582. For that case, the plateau is set

45Specifically, we use two grids. The first grid consists of values of ρ that range from 0 to 1 in
increments of 0.01, and values of f0 that range from 0 to 80 in increments of 0.25. The second grid
is one that focuses on the ρ values of 0.995, 0.996, 0.997, 0.998, and 0.999 and f0 values that range
from 0 to 80 at increments of 0.01.
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to the smallest possible value of that construction process, 2.732. Appendix B.3
provides a step-by-step algorithm for obtaining the entire tF critical value function
as outlined above.

The construction of the critical value function implies the existence of an entire
class of critical value functions that also control size, with decreasing segments that
are all coincident, with the only difference being where the plateau begins; the tF

critical value function, by definition, has the lowest plateau. A natural question to
ask is whether, for a given plateau, there might exist alternative critical value func-
tions that also control size, with a similar structure, but distinct from the decreasing
segment that we have constructed. In Appendix B, we specify a set of properties
that critical value functions could possess, and show that the class of critical value
functions described above is the only class that satisfies those properties.

III.C Conditional Expected Length: AR and tF confidence sets

This subsection describes how we obtain our results on the conditional expected
length of AR and tF intervals. Our motivation to examine expected length stemmed
from the traditional power curve analysis in Subsection II.C, which showed that
neither AR nor tF seemed to dominate across all values of ∆(β0) or differing com-
binations of ρ and f0. A natural summary measure of power is that of expected
length of the confidence set, which has the equivalent interpretation, due to Pratt
(1961), as the average Type II error, where the averaging occurs across all possible
false hypotheses β0, where each value of β0 in the parameter space is given equal
weight. Power curves are conceived as rejection rates while keeping β0 fixed while

varying β , but our curves, since they are functions of ∆(β0) =

√
V (Zv)√
V (Zu)

(β −β0),

could equivalently be viewed as graphing power fixing β , while varying β0. So
the expected length of the confidence set is equivalent to averaging 1 minus power,
averaging across ∆(β0).

Examining unconditional expected length, however, will not be informative
since we know, from Dufour (1997), that inverting both the AR and tF tests, by
virtue of delivering correct confidence levels, will have infinite unconditional ex-
pected length. Thus, we turn to examining the expected length of confidence sets
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conditional on F > q1−α . The event F > q1−α is important because it is the neces-
sary and sufficient condition for both the AR and tF confidence sets to be bounded
intervals; they have unbounded confidence sets with identical probabilities. This
allows us to interpret the conditional expected length as the average Type II error—
averaged across all false hypotheses β0—conditional on the confidence set being
an interval. Furthermore, conditional expected length is likely to be of interest to
practitioners who may wonder if they should expect AR or tF intervals to be shorter.

Given the ambiguity in the power comparison results, it was surprising to find
that an expected length comparison yields a stark contrast and clearly dominant
method: tF intervals are shorter in expectation. Indeed, we reach a somewhat
stronger result. The conditional expected length for the AR confidence interval
is infinite, while the conditional expected length of the tF interval is finite.

More formally, what we establish is the following. In any finite sample, there
are three confidence interval lengths that are relevant to this result, namely L̂IV

(the length of the conventional t-ratio-based confidence interval), L̂AR, and L̂tF , (the
lengths of the AR and tF intervals, respectively) and each of these converge in
distribution to random variables LIV , LAR, and LtF , respectively. Appendices C.2
and C.3 show that for all ρ, f0 6= 0

E [LAR|F > q1−α ] = ∞ and E [LtF |F > q1−α ] < ∞.

We next provide some intuition for this result. We show in Appendix C.1 that
conditional on F > q1−α , we can write LAR and LtF as inflated versions of LIV , i.e.,

LAR =

√
F
√

F−q1−α(1− ρ̃2)

F−q1−α

LIV(8)

and LtF =

√
cα(F)

q1−α

LIV ,

where ρ̃2 = (−tAR(β )+ρ f )2

( f 2−2ρtAR(β ) f+t2
AR(β ))

.
It turns out that the LAR inflation factor explodes as F approaches q1−α from

above, and even accounting for the other parts of the inflation factor, the denomi-
nator (F − q1−α ) leads to an infinite conditional expected length. As for LtF , the
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inflation factor does not grow as quickly as F approaches q1−α from above, and in
particular grows slowly enough that conditional expected length is finite. The key
to this result is our finding in Appendix B.2 that

lim
F↓q1−α

cα (F)(F−q1−α) = q3
1−α .

This result allows us to show integrability of
√

cα (F) because it shows that

√
cα(F) =

√
cα(F)(F−q1−α)

F−q1−α

≤ M√
F−q1−α

for some bound M, and in a neighborhood of q1−α , 1/
√

F−q1−α is integrable.
Appendix C provides the full proof.

In summary, these results show that the expected length of the tF confidence
set is (infinitely) shorter than that of the AR confidence set when F > q1−α . At
the same time, when F < q1−α , the tF confidence set always consists of the entire
line. By contrast, when F < q1−α , the AR confidence set is either the entire real line
or, possibly, a set that consists of all values outside a finite interval (see discussion
in Andrews, Stock and Sun (2019), Dufour and Taamouti (2005), and Mikusheva
(2010)).46 Thus, a trade-off in length is expected: tF does better when F > q1−α ,
but AR does better when F < q1−α . Note that the statement that tF does not dom-
inate AR in terms of expected length depends crucially on the presumption that re-
searchers are prepared to properly report, in the event that F < q1−α , a non-convex
and unbounded confidence set.47 If, for example, in practice researchers effectively
ignore the non-convexity and simply use the whole real line as the confidence set,
then the confidence sets for tF and AR would coincide when F < q1−α . In other
words, the unconditional expected difference in lengths between a "convexified" AR

confidence set and the tF interval would always favor tF .

46When F = q1−α , the tF confidence set is the entire real line, whereas the AR confidence set
can be the entire real line, a left- or right-bounded interval, or the empty set.

47We are unaware of an example when such a non-convex confidence set is reported other than
Cruz and Moreira (2005).
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IV Conclusion and Extensions

Since the work of Dufour (1997), it has been known in the econometrics commu-
nity that the conventional t-ratio delivers incorrect size; the work of Staiger and
Stock (1997) and Stock and Yogo (2005) provided the framework and approach for
quantifying—and fixing—these distortions to inference.

Yet practitioners, while using the±1.96 critical values that are more commonly
associated with a 5 percent test or 95 percent confidence interval, seem not to have
been using those results to qualify their inferences (e.g., they typically do not explic-
itly state that they are assuming E [F ] > 6.88, recognizing the test as a 10 percent
significance test), nor have they been precise about the consequences of incorporat-
ing the first-stage F statistic into the inferences about β , even though the literature
has provided such a method (e.g., they have not explicitly described the rule, "reject
if and only if t2 > 1.962,F > 16.38," as a test at the 15 percent level of signifi-
cance). Applied work also rarely uses the AR statistic, which has been known to
deliver valid inference.

This paper develops a “continuous” version of the critical value functions that
result from the application of Staiger and Stock (1997) to the values in Stock
and Yogo (2005). This smooth adjustment approach reduces the scope for mis-
application or misinterpretation since the interpretation is straightforward: after ad-
justment of the standard errors, hypothesis tests and interval estimates have their
intended significance or confidence levels, irrespective of the true values of the nui-
sance parameters—just like AR.

In our comparison between the two alternatives—AR and tF—both of which
have correct size, we discover a somewhat surprising fact about the AR confidence
set. Conditional on the confidence set being a bounded interval, it has infinite ex-
pected length, due to the thick upper tail of the probability distribution of lengths.
By contrast, the tF confidence set has finite expected length, whenever it is a
bounded interval. Therefore, in addition to the tF adjustment allowing a way to
re-assess the inferences of past studies, there is a practical reason for considering
its use for applied work, as an alternative to AR going forward.

There are some issues that we believe are worthy of deeper investigation. The
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scope of our study was limited to the common case of the single instrument IV
model, but it would be natural to expect the same kinds of issues to be at play with
the over-identified model, given the critical value tables of Stock and Yogo (2005),
which are appropriate for over-identified models as well. In ongoing work, we are
exploring the extent to which the tF approach can be applied to over-identified
models.
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