
The Measurement of Student Ability in Modern Assessment

Systems

Brian Jacob⇤

University of Michigan and NBER

Jesse Rothstein†

University of California, Berkeley and NBER

January 2016

1 Introduction

Human capital is central to modern economics. In early empirical work, researchers used the num-

ber of years of education as a proxy for human capital. But recent research frequently measures

variation in worker skill using cognitive test scores. These scores are used as measures of hu-

man capital in explaining wages and other employment outcomes (Neal and Johnson, 1996) and,

increasingly, as outcome measures in evaluations of programs and policies aimed at improving hu-

man capital accumulation. Examples of the latter include Angrist et al. (2011) on charter schools;

Jackson et al. (2014) on teachers; Krueger (1999) on class size; Lafortune et al. (2015) on school

finance; and Heckman et al. (2010) and Shapiro et al. (2010) on pre-school. Since the introduction

of the federal school accountability legislation No Child Left Behind in 2002, there has been a

proliferation of student testing, accelerating the use of cognitive ability measures by economists.
⇤bajacob@umich.edu
†rothstein@berkeley.edu
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Economists typically take cognitive test scores from pre-existing surveys or data sets, with-

out much thought about how these measures are generated. We suspect that many imagine that

test scores are noisy but unbiased measures of an individual’s true ability - e.g., the count or frac-

tion of items answered correctly. While this is sometimes the case, there are a wide variety of

methods used to construct the test scores reported in commonly used data sets. These methods are

not interchangeable, and they have important implications for the secondary use of the resulting

scores.

For example, the model used to generate student test scores in the National Assessment of

Educational Progress (NAEP; also known as “the Nation’s Report Card”) incorporates a student’s

background characteristics along with his or her responses to test items. Race is one of the many

background variables contained in the NAEP model. This means that if a black and white student

respond identically to the same set of NAEP assessment items, the reported ability for the black

student will be lower than that of the white student, reflecting the fact that, on average, black stu-

dents score lower than white students on this assessment. The NAEP accounts for this modeling

decision when it reports summary statistics such as the black-white test score gap, but, as we ex-

plain in detail below, this modeling choice can introduce important biases into other secondary

analyses involving NAEP data. Many other assessments, including those used in the longitudi-

nal studies created by the National Center for Education Statistics (such as the Early Childhood

Longitudinal Study, or ECLS), report “shrunken” scores that, if used naively, will lead secondary

analysts to understate between-group gaps in achievement.

The construction of test scores also has important implications for the standard economic

approaches to dealing with measurement error in explanatory variables. We show that standard

errors-in-variables or instrumental variables approaches are unlikely to properly account for the

measurement error contained in scores derived from modern assessments. Finally, the scaling of

test scores also presents serious challenges to the unaware analyst. Economists frequently attempt

to abstract from scaling issues by constructing z-scores, but, as we discuss below, z-scores con-

structed from differently-scaled and measured assessments may not be comparable.
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Our goal in this paper is to familiarize applied economists with the construction and prop-

erties of common cognitive score measures, and with the psychometrics behind them. Information

about how scores are constructed is often buried deep in technical manuals, if presented at all,

and inaccessible to those without a background in psychometrics (the field concerned with the

theory and methodology of psychological measurement). As a consequence, economists and other

applied researchers frequently mis-use test score measures, with potentially serious consequences

for their analyses.

To frame our discussion, it is useful to distinguish between several different types of tests.

• Tests designed to support research. These tests are typically administered as part of sur-

veys conducted by a federal statistical agency, most often the National Center for Educa-

tional Statistics (NCES). They include the achievement tests given to children in the Early

Childhood Longitudinal Survey (ECLS) and tests given to large samples of 4th, 8th, and

12th graders every year or two as part of the National Assessment of Educational Progress

(NAEP) program. They are generally not closely tied to an individual curriculum, are not

reported back to the students or their teachers or parents, and are designed with a relatively

high degree of attention to psychometric and statistical details.

• School-based assessments. There are a wide variety of tests administered to students in

schools as part of their regular operations. These range from state-mandated accountability

tests to formative assessments administered by teachers periodically to tests administered to

diagnose learning disabilities.1 Important subcategories include annual tests used to hold

students, schools and teachers accountable for their performance as, for example, mandated

by the federal No Child Left Behind legislation.

– Accountability tests. Test scores are increasingly used to hold students, schools, and

teachers accountable for their performance. Tests to support this are often, in accor-

dance with the federal No Child Left Behind Act of 2001, designed to measure whether
1For a more comprehensive discussion of student testing in schools, see a recent report by the

Council of the Great City Schools (Hart et al., 2015).
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a student passes some fixed “proficiency” standard. They vary from state to state, and

are often constructed by external vendors (e.g., Pearson). Well-known tests of this sort

are the Iowa Test of Basic Skills (ITBS) and the Stanford Achievement Test (known in

various versions as, e.g., the SAT9 or SAT10). Scores on these tests, extracted from

administrative databases, are the basis of much recent research in the economics of

education (e.g., Chetty et al. 2014a,b; Figlio and Rouse 2006; Neal and Schanzenbach

2010.

– Interim or benchmark assessments. These assessments are typically administered two

to three times per year (fall, winter, and spring) in core academic subjects, most often

in elementary grades. Today students often take these assessments online, and some

are adaptive, meaning that students who answer the initial items correctly are given

more difficult subsequent items. Examples of such assessments include the Northwest

Evaluation Association’s Measures of Academic Progress (NWEA-MAP), Scholastic

Reading/Math Inventory (SRI/SMI), the Developmental Reading Assessment (DRA)

and the Dynamic Indicators of Basic Early Literacy (DIBELS).

– Diagnostic tests. A third category of tests is designed to identify children in need of

special services, or to diagnose specific learning disabilities (e.g., dyslexia). These are

widely administered, but are not commonly used in economics research.

• College entrance tests, such as the ACT and SAT.

• Occupational certification tests. As occupational certification and licensing has become more

prevalent in the U.S. labor market (Kleiner and Krueger, 2013), tests have become more

prominent parts of the licensing process. Exams are required for licensure in fields as di-

verse as cosmetology, interior design, crane operation, tree trimming, home entertainment

installation, and auctioneering.2

2http://ij.org/wp-content/uploads/2015/04/licensetowork1.pdf.
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We focus primarily on the first two types of tests, which while apparently similar often have very

different psychometric properties. Much of our discussion applies to the others as well, however.

The remainder of the article proceeds as follows. In Section 2, we discuss the issue of

assigning a quantitative scale to latent student ability. Section 3 discusses the models used to

measure ability on the chosen scale. Section 4 explores the implications of the choice of mea-

surement model for secondary analysis of the resulting scores. We conclude by describing the

next generation of assessments that have been developed in conjunction with the Common Core

State Standards (CCSS). We also attempt to provide applied researchers with practical guidance

for working with cognitive ability measures.

2 Scaling

In this section, we discuss several issues associated with the scaling of assessment data. Test

scores are potentially valuable for empirical researchers, as they quantify student traits that are

otherwise hard to measure. But using them requires understanding what they represent, which

involves understanding the scale assigned to the latent ability measure.3 The commonly used

assessments described above report scores on a variety of different scales. IQ tests are traditionally

scored so that the distribution is centered at 100, with a standard deviation of about 15 (though see

Flynn 1987, 2009). The SAT college entrance exam is scaled to have a minimum score of 200, a

maximum score of 800, a mean of around 500, and a standard deviation around 100 on each sub-

test; its competitor, the ACT, uses integers between 1 and 36 for each of four subjects, with means

around 21 and standard deviations around 6. The National Assessment of Educational Progress

(NAEP) uses two scales: Scale scores range from roughly 100 to 400, with standard deviations

around 30, and in addition students are also assigned to three categories (basic, proficient, and

advanced).

Test scales are generally arbitrary in their locations and ranges. There is no reason that the

3Throughout this paper, we use “ability,” “proficiency,” “achievement,” and “aptitude” inter-
changeably to refer to the latent trait that governs test performance. Although some testing discus-
sion – particularly that pertaining to IQ tests – treats them as distinct, such distinctions (which are
hotly disputed) are not important for our purposes.
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College Board could not assign the lowest (highest) performing student on the SAT a score of 100

(1000) or that NAEP couldn’t increase or reduce the number of gradations made. Moreover, even

the distribution within the chosen range is based on arbitrary scaling decisions that vary across tests

– e.g., holding the number of categories fixed, NAEP could raise or lower the thresholds among

them with no less fealty to the underlying construct, and the College Board could rescale SAT

scores so that the achievement level that is now scored at 500 would be scored much closer to the

level currently scored at 600 than to the level currently scored at 400.

2.1 Interval or ordinal

Researchers using test scores generally treat them as an interval scale, meaning that a one unit

change in a student’s score at any point on the distribution reflects the same change in the under-

lying knowledge or skill the assessment is intended to measure. This is implicit in any analysis

based on averages of scores. For example, a comparison of the mean SAT scores between a treat-

ment and control group depends on the assumption that an improvement of one student’s score

from, say, 300 to 350 represents as much learning as an improvement of another student from 700

to 750. However, as many scholars have pointed out, there is generally no basis for interpreting

test scales as having an interval property (Stevens, 1946; Thorndike, 1966; Bond and Lang, 2013).

Like utility (and unlike income or temperature), measured achievement is best thought of as being

ordinal but not cardinal.

This fact has important implications for virtually all empirical analyses that involve test

scores. For the purpose of illustration, we present a very simple example from Bond and Lang

(2013) to show how arbitrary scaling decisions can have dramatic effects on estimates of an oft-

studied statistic in education research: the black-white test score gap. Consider a test of three,

progressively difficult skills that are cumulative in the sense that a student must master skill 1

before mastering skill 2, and skill 2 before skill 3. Students can thus answer zero, one, two or

all three test items correctly. Bond and Lang (2013) ask us to consider a population with two

black students and two white students, in which the black students correctly answer 0 and 2 items

and the white students answer 1 and 2 items correctly. The count of correct items is known in
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psychometrics as the “raw score.” The average raw score for black students is thus 1, while that for

white students is 1.5. Hence, the gap in mean raw scores is 0.5 points, or 0.6 standard deviations.

The raw score metric assumes that each skill represents the same “amount” of knowledge

(has the same marginal value), a belief that may not be true. Suppose that the skills are (in order)

the the ability to recite the alphabet, the ability to recognize letters and ability to read fluently.

In this case, one might consider the incremental knowledge represented by skill two to be quite

small, but the steps from zero to one skills or from two to three to be extremely large. If we

assume the difference between zero and one skills is much larger than that between one and two,

the gap approaches 1 point, or 1.15 standard deviations. By contrast, we assume the difference in

knowledge between zero and one skill is arbitrarily small and that between one and two is large,

the test score gap will approach zero.

This problem is even worse if one considers changes over time. Assume that each student

progresses exactly one skill level during the course of a year, so that at the end of the year the

black students correctly answer 1 and 3 items correctly, and the white students answer 2 and 3

items correctly. If each skill is assumed to represent the same amount of instructional input, then

the change in the raw test score gap measures the gap in inputs. This gap has remained unchanged

at 0.5 points, so we might conclude that the quality of the instruction available to black and white

students is the same. Using the two alternative scalings described above, however, we would

conclude that the gap falls from 1.15 to 0 standard deviations, or increases from 0 to 1.15 standard

deviations, with very different implications for our assessments of instructional quality. Bond and

Lang (2013) show that empirical estimates of the black-white gap in achievement growth across

grades are extremely sensitive to transformations of the test score, and that this sensitivity varies

across test and grade level. Depending on the transformation and assessment used, they find that

estimates of the change in the black-white test score gap between kindergarten and third grade

range from 0 to 0.6 standard deviations.

To take another example, consider value-added estimates of teachers’ impacts on their stu-

dents’ achievement. Even if we set aside questions about the causal interpretation of these esti-
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mates (Rothstein, 2010, 2015; Chetty et al., 2014a,b), any comparison of the value-added across

teachers with students having different baseline scores rests, implicitly, on an assumed interval

scale. Without this, one cannot compare the impact of a teacher who works with very low scoring

students and raises their scores by ten (scale score) points to the impact of a peer who raises by

fifteen points the scores of her students with higher baseline scores, or even average the growth of

one student whose score rises by ten points over the year and that of a classmate who starts at a

very different place but gains only five points.

The ordinality of test scores thus poses a major challenge for those working with test score

data. There are several options with regard to scaling. The first approach, favored by many psy-

chometricians and education researchers, is to utilize the scale that comes from the model used to

develop and score the assessment. The choice of model defines a scale for the achievement param-

eter and many psychometricians treat this scale as interval. In practice, however, most analyses of

test scores as interval measures are based on an implicit assumption is that a one unit movement

on the scale reflects an “equal” amount of knowledge, or an equal amount of effective instructional

input, at any point in the scale. There is no particular reason to think that the functional form used

to generate the assessment scores corresponds to equal measures of effective instructional inputs.

Indeed, absent an operational definition of effective instructional inputs – which of course is what

the test is often used to estimate – it is not even clear how one might evaluate the claim that a

proposed scale has an interval property.

A second approach, advocated byBond and Lang (2013), is to simply treat test scores as

ordinal measures, and limit conclusions to those that are robust to arbitrary monotonic transforma-

tions of the test score. For example, one way to describe the differences in two distributions in a

metric-free way is to construct percentile-percentile (P-P) plots, which plot the cumulative distri-

bution of group A (e.g., black students) against the cumulative distribution of group B (e.g., white

students). If the two distributions are identical, the plot will lie on the 45-degree line. The extent to

which the plot deviates from this line can be used to construct a scale-free measure of the difference

in performance across the two populations. For example, Reardon (2008) calculates the probabil-
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ity that a randomly chosen black student will have a test score higher than the randomly chosen

white student, which equals the percentile in the white distribution where the average black student

would fall. Ho (2009) and Ho and Haertel (2006) describe how this information can be converted

to a standardized metric-free gap measure (though even here this may or may not correspond to

the gap in educational inputs received).

This reliance on the ordinal property of test scores underlies a popular approach to calcu-

lating teacher value-added known as the Colorado Growth Model (also referred to as the student

growth percentile model). Here the researcher assigns student i a “growth percentile” which cor-

responds to her percentile in the distribution of test scores in year t among the sample of students

who had the same test score as student i in year t-1. The median growth percentile of a teacher’s

students provides the measure of teacher effectiveness, though again there is no assurance that a

given increment to a teacher’s median growth percentile is equally easy to achieve at all points in

the teacher or student distribution. Barlevy and Neal (2012) propose a similar approach as part of

a teacher accountability and compensation system.

While a focus on the ordinal nature of test scores is clearly more defensible from a psycho-

metric perspective, it comes with important costs as it limits the questions that can be answered in

research and policy evaluation. A third approach is to translate scores into units of another measure

that we are willing to assume is interval, such as adult earnings or educational attainment (Cunha

and Heckman, 2006; Cunha et al., 2010; Bond and Lang, 2015). Thus, an attainment-scaled test

score would simply be the average eventual educational attainment of all students with a particular

score:

y(q) =
Âi 1(ti = q)Yi

Âi 1(ti = q)
(1)

where Yi is the adult attainment of student i with earlier test score ti and 1(ti = q) is an indicator for

student i’s score equalling q. Bond and Lang (2015) use this approach to measure the black-white

gap in years-of-education-scaled test scores at various grades. Scaled this way, the reading gap is

roughly constant from K through grade 7 at around 0.7 years of predicted educational attainment,

while the math gap is close to a full year. These are larger than the realized black-white gaps in
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eventual educational attainment, as black students tend to have higher educational attainment than

do white students with the same early grade test scores.

This forward-linking approach does yield a scale that can be interpreted in a meaningful

way, and that is plausibly interval. On the other hand, the choice of a specific outcome to link to,

and of a linking function, implies a value judgment about the weight we put on different levels

of achievement. There is no assurance that the particular interval scale defined by educational

attainment will correspond to that defined by another outcome (such as earnings), nor that either

corresponds to the interval scale representing units of effective educational inputs. It might simply

require more inputs to move a student from 9 to 10 years of education than from 11 to 12 or 15 to

16.

This kind of future-linked scale has other undesirable properties as well. For example,

consider two tests that are identical except that one is shorter, so the fraction correct for examinee

i has more sampling error on the short test. The y(q) mapping from the fraction correct to average

later outcomes will be flatter on the shorter test, so the black-white gap will appear to be smaller.

Even worse, measured performance on a forward-linked scale captures not only inputs prior to the

test, but also inputs that students will receive later. Thus, for example, the existence of an effective

intervention program for low-scoring adolescents will raise the average educational attainment of

children who scored poorly as kindergarteners, and thus compress the left tail of forward-linked

kindergarten scores. This is contrary to the standard education production function approach in

which a student’s ability at time t is a function of all inputs the student has received up to (but not

following) time t. Thus, while this sort of approach is promising, we regard it as underdeveloped

and not yet ready for broad application.

Finally, it might be possible to narrow the class of scale transformations that we are willing

to consider, by in effect assuming that straightforward scales such as the raw score are partially

but not fully interval. For example, we might be willing to assume that the difference between

SAT scores of 1500 and 1000 is larger than that between 1000 and 990, even if we aren’t willing

to assume that it is fifty times as large. The challenge then is to parameterize and define this no-
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tion that only some monotonic transformations (or, alternatively, some distributions of underlying

achievement) are legitimate. Nielsen (2015) provides a valuable first step in this direction. His em-

pirical results, like those of Bond and Lang (2013), suggest that cross-sectional achievement gap

estimates (e.g., for black/white and high-/low-income) are quite robust to scale misspecification,

but that achievement gap change estimates are considerably more sensitive to the choice of scale.

2.2 Scaling considerations and common practice

In cases where the outcome metric is well known (e.g., SAT points), researchers will often an-

alyze scores using the reported scale. But when the scale is not familiar, economists frequently

convert individual scores to a known scale. In practice, three transformations are used most often:

percentiles, z-scores and Normal Curve Equivalents (NCEs). Percentile scores are computed as

the percentile of the examinee’s score relative to others. Z-scores are the difference between the

examinee’s scale score and the mean scale score, divided by the scale score standard deviation.

Normal Curve Equivalents (NCEs) are obtained by applying the inverse distribution function of

the standard normal distribution to the percentile score. As the above discussion makes clear, there

is little basis for saying that these ad hoc transformations yield scales that are any more or less

correct. Nevertheless, even when researchers are willing to implicitly assume that one of these

transformations yields an interval scale, there are several specific hazards of which one should be

aware.

First, it is important to keep in mind the population against which the assessment has been

normed. All test measures are defined by reference to some norming population, which in practice

can be quite small and non-representative. To the extent that one’s analysis is focused entirely on

a single data set or well understood population, this might be fine. But any sort of comparability

across assessments depends on the use of comparable norming populations, and there is no as-

surance that the distribution of interval-scaled ability is constant across different populations (e.g.,

states, ages or cohorts). Suppose, for example, one is interested in comparing the impact of an

intervention in two states that administered different exams. Constructing z-scores from samples

from the two states assumes that both the mean and standard deviation of latent achievement, if
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measured on the same scale, would be identical in the two states. This assumption has little foun-

dation. Thus, comparison of NCE, z, or percentile scores across groups is inherently fraught when

they are normed to different populations.

Cascio and Staiger (2012) provide an excellent example of this concern. They ask whether

the common empirical result that interventions aimed at younger children tend to have larger effects

on standardized test scores (z-scores) than do those aimed at older children could be attributable

to the standardization process rather than an indication that achievement becomes less malleable

as children age. Consider a simple evaluation of the effect of an intervention (represented by an

indicator variable T ) on the ability of student i tested at age t:

qit = Tibt +uit . (2)

Common practice among economists is to standardize scores separately by age. Thus, the regres-

sion that is actually estimated is
q̂it

st
= Ti

bt

st
+

uit

st
, (3)

where st is the standard deviation of measured scores q̂it (either overall or conditional on T ) among

age-t students. As Cascio and Staiger note, variation in the coefficient of this regression across ages

could be driven either by bt or by st . There may be reason to suspect that st grows with age, as

older students have been exposed to more out-of-school influences whose effects may accumulate.

If so, this could explain the observed pattern of declining coefficients with age. To gain traction on

this problem, Cascio and Staiger (2012) adopt a parametric, additive model of student test scores as

depending on a permanent child ability, long-term knowledge that decays at a constant, geometric

rate, and a fully transitory component that combines what they refer to as “short-term knowledge”

with pure measurement error on the test. They use this model to estimate the extent to which the

observed decline in treatment effects with child age might be due to increases in the variability

of long-term knowledge, concluding that while variance does increase with age, it cannot fully

explain the smaller treatment effects among older populations.
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Second, even if interval-scaled ability is similarly distributed across groups, measured abil-

ity may not be. Consider again the common practice of standardizing scores separately by age or

grade. A test of kindergarteners may have more measurement error than a similar test of fifth

graders. The grade-specific standard deviation st combines the true variability of ability among

grade-t children with measurement error in the grade-t test. Thus, even if the former is assumed

to be invariant to t, if the latter declines with age, so will st . The result of dividing by the com-

posite will be to shrink the true ability variation differentially across grades. This would make

between-group differences (e.g., the black-white gap) in z-scores larger for 5th graders than for

kindergarteners, even if latent ability has identical distributions in the two grades.

As we describe in more detail below, the measurement error in reported test scores is a

function of the way in which the score is constructed. In the simplest case, when the individual

ability estimate contains classical measurement error, the across-student standard deviation the

researcher calculates will be larger than the true standard deviation of ability in the population. If

a z-score constructed from such a test score is used as an outcome in a regression, measurement

error will attenuate the coefficients relative to what one would obtain with the correct variance

measure. On the other hand, as described more below, the individual ability measure reported in

many modern assessments has a variance smaller than the true variance of ability, which will lead

to the opposite bias. Standardization must take account of these measurement issues if results are

to be informative.

3 Measurement

Scaling involves the conversion of some “raw” ability measure into scale scores with a desired

distribution. In this section, we discuss how test-makers obtain those raw ability estimates.4

Until relatively recently, psychometricians relied on what is known as “Classical Test The-

ory” to construct ability measures. In this framework, a raw score such as the fraction of items

4In the psychometrics literature, proficiency is often used to refer to an individual’s latent abil-
ity. This should not be confused with the binary, criterion-referenced notion of proficiency that
is common in assessing school performance today. As noted above, we use the terms ability and
proficiency interchangeably.
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answered correctly is viewed as the sum of an individual’s true ability and classical measurement

error. While this approach is simple and transparent, it has several limitations. First, items of mod-

erate difficulty provide more information about a student’s latent proficiency than do items that are

very easy or very hard for her, and even holding difficulty constant some items may be better or

worse at discriminating the dimension of proficiency of interest. (For example, a test item about

baseball statistics may measure knowledge of the sport better than it does statistical proficiency.)

Second, in many circumstances it is desirable to be able to compare the proficiency of students

who were not all given the same test, either because the test is distributed in multiple forms or

because – increasingly common with computer administration – it is adaptive, with items assigned

based on the student’s performance on past items. When different students are given items that

(may) differ in their difficulty, the raw score should be adjusted.

Accordingly, modern psychometrics generally uses what are known as “Item Response

Theory” (IRT) models that view the probability a student answers each item correctly as a function

of the student’s ability and some characteristics of the item (van der Linden and Hambleton, 1997).

We discuss these models briefly in Section 3.1, then discuss their estimation afterward.

3.1 Item response theory

Let qi represent the latent, unobserved ability of examinee i, and let Ri =
�

ri j
 Ji

j=1 be i’s scored

responses to test items j = 1, ...,Ji. For simplicity, we assume that ri j is binary, with 1 representing

a correct response and zero an incorrect response.5 An IRT model specifies the probability that

ri j = 1 as a function of i’s latent ability qi and a vector of item parameters y j: Pr
�

ri j = 1
�

=

F
�

qi; y j
�

.

In many common cases, F is specified as a logistic function of some term that is linear in

qi. The simplest IRT model is the Rasch model (also known as the one-parameter logistic, or 1PL).

5Commonly, students will fail to respond to some items. Item nonresponse is often treated
as ignorable, with the relevant terms omitted from the likelihood, defined below. On so-called
“speeded” tests, however, the number of items responded to is informative about student ability,
and in some cases missing items are scored as incorrect. Modeling informative missingness (e.g.,
Glas and Pimentel, 2008 and Holman and Glas, 2005) is beyond the scope of our discussion. For
ease of exposition we will treat R as complete.
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It specifies y j as a scalar (often written as b j), representing the difficulty of item j, and:

Pr
�

ri j = 1
�

= F
�

qi; b j
�

=
eqi�b j

1+ eqi�b j
, (4)

or, alternatively,

ln
F
�

qi; b j
�

1�F
�

qi; b j
� = qi �b j. (5)

In this model, items vary in their difficulty but the functions Fj (q) ⌘ F
�

q ; b j
�

(known as “item

characteristic curves,” or ICCs) are merely horizontal shifts of one another. Figure 1 illustrates the

assumed ICCs for two items, one with b j = 0 and the other more difficult with b j = 1. Under the

Rasch model (but not under other IRT models), for any fixed set of items the maximum likelihood

estimate of qi is a monotonic transformation of the raw score (overall fraction correct) and does

not depend on the specific pattern of correct and incorrect answers.

Other IRT models add additional item parameters. The most common IRT model is the

three-parameter logistic, or 3PL: y j =
�

a j,b j,c j
 

and

Pr
�

ri j = 1
�

= F
�

qi; y j
�

= c j +
�

1� c j
� ea j(qi�b j)

1+ ea j(qi�b j)
. (6)

b j represents item difficulty, as in the Rasch model. The a j parameter is known as the “discrim-

ination” of item j. It can stretch or compress the item response curve horizontally, with steeper

curves for items with higher a j. c j, known as the “guessability” of the item, allows for a non-zero

probability of a correct answer even when qi is very low; it is often constrained to be constant

across items. The 3PL model reduces to the 1PL model when a j = 1 and c j = 0. When c j is con-

strained to 0 but a j is unrestricted, one obtains the two-parameter logistic, or 2PL model. Figure 2

illustrates ICCs for three 3PL items. One fits the Rasch model, with a j = 1, c j = 0, and b j = 0. A

second item is more discriminating, with a j = 2. This does a better job of distinguishing students

with qi near b j, but provides little information about students with qi far below or far above b j

(who get the item wrong or right, respectively, with very high probability). The third item shown

returns to a j = 1, but is guessable, with c j = 0.2. On this item, even the very lowest proficiency

15



students have a positive probability of guessing the correct answer.

These models all assume that the item response is binary. There are also IRT models for

scored items (e.g., essay questions or open response math items) where more than two scores are

available, and the most sophisticated assessments and the corresponding IRT models often com-

bine both binary and polytomous choice items. For a more complete discussion of IRT models,

see van der Linden and Hambleton (1997). Embretson and Reise (2000) provide a readable intro-

duction to the field for non-psychometricians.

Across all IRT specifications, item responses are generally assumed to be independent of all

other observables conditional on the latent proficiency qi. They are also assumed to be independent

across both students and items. This means that the likelihood function for examinee i can be

written as:

Pr (Ri|qi;y1, ...yJi) = ’
j

Pr
�

ri j|qi;y j
�

= ’
j

�

F
�

qi; y j
��ri j

�

1�F
�

qi; y j
��1�ri j . (7)

In the discussion below, we refer to (7), with the accompanying specification of Fj (q), as the

“measurement” model.

3.2 Measuring student ability in test scoring

The IRT model specification is used to extract information about examinees’ latent ability from

observed item response data. Given an IRT specification, item parameters y j are identified as the

number of examinees goes to infinity, while student i0s proficiency qi is identified as the number of

test items goes to infinity. In practice, tests are commonly kept short to minimize respondent bur-

den, while the number of examinees is relatively large (N � J). This means that item parameters

are consistently estimated, but student proficiency may not be.6 As the latter is the parameter of

interest – we give tests to learn about test-takers, not about the tests – this poses a challenge. There

are three general ways that student ability estimates are generated in modern assessment systems.

6Normalizations are required for identification. For example, some tests normalize E [qi] = 0
and 1/J Â j a j = 1.7 (chosen because this makes the ICC resemble a normal CDF).

16



In the first approach, one treats student ability as a fixed effect and measures the examinee’s

performance as the maximum likelihood (ML) estimate of qi from (7). The result, q̂ ML
i , is an

(asymptotically, as J ! •) unbiased estimator of qi, though the estimates can be quite noisy when

J is small. Perhaps more importantly, q̂ ML
i is not defined for examinees who get all questions

correct or all incorrect. Ad-hoc measures are used to assign scores to students whose score would

otherwise be undefined. For example, the former state-mandated test in Michigan (the MEAP)

assigned students who answered all (no) items correctly a score 10 percent higher (lower) than

what was otherwise possible. Other tests simply set minimum and maximum scores, and assign

students with missing ML estimates as well as those with ML estimates outside those range to the

endpoints.

A second approach is to treat qi as a random effect, augmenting (7) with a model for the

distribution of qi. The parameters of the q distribution are estimated via ML; once this is done,

a posterior distribution can be computed for each examinee, taking the population distribution of

q as the prior and the item responses as data. An examinee’s performance is often measured as

the mean of this posterior distribution, known as the posterior mean or “expected a posteriori”

(EAP) score, q̂ EAP
i . Most of the longitudinal databases created and distributed by the National

Center for Education Statistics (NCES), including the National Educational Longitudinal Study

of 1988 (NELS:88), the Educational Longitudinal Study (ELS), the High School Longitudinal

Study (HSLS), and the Early Childhood Longitudinal Study (ECLS), report scores constructed

from posterior means.7

Posterior mean scores can be interpreted as a Empirical Bayes (EB) estimates of students’

latent ability (Morris, 1983). EB estimates are often referred to as “shrinkage” estimators because

the estimate (at least in simple cases) can be seen as a weighted average of the individual’s own

score (i.e., the ML estimate describe above) and the population mean ability, where the weight (or

7One sometimes also sees “maximum a posteriori” (MAP) scores, which are posterior modes.
An example is the the ASVAB scores reported in the 1997 wave of the National Longitudinal Study
of Youth (NLSY97).
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shrinkage factor) is a function of the precision with which the individual’s own score is estimated:

q̂ EAP
i = (1�l )E [q ]+l q̂ ML

i = E [q ]+l
�

q̂ ML
i �E [q ]

�

(8)

with l = V (qi)
V (qi)+V(q̂ ML

i �qi)
. As this expression indicates, a student’s EAP score will generally be

closer to E [qi] than is her ML estimate. Importantly, posterior means are unbiased predictors of the

unknown parameter, but not unbiased estimators: E
⇥

qi|q̂ EAP
i

⇤

= q̂ EAP
i , but E

⇥

q̂ EAP
i |qi

⇤

6= qi. As

we discuss in Section 4, this has important implications for the secondary analysis of EAP scores.

In IRT models, ability is estimated most precisely for individuals with q ’s near the middle

of the measured ability distribution. This is because items are most discriminating (i,e, their char-

acteristic curves are steepest, and thus the examinee’s response provides the most information in

the Fisher sense) when qi = b j.8 For this reason, the reported ability measure in this framework

will be shrunk more for students that score extremely high or low on the exam.

A third measurement approach, taken by several major assessments including the National

Assessment of Educational Progress (NAEP), is to report what is known as “plausible values”

(PVs). Each plausible value, q̂ PV
i , is a random draw from the examinee’s posterior distribution.

Tests typically report several draws for each examinee, and recommend that secondary analysts

use the across-draw variability to model the contribution of these random draws to the sampling

variability of their estimates. 9Plausible values are closely related to multiple imputation for miss-

ing data, and indeed both derive from Rubin’s (1987; 1996) work on the topic. They are neither

unbiased estimators nor unbiased predictors of individual ability. However, the across-examinee

8Interestingly, the standard errors of raw scores are largest at this point, and smaller in the tails:
The variance of the fraction correct, p, is p(1� p), and this is highest when p is close to 0.5.
Intuitively, random chance has the biggest role when the probability of getting an item correct is
close to 50%.

9NAEP instructs researchers to conduct their analysis separately using each of the K = 5 plau-
sible values for a student, thus generating K statistics b̂k (k = 1, . . . ,K). These estimates are then
averaged to obtain the point estimate b̂ PV = 1

K ÂK
1 b̂k. The variance of the point estimate is com-

puted as the average of the five estimated variances plus the variance of the average (computed

from the across-PV variability): V
⇣

b̂ PV
⌘

= 1
K ÂK

k=1V
⇣

b̂k

⌘

+ 1
K(K�1) ÂK

k=1

⇣

b̂k � b̂ PV
⌘2

.
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distribution of PVs should reproduce the univariate distribution of qi, where the variance of maxi-

mum likelihood estimates will be larger than that of the underlying parameter and the variance of

posterior means will be smaller. Indeed, the primary benefit of using PVs is to obtain consistent

variance estimates for use in producing summary statistics.

Figures 3-5 use simulated data on 10,000 individuals with qi ⇠ N(0,1) to illustrate these

three approaches. In Figure 3, each individual is administered an exam with 15 items where re-

sponse probabilities follow a simple Rasch model and the difficulty parameters are uniformly dis-

tributed on [�2,2]. For each examinee, we computed direct the maximum likelihood (ML) estimate

of qi, the posterior mean, and one plausible value.10 The dotted line shows the true proficiency

distribution, while the other lines show kernel density estimates of the other distributions: dash-dot

for ML, solid for posterior means, and dashed for plausible values. All three score measures are

centered around zero, the mean of the true q distribution. Their variances differ, however: The

MLE distribution has a variance much larger than V (qi), while the posterior mean distribution has

a smaller variance than does true proficiency.11 By contrast, the plausible values have a distribution

very similar to that of the true qi.

The test used in Figure 3 is relatively short at only 15 items (about half the length of

the NAEP test), but is also well designed to discriminate among students. Figure 4 repeats the

exercise using a much easier test, with item difficulty parameters distributed as N
�

�1, 0.252�.

We again see too little variability of the posterior means and too much of the ML estimates. The

mismeasurement is particularly severe on the right tail of the qi distribution: Over 6% of students

earn perfect scores, so receive ML scores of 4.0, but this in large part reflects the ease of the

10In the ML estimation, scores are censored from below at -4 and from above at +4, and these
scores are assigned to students who got all items wrong or right, respectively. Each examinee’s
items are drawn independently from the U [�2,2] distribution, as with common items the ML score
distribution would have only 16 points of support. Test scoring assumes that item parameters are
known.

11The reduced variance of the posterior means is not because we have under-estimated V (qi): A
correctly specified random effect model of latent ability yields a consistent estimate of the variance
of true ability. But even so, the estimated posterior means for individuals have too little variation
relative to that in latent ability.
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questions; the highest posterior mean score is just over 1.5.

Figure 5 illustrates a longer test, with 50 items drawn from the same distribution as in

Figure 3. With this many items, and this wide a spread of item difficulty, measurement choices are

less important. ML scores are still too variable and posterior means not variable enough, but the

differences are much smaller.

3.2.1 Incorporating conditioning variables into the generation of latent student ability mea-

sures

As Figures 3 and 4 illustrate, short tests do not accurately pin down qi, resulting in quite wide

posterior distributions. In order to increase the precision of ability estimates, some assessments

– including the premier U.S. and international assessment systems, the National Assessment of

Educational Progress (NAEP) and the Program on International Student Assessment (PISA), re-

spectively – use student background characteristics to generate more informative priors. Under this

approach, the prior distribution of qi for student i with characteristics Zi is specified as pc (qi|Zi; p),

where p represents parameters (e.g., coefficients of an unknown regression of qi on Zi). We refer

to this as the “conditioning model” and to the vector Zi as the “conditioning variables.” Together,

the conditioning model and the measurement model (equation 7) yield an expression for the likeli-

hood of observed item responses Ri given the IRT item parameters Y and the conditioning model

parameters p:

Pr (Ri|Zi;p,Y) =

ˆ
PIRT (Ri|q ;Y) pc (q |Zi;p)dq . (9)

The test-maker estimates y and p via maximum likelihood applied to (9), using numerical

methods (e.g., quadrature) to handle the integration. Posterior distributions are then calculated

using pc (qi|Zi; p̂) as the prior for student i’s ability and Bayes’ rule:

p(qi|Ri,Zi) µ pIRT (Ri|q ;Ŷ)pc(qi|Zi; p̂). (10)

As above, the posterior mean can be viewed as an Empirical Bayes (EB) or shrinkage estimator.
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Instead of being shrunk toward the unconditional population mean, however, a student’s perfor-

mance on the items she answered is shrunk toward the mean of all students with the same values

of any included conditioning variables:12

q̂ EAP|Z
i = E [qi|Zi]+li

�

q̂ ML
i �E [qi|Zi]

�

. (11)

As a result, the posterior distribution for student i varies both with the student’s test responses Ri

and with her background characteristics Zi. Suppose, for example, that race is one of the back-

ground variables contained within Z (as indeed it is in NAEP), and that on average black students

have lower proficiency than white students. Now consider two students, one black and one white

but otherwise identical in their Zs, who also respond identically to the NAEP assessment items.

Our two students’ performance is “shrunken” toward different group averages. As a result, the

white student’s posterior distribution will stochastically dominate that of the black student, leading

to gaps in their posterior means and plausible values. This creates biases in some, but not all,

secondary analyses. We turn to that issue next.

4 Secondary analysis with latent ability measures

In this Section, we discuss the implications of measurement and scaling decisions for secondary

analysis of the scores. For simplicity, we focus on linear OLS regressions with the test score

used either as a dependent or an independent variable. In order to focus specifically on issues

arising from scaling and measurement, we ignore both sampling variability (assuming that the

number of examinees is large) and omitted variable bias (assuming that linear projections are of

interest, perhaps because the research design supports their causal interpretation). It turns out

that the existence and nature of bias depends on the type of ability measure used (i.e., a direct

maximum likelihood estimate, a posterior mean or a plausible value) and whether ability measure

is a dependent or independent variable.

12The shrinkage factor here differs from that in equation (8), as it depends on the conditional
variance of q , V (q |Z).
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4.1 Ability as the dependent variable

Consider the following research model:

qi = Xib + ei. (12)

where qi is the latent student ability (measured on a scale that we assume, for now, is appropriate

and interval), Xi is a vector of observed covariates including a constant, and ei is a residual term

that has mean zero and is uncorrelated with Xi. Because we only observe an imperfect measure of

latent ability, q̂i ⌘ qi +ui, the feasible regression is

q̂i = Xib 0+ e 0i . (13)

We are interested in the relationship between the feasible coefficient b 0 and the “true” coefficient

b . This depends on the measurement and scaling of q̂i. We discuss measurement considerations

first, assuming that q̂i is measured on the appropriate scale, then turn to scaling issues.

4.1.1 Ability measures without conditioning variables

The simplest case is that where the ability measure is a maximum likelihood estimate, q̂ ML
i , that

can be viewed as an approximately unbiased estimate of qi. The error component ui derives from

the student’s luck in responding to test items, and can be expected to be orthogonal to Xi. Because

orthogonal measurement error in a dependent variable does not bias regression coefficients, use of

q̂ ML
i will generate consistent (but possibly less precise) estimates of b .

In contrast, ability measures based on the posterior distribution of qi are not generally un-

biased estimates of individual ability. As discussed above, in the simplest case q̂ EAP
i is a shrunken

version of the maximum likelihood estimate, with a uniform shrinkage factor l . Using this as a

dependent variable will attenuate the estimated b coefficients (other than the constant) by a factor

l . For example, consider the regression of posterior mean scores (generated without conditioning

variables) on a binary variable indicating if the student is poor. If poor children have lower than
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average scores and non-poor children have higher than average scores, then use of posterior mean

will overstate (understate) the average ability of poor (non-poor) children, thus understating the

poverty achievement gap. We present an empirical illustration of this below, drawn from Briggs

(2008).

It is unrealistic, however, to assume that the estimation error in q̂i is homoskedastic. If it

is not, the shrinkage factor will vary across observations. This complicates the interpretation of

estimates, which may not simply be attenuated. For example, because most IRT-based tests yield

more precise estimates of qi for students in the middle of the distribution than for those at the tails,

the scores of students with very high or very low Xib are likely to be shrunken by more. The bias

this generates is difficult to characterize in general. Similar bias arises in other contexts where

shrinkage estimators are used as dependent variables. For example, Chetty et al. (2014a) assess

inequities in access to good teachers by regressing what amount to Empirical Bayes estimates of

teacher value-added (i.e., posterior means) on observable student characteristics. Recognizing that

the resulting coefficients are attenuated relative to what would be obtained if true value-added were

used as the dependent variable, Chetty et al. (2014a) multiply all coefficients by the inverse of the

average shrinkage factor. However, because experienced teachers have more years of available

data, their value-added scores are shrunk by less, and applying a uniform correction may not

recover the correct estimates of b .

What about tests that report plausible values? A plausible value is merely the sum of the

posterior mean plus a deviation that is randomly generated as part of the test scoring process. This

deviation is by construction orthogonal to Xi, so contributes nothing to the estimated regression

coefficient in expectation. Hence, PVs generate estimates of b that are biased in the same way as

those obtained from posterior means, though less efficient.

NAEP and other assessments that report plausible values provide users with detailed guid-

ance on how to conduct analysis using these measures. This guidance is primarily intended to

ensure the researcher uses the correct variance measures when conducting inference. In practice,

economists often do not follow the recommended guidelines for using PVs, instead using the first
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PV or a simple average of the PVs as the individual ability measure (see, for example, Blau and

Kahn, 2005, or Ferrer et al., 2006). While this is a source of frustration to psychometricians,13

heteroskedastic-robust inferential methods should be consistent even without explicit adjustment

for the random choice of PVs from each examinee’s posterior distribution. But neither robust

standard errors nor the recommended procedures eliminate bias in coefficients from the use of

shrunken ability estimates.

4.1.2 Ability measures that incorporate conditioning variables

When q̂i is a posterior mean or plausible value computed using conditioning variables, the potential

biases are more complicated. As described above, the inclusion of conditioning variables can be

thought of as shrinking a student’s individual performance on given test items toward her group

(Z-) specific mean (equation 11).

If all of the independent variables Xi in the research model are included in the set of con-

ditioning variables Zi, X ✓ Z, then the second term on the right-hand side of (11) is orthogonal

to Xi in expectation, and both posterior mean-based and PV-based coefficient estimates are con-

sistent (though PVs are inefficient relative to posterior means). As intuition, note that only the

portion of achievement that is not predicted by the conditioning variables is shrunken. Thus, for

example, if X is a set of race indicators, and if Z also includes these indicators (perhaps along with

other variables), then the racial gap in posterior means or PVs will equal the racial gap in latent

proficiency.

The same intuition implies that when the X variables are not included in Z, secondary

analysis using the posterior mean or plausible values will lead to inconsistent estimates in general,

as the portion of the variation in qi associated with X but not Z is shrunken. The (asymptotic) bias

is most severe when the explanatory variables of interest are poorly proxied for by those in the

conditioning set and when the regression also includes correlated explanatory variables that were

in (or well proxied by) the conditioning set (see, e.g., Mislevy, 1991).

Importantly, if the conditions for consistency are not met, the bias is not confined to par-

13For excellent recent summaries, see von Davier et al. (2009) and Carstens and Hastedt (2010).
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ticular coefficients. All other coefficients may be biased as well, in ways that would be hard for a

secondary researcher to predict given the limited documentation of the conditioning model in most

test data sets. For example, consider a regression of test scores on student background and school

policy measures, where the conditioning variables include the former but not the latter. Then the

policy coefficients are likely to be quite attenuated, and the student background coefficients may

also be biased if the background and policy measures are correlated.

It is not clear how severe this bias is in practice. Mislevy (1991) reports results of a reanal-

ysis of the 1984 NAEP Long Term Trend reading assessment. He finds that biases in coefficients

on X variables included in Z are small, but that coefficients on X variables not included in Z are

substantial. But psychometric methodology and computational capacities have advanced consid-

erably since 1984. Most testing systems with conditioning models use very high-dimensional Zs

in hopes that any X considered by subsequent researchers will have been included directly or by

proxy in Z.14 Recent NAEP administrations use hundreds of variables in the conditioning model,

including student demographics (e.g., race, gender and age), family background characteristics

(e.g., parental employment, parental education), school characteristics (e.g., racial composition

of the school, urbanicity of school location), student self-reports of study habits and school per-

formance (e.g., overall grades, expected educational attainment, time spent on homework), and

teacher reports of aspects of the curriculum and of school policies. Given the large amount of in-

formation, the excluded elements of X may be quite predictable from the information in Z, which

would permit unbiased estimation of b . Indeed, a reader might legitimately ask whether there are

any interesting analyses that involve excluded variables.

We are nevertheless concerned that even NAEP-style conditioning models may produce se-

rious bias in interesting secondary research models. While the NAEP conditioning model includes

an extensive list of student and school characteristics, it has few variables that are likely to be of

14This is a form of bias-efficiency tradeoff: A more efficient estimate of b might be obtainable
with a lower-dimensional Z, so long as X ✓ Z, but because the institution generating the PVs does
not know what Xs the secondary analyst will choose it accepts less efficiency in order to permit a
wider range of analyses to be unbiased.
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interest for secondary policy evaluations. For example, the NAEP conditioning model does not

include measures of whether the school offers performance pay to its teachers, the type of school

accountability system in place in the state, or the form of the state school finance formula, and

none of these are likely to be very well proxied by the characteristics that are included. If not, the

estimated effects of these Xs from analyses using NAEP PVs as the outcome measure – even with

an identification strategy that meets the usual criteria – may be importantly attenuated.

4.1.3 Simulation Results

To illustrate the biases described above, we present a simple simulation. We assume a data set

on 10,000 students with two potential predictors of student proficiency, which we label X and W

and think of here as parental education and neighborhood poverty respectively, plus an estimated

proficiency measure. We assume the following data generating process:

qi = Xi + ei;

Wi = Xi +ui;

{Xi,ei,ui}
iid⇠ N
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B

B

B
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Note that under this DGP, qi ⇠ N(0,1), b = 1, and qi|Xi ⇠ N
�

0,0.52�. We assume that students

are administered a short, 20-question multiple choice test, where each item’s characteristic curve

follows the Rasch specification with difficulty zero (see Figure 1). We consider several different

measurement models for scoring the test: Maximum Likelihood scores (with minimum and maxi-

mum scores set to -2 and +2), posterior means, and plausible values, in the latter cases with varying

conditioning sets. Table 1 lays out the DGP.

Table 2 shows estimates of the coefficient from a regression of q̂i on Xi, under several

different ways of scoring the test. The first row shows results from the ideal regression, using
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actual qis. By construction, this coefficient equals 1. The second row shows results when qi is

not observed but the ML estimate based on the student’s test responses is reported. Because this

is an unbiased estimator of qi, it permits unbiased estimation of b (b 0 =1.016, with standard error

0.012). In rows 3 and 4, the first column shows results when the test scores are reported as posterior

means or plausible values, respectively, without conditioning variables. In these cases, the feasible

regression yields a coefficient that is attenuated by approximately 20 percent. Columns 2-4 explore

how the choice of conditioning variables for the Bayesian scoring models influences the estimated

coefficients in our research model. Because X and W are correlated, the inclusion of W alone in

the conditioning set reduces the bias in b 0, though the estimate is still noticeably attenuated. By

contrast, if X is included in the conditioning set, either alone or with W , then E
⇥

q̂ |X
⇤

= E [q |X ],

and b 0 is unbiased.

4.2 Ability as an independent variable

Now consider a research model in which latent ability is the independent variable, as in the regres-

sion

Yi = Xig +qid + ei, (14)

where Yi is some outcome measure, Xi a vector of observed covariates (including a constant), qi

the latent student ability, and ei a residual that by construction has zero mean and zero correlation

with Xi and qi. As before, we observe only q̂i ⌘ qi +ui, so the feasible regression is

Yi = Xig 0+ q̂id 0+ e 0i , (15)

We are again interested in the relationship between the parameters of the ideal regression (14) and

those of the feasible model (15).

Economists are generally familiar with regressions with measurement error in an explana-

tory variable. Under classical measurement error assumptions, standard errors-in-variables results

imply that d 0 will be attenuated by a factor equal to the reliability ratio of q̂i conditional on Xi,

Rq̂ |X = V (qi|Xi)
V (qi|Xi)+V (ui)

, and that the g 0 coefficients will be biased by a factor Rq̂ |X dw , where w rep-
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resents the coefficient vector of an auxiliary regression of qi on Xi.15 Because the elements of w

can be positive or negative, the bias in g 0 cannot be signed in general, but w is straightforward to

estimate from the available data so the sign of biases is easily knowable.

Unfortunately, the classical measurement error assumptions only apply when individual

ability is reported as a direct maximum likelihood estimate q̂ ML. By contrast, testing systems that

report Bayesian estimates of individual proficiency, either posterior means or plausible values, do

not yield scores that fit the classical measurement error model. The measurement error in these

scores is correlated (generally negatively) with the student’s true ability qi. Intuitively, “shrinkage”

estimators pull an examinee’s reported score more toward the mean the further is her true score

from the mean. The relationship between {g 0,d 0} and {g,d} depends on the specific q̂i measure

used and on the conditioning model (if any) used by the test-maker in constructing this measure.

Unlike in the dependent variable case, results are quite different for posterior means (expected a

posteriori scores) than for plausible values.

4.2.1 Reported scores are posterior means

It is useful to start with a case where the feasible model recovers the coefficients of the ideal model.

This occurs when the test-maker uses a conditioning model, as in (9), where the conditioning set

Zi includes all of the covariates Xi from the research model but does not include any additional

elements that are correlated with ei. In this case, the posterior mean q̂ EAP|Z
i is an unbiased predictor

of qi conditional on Xi: E
h

qi|q̂ EAP|Z
i , Xi

i

= q̂ EAP|Z
i . As a result,

E⇤
h

Yi|q̂ EAP|Z
i , Xi

i

= Xig +E⇤
h

qi|q̂ EAP|Z
i , Xi

i

d = Xig + q̂ EAP|Z
i d , (16)

where E⇤ denotes a linear projection. Thus, the feasible regression is unbiased for {g,d}.

Unfortunately, this case is unlikely to occur in practice. Few testing systems include con-

ditioning variables at all, and those that do typically include a very large number of measures in

15This can be seen as a type of omitted variables bias, where qi is only partly omitted – as Rq̂ |X
asymptotes toward zero, the omission is more and more complete, and the bias in g 0 approaches
the omitted variables bias dw .
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Zi in the hope of spanning all of the explanatory factors that secondary researchers might hope to

examine. (As we discussed above, this is a helpful strategy when q̂ EAP|Z
i is to be used as a de-

pendent variable.) For example, recent NAEP administrations include in Zi hundreds of principal

components computed from thousands of student background and school composition and policy

variables. Most secondary researchers are likely to estimate more limited models, in which many

of the characteristics included in the test-makers’ Zi are left in the error term ei.

When the test-maker does not use a conditioning model (that is, when the posterior means

are based only on item responses) the feasible coefficients are not unbiased. Here, d 0 is attenuated,

and g 0 is biased toward the coefficients of a regression of Yi on Xi without ability controls. The

direction (but not magnitude) of these biases is the same as in the classical measurement error case

considered above, though the reasoning is somewhat different. To see this, recall that the posterior

mean conditional on Zi is a “shrinkage’ estimator:

q̂ EAP|Z
i = liq̂ ML

i +(1�li)E [q |Zi] , (17)

where the shrinkage factor li equals the reliability of q̂ ML
i conditional on Zi

li =
V (qi|Zi)

V (qi|Zi)+V
�

q̂ ML
i �qi|Zi

� . (18)

The conditional variance of true ability, V (qi|Zi), shrinks as the conditioning set Zi grows. This

pulls li further from one, leading the examinee’s performance to be given less and less weight.

By contrast, when Zi is the empty set, li is at its largest. Thus, the unconditional posterior mean

is under-shrunken relative to the posterior mean conditional on X , which as we established above

allows for unbiased estimation. This implies that when the unconditional posterior mean is used,

d 0 is attenuated. Biases are similar when Zi is non-empty but does not include all of the variables

in Xi.

What about when the conditioning model is too large, including not just Xi but also addi-

tional variables that are correlated with the residual in the research model? This creates a corre-
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lation between q̂ EAP|Z
i and ei even if the latter is orthogonal to true proficiency qi. Suppose, for

example, that both parental education and neighborhood poverty are included in the conditioning

set. If the research model only includes parental education as an observed covariate, neighborhood

poverty is implicitly included in the error term. The child of high school dropouts who answers a

very high fraction of test items correctly will have her estimated ability pulled down if she lives

in a poor neighborhood, generating a negative correction between q̂ EAP|Z
i and ei. The resulting

bias cannot be signed in general since it depends on the direction of the correlations among the

conditioning variables Zi and the research model residual ei.

4.2.2 Reported scores are plausible values

The above discussion established that when the test-maker reports posterior means using condi-

tioning variables Zi but the researcher uses them as explanatory variables in a research regression

that conditions on Xi, the resulting coefficients are unbiased when Zi = Xi but are likely to be bi-

ased when Zi is either larger or smaller than Xi. This is not the case when the reported test scores

are instead plausible values. Here, unbiasedness requires that Zi be substantially larger; it must

include not only Xi, but also the dependent variable from the research model, Yi. Moreover, even

here rather strong functional form restrictions are required.

It is useful to start again with the case where the test-maker’s conditioning set Zi equals the

secondary analyst’s covariate vector Xi. Recall that posterior means based on this conditioning set

can produce unbiased estimates of the coefficients of the research model. But plausible values can

be seen as posterior means plus randomly generated noise. This noise is classical measurement

error, and attenuates the d 0 coefficient.

So clearly the conditioning set needs to be larger than X to permit unbiased estimation using

PVs. Schofield et al. (2015) show when Zi includes both Xi and the research model’s dependent

variable Yi, PV-based regressions are unbiased. To see this, note that PVs based on conditioning

variables Zi accurately reproduce the joint distribution of {qi,Zi}, or at least its first and second

moments. When Zi includes Xi and Yi, then, the first and second moments of
n

q̂ PV |Z
i , Xi, Yi

o

equal

those of {qi, Xi, Yi}. This means that the coefficients of the feasible regression based on the former
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are identical to those of the ideal regression based on the latter.

However,Schofield et al. (2015) emphasize another required assumption here. Specifically,

the parameterization of the conditioning model requires, in effect, imposing assumptions about the

shape of the joint distribution of {q ,X ,Y}, and these assumptions in turn determine the functional

form of E [Y |X ,q ]. If the latter is not consistent with the linear form imposed by the research

model, even the correct choice of conditioning variables may not permit unbiased inference. Thus,

for example, if Yi enters the conditioning model linearly, it may be possible to use the plausible

values to estimate a linear regression of Y on q without bias, but a log-linear regression would be

likely to be biased (and vice versa). In other words, the functional form decisions of the test-maker

constrain the set of regressions that can be estimated without bias by secondary researchers.

Schofield et al. (2015) argue that the required alignment between the conditioning and

research models is unlikely to occur in practice. Test makers generally look to potential explanatory

factors for qi in choosing their conditioning sets, and are unlikely to include variables that might

be caused by qi. But in secondary research, Yi is typically some outcome variable that might be

affected by student ability and is measured subsequent to the test administration used to measure

q̂i – e.g., in Neal and Johnson (1996), Yi is adult wages where q̂i is computed from the AFQT

test given to subjects in adolescence. In the most common case where q̂i is a set of PVs and the

conditioning model includes a wide range of predictors of qi but does not include Yi itself, we are

aware of no general results on the sign or magnitude of bias.

4.2.3 Simulation Results

We can extend our earlier simulation to illustrate the independent variable case as well. To the

DGP introduced in Section 4.1.3, we add a new variable,

Y = 4+Xi +qi + vi, (19)

with vi ⇠N(0,0.5), corr (u,v) = 0.5, and corr (X ,v) = corr (e,v) = 0. (14) is our research model,

with Xi and qi as observed explanatory variables but their coefficients (equal to 1 in the DGP)
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unknown. As before, we assume examinees are presented with 20 Rasch items, all with difficulty

zero, and we consider different measurement models for score reporting.

Panel A of Table 3 presents the ideal model coefficients g and d obtained by using the

true qis in the regression. Because the ML estimate of q is not an unbiased predictor, when we

use it as an independent variable in Panel B, the q coefficient is attenuated (0.78), and because

q and X are positively correlated, the X coefficient is biased upward (1.13). The use of posterior

means based on no conditioning variables (Panel C, column 1) only partially reduces the biases

in g 0 and d 0. If the posterior mean is calculated from a model that uses X alone as a conditioning

variable (column 2), one obtains unbiased estimates of g and d . Unlike the dependent variable

case, however, posterior mean calculations that include additional conditioning variables (columns

3-6) lead one to overstate the effect of q and thus understate the impact of X .

The final panel (D) of Table 3 presents results with plausible values. Here, the model that

conditions just on X is quite badly biased, but adding Y to the conditioning set eliminates nearly all

of the bias. Functional form matters, however: When the conditioning model specifies E [q |X ,Y ]

as linear in X and ln(Y ),16 the PV-based regression is meaningfully biased.

4.3 Options for unbiased estimation

Given the potential biases outlined above, an important question is whether there are options avail-

able to the secondary researcher that permit unbiased estimation. Fortunately, there are options

in many cases; unfortunately, all require access to additional information beyond the reported test

score itself.

First, in some cases it may be possible to reverse-engineer the above bias formulas. For

example, if an ML estimate of q is to be used as an independent variable and estimates of the

reliability of this measure are available (e.g., the average standard error of measurement (SEM)

across examinees), the errors-in-variables results can be used to back out estimates that would

be obtained were correctly measured ability available for use in the regression. Similarly, where

16For computation of the log, Yi is left-censored at 0.5 in the small number of cases that fall
below that.
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ability is to be used as a dependent variable and the test only reports posterior means, estimates of

the SEM as a function of q can be used to “un-shrink” the test scores.

More general solutions typically require access to item-level data. If these data are avail-

able, it is possible to generate consistent and efficient estimates of the coefficients in the research

model by integrating the measurement and research models into a single system of equations. In

the dependent variable case (Section 4.1), the researcher specifies a new conditioning model with

only the Xi variables included in the conditioning set. This model specifies the distribution of q

as a function of X , for example as qi|Xi ⇠ N
�

Xib , s2�, so nests the research model (12). This is

combined with the IRT measurement model to yield a likelihood for the observed item responses

in terms of the item parameters y and the coefficients of interest b , as in (9). For example, if the

conditioning model specifies that qi|Xi ⇠ N
�

Xib ,s2�, then the likelihood is

L
�

Ri|Xi;b ,s2;Y
�

=

ˆ
PIRT (Ri|q ;Y)f

✓

q �Xib
s

◆

dq .

b is then identified by maximizing this likelihood, without the intermediate step of generating

posterior distributions for each examinee’s qi and relating these to Xi. This is known as Marginal

Maximum Likelihood (MML). In essence, the secondary researcher merely reproduces the steps

that the test-maker would have undertaken had the test-maker used the same conditioning variables

as are included in the secondary researcher’s model. This approach is described in seminal articles

by Mislevy (1991, and 1992 with others). 17 Its only major drawbacks are that it requires the

secondary researcher to code up the IRT model PIRT (Ri|q ; Y) and that numerical integration over

the q distribution is computationally costly. But modern computation techniques (e.g., Markov

Chain Monte Carlo) facilitate the latter, and test-makers could do much to facilitate the former.

(For example, some editions of the NAEP technical documentation include code for the IRT model

probabilities.)

Briggs (2008) uses an MML-like approach, which he refers to as “Explanatory Item Re-

17Indeed, the American Institutes of Research (AIR) developed software intended, in part, to
estimate such models. See http://am.air.org/contact2.asp.
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sponse Theory,” to assess the extent of bias in models where ability is the dependent variable and

only posterior means without conditioning variables are available. He examines racial & ethnic

gaps in student achievement using data from 10th graders in 1999 who were administered the Part-

nership for the Assessment of Standards-based Science (PASS) test. He compares gaps estimated

from posterior mean science achievement to those obtained via a MML procedure that includes

the student race indicators in the conditioning model that is estimated jointly with the IRT-based

measurement model.18 Table 4 reproduces his estimates. In column 1 of Panel A, we show esti-

mates obtained using posterior mean scores. These indicate that the black-white achievement gap

is -0.61 scale points (on the IRT model’s native scale). But per the discussion above, we expect

this to be attenuated. Indeed, when the model is estimated via MML (column 2), the black-white

gap increases (in absolute magnitude) to -0.77 scale points. Columns 3 and 4 report estimates for

Z-scores, created by dividing the scale scores by the standard deviation of these scores (column

3) or by the estimated standard deviation of latent proficiency (column 4). Again, the two sets of

estimates give notably different answers: A black-white gap of 0.87 standard deviation units when

posterior means are used, or 0.95 when computed via MML.

Panel B shows comparable results for subdomains of science achievement. Traditional

psychometric methods model student achievement as a random effect that may be correlated across

subdomains. Posterior means therefore “borrow” information from one subdomain in predicting

the student’s score on other subdomains. This may mask true differences in regression coefficients

across subdomains. We see this in the Table: The black-white gap is estimated at 0.42 (in scale

score units) in life science and 0.58 in physical science when the posterior mean scores are used.

But when the MML model is used to estimate racial gaps on each subdomain, without shrinking

them toward a common dimension, Briggs finds that the physical science gap is more than double

the life science gap. (Meanwhile, the Hispanic-white gap is much more similar across subjects.)

Schofield et al. (2015) propose an MML-like procedure that can be used when the research

model uses ability as an independent variable, which they refer to as a the “Mixed Effects Structural

18In each case, he uses only a subset of the test items to compute the student’s score.
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Equations” (MESE) model. Here, there are three equations: The IRT model for item responses Ri

as a function of qi, pIRT (Ri|qi;Y); the research model that specifies the distribution of Y given X

and q , pY (Yi|Xi,q ; g,d ); and a conditioning model that includes only Xi, pq (qi|Xi;p). Together,

these specify the joint distribution of the observed variables {Xi,Yi,Ri}:

p(Yi,Ri|Xi) =

ˆ
pIRT (Ri|qi;Y) pY (Yi|Xi,q ; g,d ) pq (qi|Xi;p)dq . (20)

This is maximized over the parameters {g,d ;Y;p} to obtain consistent estimates of the research

model coefficients.

Junker et al. (2012) use the MESE approach to assess the bias that results from using ei-

ther ML estimates or PVs (based on the test-maker’s conditioning set) as independent variables.

They use data from the National Adult Literacy Survey (NALS), a nationally representative sam-

ple of U.S. adults in 1992 that contains information on cognitive ability along with with survey

information on a variety of demographic and socio-economic outcomes such as educational at-

tainment and earnings. They focus on a sub-sample of 25-55-year-old men and women who work

full time, answered at least one item on the literacy test, report a weekly wage and self-report as

black or non-Hispanic white. They estimate a standard wage regression in which the outcome is

log weekly wages, and the primary explanatory variables include an indicator for race/ethnicity

(black), a quartic in potential experience, and indicators for urbanicity and census region.

Table 5 reproduces their results for their sample of 3,267 men. Column 1 shows results

that do not include any control for individual literacy. These indicate that weekly wages for blacks

are roughly 36.6 log points (or 30.6%) lower than for whites. Column 2 controls for a maximum

likelihood estimate of individual literacy that the authors generate using a standard IRT model.

The implied black-white wage gap in this model drops dramatically to 14.4 log points (13.4%).

However, recall from above that the ML measure of qi suffers from classical measurement error,

and we would thus expect the literacy coefficient to be attenuated and the race indicator to be biased

correspondingly. Column 3 presents estimates from the MESE model. As expected, the literacy
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coefficient increases and the implied black-white wage gap drops to 9.4 log points (9%). This

suggests that properly controlling for latent ability accounts for 74 percent of the unconditional

black-white log wage gap (= 1 - (-0.094/ -0.366)) whereas using the more typical control would

only account for 61 percent of the gap.

Column 4 shows results based on using the plausible values (PVs) reported in NALS. The

PVs in NALS are based on a conditioning model that includes the first approximately 100 principal

components from several hundred main effects and interactions of background variables collected

in the survey. Importantly, the conditioning set includes measures of individual wages (the out-

come variable in the research model above) as well as other highly related measures such as family

income and occupation, though the complex conditioning procedure makes it difficult to under-

stand the functional form assigned to the relationship between ability and wages. As noted above,

Schofield et al. (2015) demonstrate that use of PVs as an explanatory variable in such cases will

result in bias if the functional form does not conform to that used in the research model. Indeed,

the race coefficient in column 4 is -0.121 compared with the MESE estimate of -0.094 in column

3.

Unfortunately, it is unusual for analytic samples to include item-level responses. One ap-

proach to unbiased estimation in the independent variable case that does not require item-level

data is to instrument for a noisy measure of ability, q̂i, with a second, independent, measure. This

is of course only feasible if two independent measures are available, but in many circumstances

this might be possible. For example, the NAEP test consists of two separate blocks of items; one

could use the fraction correct from the first block as an instrument for the fraction correct on the

second, perhaps rescaling each to correspond to the desired qi scale. Alternatively, many tests re-

port subscores for particular subdomains (e.g., for reading comprehension and vocabulary within

an ELA test). If one is willing to assume that none of the subdomain proficiency levels are related

to Yi conditional on the composite score, one subdomain score can be used as an instrument for

another.19

19As discussed above, some testing systems “borrow” information from one domain in comput-
ing a student’s score on another. In this case, the error in the subscores is not independent across
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When the secondary researcher has access to two independent measures that are each un-

biased estimates of qi (such as ML estimates of ability), this IV approach will produce unbiased

estimates of d and g . The first stage from this regression has an intuitive interpretation: The q̂i

coefficient estimates Rq |X , the conditional reliability of the measured test score given Xi, and the

fitted values from this first stage are posterior means conditional on Xi and the first qi measure.

When the two measures are biased but independent estimates of qi (e.g., if the two are posterior

means on different subdomains, with no cross-subdomain pooling), the IV approach can still be

used to identify g , though the IV estimate of d will be biased due to the rescaling of q . 20

4.4 Subscore comparisons

A useful illustration of the practical importance of the measurement issues we consider here is

the estimation of sub-score impacts. A common topic for investigation is whether a program or

treatment has differential effects on different areas of competency. For example, Dee and Jacob

(2011) estimate the effect of school accountability under the No Child Left Behind law on student

performance across different math and reading subscales, looking for evidence that accountability

led to changes in instructional emphasis. Unfortunately, the methods by which subscale scores are

computed on most assessments are not well suited to support these kinds of analyses, and can be

expected to bias them toward a conclusion of common effects across subscales.

First, when test-makers are selecting among candidate test items, they evaluate items in

part based on their association with examinees’ overall performance.21 These evaluations treat

achievement as unidimensional. Thus, items that successfully identify students who are strong on

one dimension but weak on other dimensions will tend to be rejected.22

subdomains.
20For example, if the two measures are posterior means with uniform shrinkage factors l , d 0

will equal d/l . But g 0 will be unbiased: Merely rescaling one explanatory variable does not affect
the coefficients on other explanatory variables.

21In the notation of the 3PL model introduced above, they look for items with large discrimina-
tion parameters and item characteristic curves that have the logistic shapes predicted by the model,
using a uni-dimensional model for q .

22A related problem, which we do not explore in depth, is the consideration of the relative per-
formance of different groups of students when selecting items. For example, items are commonly
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Second, because the number of items relevant to any particular subscale is typically very

small (often only 5-10), the measurement issues discussed in Section 3 become much more im-

portant. Estimates of student performance based solely on the items from a single subscale would

be extremely unreliable. Skorupski (2008) examines subscale scores from four state assessment

systems and finds that these scores have reliabilities in the 0.4 to 0.7 range. This is too low to

be practically useful for individual assessments, particularly because the quantity of interest in

subscale scoring is a student’s relative strength on one subdomain relative to others. As individual

proficiency is likely to be strongly positively correlated across subscales, the reliability of between-

subscale differences in performance, computed only from subscale items, is extremely low. For

example, with subscale reliabilities of 0.6 and a correlation of true proficiency across subscales of

0.8, the reliability of the estimated difference in a student’s proficiency between two subscales is

only 0.23.

As a consequence, subscale scores are rarely based solely on the items corresponding to the

subscale. Exact procedures vary, but in one way or another many measurement systems “borrow”

information about an examinee’s performance from other sources, either the examinee’s perfor-

mance on other subscales or the performance of other examinees with similar observables (via the

use of conditioning variables as discussed in Section 3.2.1). The unreliability of the raw subscale

scores means that the amount of shrinkage is substantial.

The NAEP illustrates this. As discussed above, the NAEP relies on a conditioning model

with a long list of student and school conditioning variables. In the math assessment, the questions

are divided up into five subscales, with only a handful of questions from each, and the ability

parameter qi in equation (7) is five dimensional with an unrestricted variance-covariance matrix S.

In practice, the estimated correlations are very high – many around 0.99. As a consequence, while

subscale proficiencies are allowed to have different relationships to the conditioning variables, a

question on one subscale counts essentially as much toward the student’s posterior mean on other

discarded if they show larger-than-expected black-white gaps. This is sensible in isolation. But
since the black-white gap is to be estimated from the selected items, a practice of discarding items
with unusual gaps is likely to bias it.
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subscales as it does toward the posterior mean on the subscale to which the question is associated.

This means that there is little if any scope to identify differential treatment effects of programs like

NCLB school accountability on the different subscales.

Other assessments use different methods, but the implications are the same. Skorupski

(2008) discusses several approaches to measuring subscale performance, and finds that all yield

subscale scores that are correlated 0.97 or higher across subscales.

5 Conclusions

Modern psychometrics utilizes a variety of sophisticated models and techniques to develop cog-

nitive assessments and produce individual ability scores. The applied researcher who does not

possess at least a rudimentary understanding of these methods is liable to mis-use test scores in

a way that can lead to serious biases. Perhaps most importantly, researchers need to pay close

attention to how the individual score measures are generated. If one uses ability as a dependent

variable, it is critical to know whether the assessment reports a raw score, a maximum likelihood

of individual ability, or a Bayesian measure such as a posterior mean. When Bayesian ability

measures are used as the outcome, model coefficients typically will be biased, though it may be

possible to adjust the results to eliminate this bias. If ability is used as independent variable, each

of the available measurement choices will create bias in coefficients, both that on the ability mea-

sure and those for other explanatory variables, but the biases will depend importantly on the type

of test score measure employed. Here too information provided by the assessment – namely, the

reliability of the ability measure – can in some cases be used in an errors-in-variables framework

to generate consistent estimates, or, even better, the reported scores can be discarded in favor of

analyses that draw directly on examinees’ item responses.

Scaling also presents challenges to researchers who use cognitive ability measures. Practi-

tioners and researchers routinely use test scores in a way that assumes they have interval properties.

As discussed above, there is no compelling justification for this assumption. Given this inherent

disconnect, how should the applied researcher proceed? Should one only use the ordinal infor-
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mation contained in test scores, and forgo making any statements about the magnitude of effects,

for example? While we understand this inclination, we are inclined to be less nihilistic. We are

inclined toward the approach outlined by Nielsen (2015), who seeks to narrow the class of scale

transformations that are considered reasonable. But at a minimum, we recommend that researchers

make greater effort to test the robustness of their results to changes in the test score scale. In the

context of a randomized program evaluation, for example, using only the ordinal nature of test

scores one can calculate at what point in the control group distribution the median treatment stu-

dent would fall. More generally, a P-P plot comparing the treatment and control groups would

allow the researcher to fully characterize how the two distributions compare without relying on a

particular scale. Where analyses will use the scale scores as interval measures, researchers might

test their sensitivity to modest scale transformations such as the log of the reported scale score or

its inverse transformation, exp(q).

The common practice of standardizing reported scores by dividing by the standard devi-

ation, converting to normal curve equivalents, or constructing percentile scores, raises particular

concerns. Each of these depends critically on the measurement properties of the score and on the

sample used for the standardization. So, what practical guidance can be given to the applied re-

searcher? A useful rule of thumb is that z-scores and effect sizes should always be computed from

an estimate of sq rather than from sq̂ . The former cannot be computed directly from the analysis

sample (except when plausible value scores are reported) but can often be computed from infor-

mation – such as, for example, the test-retest reliability of q̂ ML, which estimates s2
q/s2

q̂ – reported

in the assessment’s technical documentation. Moreover, secondary researchers should use a sq

that pertains to the broadest possible population, even if their study focuses on a more homoge-

nous subpopulation, and comparisons of standardized effect sizes across studies should account

for differences in the populations used to construct sq .23 A large effect size computed using a sub-

population estimate of sq may actually correspond to a smaller effect than that of an intervention

23Both of these guidelines apply as well to the computation and analysis of percentiles or normal
curve equivalents; in these cases, the distribution function of q (or an approximation to it) is
required, and is equally sensitive to the choice of population.
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with a smaller reported effect size that is based on a more representative population’s sq .

The landscape of testing in U.S. schools is changing rapidly, driven by the widespread

adoption of the Common Core State Standards (CCSS). The Common Core is an unprecedented

effort, led by consortia of states with strong encouragement from the federal government, to de-

velop and implement a set of common academic standards that will be used across state borders.

The goal is twofold: to provide a consistent framework, in the absence of any national curriculum

or testing system, like those that exist in many countries; and to emphasize the knowledge and

skills that students will need in order to be “college and career ready” by the time they graduate

high school. The standards articulate in some detail what students should know and be able to do

in each grade and subject in elementary and secondary school. A theme running through them is

reduced emphasis on memorization and rote computation, in favor of more problem-solving and

higher-order thinking. As of August 2015, 42 states and the District of Columbia had adopted the

CCSS in English Language Arts (ELA) and math.

The transition to the Common Core state standards (CCSS) has been accompanied by the

introduction of new assessments in most states. States grouped into two consortia to develop com-

mon assessments designed to measure student mastery of the new standards: the Partnership for

Assessment of Readiness for College and Careers (known as PARCC) and the Smarter Balance

Assessment Consortium (known as “Smarter Balance” or SBAC). In Spring 2015, 11 states ad-

ministered the PARCC assessments in Spring 2015 and 18 states administered the Smarter Balance

tests.

The standards and associated assessments have become the source of considerable contro-

versy, with many stakeholders resisting the diminished local control which would result. While

several states have indicated that they will no longer administer the common assessments, in most

cases these states are incorporating large segments of the new assessments under the “brand” of a

state’s own test. In any case, our view is that these assessments – or some large component of them

– are likely to become the predominant student assessments used in elementary and secondary

schools over the next decade, and it is thus important for researchers to understand them.
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The new assessments have much in common (see Table 6 for a summary of the two tests).

Both are administered on computers, incorporate performance-based tasks and open (constructed)

response items along with standard multiple-choice items, and include mid-year interim assess-

ments designed to provide teachers with information on students’ strengths and weaknesses. Both

assessments rely on sophisticated IRT models both to generate the exams and to calculate esti-

mates of individual proficiency. The Smarter Balance assessment reports maximum likelihood

scores, linearly transformed to range between 2,000 and 3,000 and to be vertically comparable

across grades.24 PARCC has reported much less detail about its scoring procedures, but appears to

report ML score estimates as well. The Smarter Balance tests (though not the PARCC assessments)

are computer adaptive, so that a student who does well on early items is routed to harder items later

in the test. This can allow for more efficient estimation of student proficiency by ensuring that stu-

dents are given many items that are appropriately difficult for them, but makes the resulting scores

much more model dependent and sensitive to the IRT specification and measurement model. Both

tests will report sub-scale scores as well as overall scores, and as on other tests students’ relative

proficiency on different subscales is likely to be quite imprecisely measured.

The measurement and scaling issues discussed here are not likely to go away anytime soon.

Indeed, just the opposite. Student tests are continuing to see wider use in empirical economics re-

search. Moreover, the push for accountability in higher education is leading some to advocate for

the development of standardized assessments aimed at college students which will no doubt rest

on the same psychometric foundations outlined in this article. And psychometric methods are are

spreading beyond the realm of cognitive skill assessment. Common measures of “non-cognitive”

traits such as persistence, self-esteem, and socio-emotional regulation, as well as of more cogni-

tive traits such as working memory, rely on the same IRT measurement models discussed above,

typically applied to batteries of very few survey items (Schofield, Forthcoming). Test score-like

measures are also being used in health, as health care reform has encouraged increased empha-

24We have not discussed vertical equating in detail. As when tests claim to use interval scales,
however, researchers should be wary of the assumptions behind a claim that a test uses a vertical
scale.

42



sis on quantitative measurement. Finally, the rise of Empirical Bayes methods for measuring the

contribution of teachers to students or firms to workers’ wages has brought psychometric-like mea-

sures to data sets used in a wide range of recent empirical economics research. Across all of these

domains, secondary researchers will need to account more carefully for measurement processes

than has been typical in the past in order to draw appropriate conclusions.
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Figure	1.	Item	Characteristic	Curves	for	1-parameter	logistic	(Rasch)	IRT	items	

	
Notes:	Series	show	the	probability	of	a	correct	response	as	a	function	of	the	examinee’s	
ability	(θ)	under	the	Rasch	IRT	model	(equation	4).	
	
Figure	2.	Item	Characteristic	Curves	for	3-parameter	logistic	IRT	items	

	
Notes:	Series	show	the	probability	of	a	correct	response	as	a	function	of	the	examinee’s	
ability	(θ)	under	the	3PL	IRT	model	(equation	6).	All	items	are	assumed	to	have	bj	=	0.	
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Figure	3.	Distribution	of	reported	scores	under	different	measurement	models	
	

	
	
Notes:	True	θ	distribution	is	assumed	to	be	standard	normal.	Exams	consist	of	15	Rasch	
items	with	bj	drawn	randomly	from	U[-2,2],	independently	for	each	examinee.	ML	
estimates	assign	scores	of	-4	to	students	answering	all	items	incorrectly,	and	+4	to	students	
answering	all	items	correctly.	Kernel	density	estimates	are	plotted,	using	bandwidths	of	0.3	
(ML	estimates)	or	0.15	and	Epanechnikov	kernels.	
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Figure	4.	Distribution	of	reported	scores	under	different	measurement	models:	Easy	
tests	
	

	
	
Notes:	True	θ	distribution	is	assumed	to	be	standard	normal.	Exams	consist	of	15	Rasch	
items	with	bj	drawn	randomly	from	N(-1,	0.252),	independently	for	each	examinee.	ML	
estimates	assign	scores	of	-4	to	students	answering	all	items	incorrectly,	and	+4	to	students	
answering	all	items	correctly.	Kernel	density	estimates	are	plotted,	using	bandwidths	of	0.3	
(ML	estimates)	or	0.15	and	Epanechnikov	kernels.	
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Figure	5.	Distribution	of	reported	scores	under	different	measurement	models:	Long	
tests	
	

	
	
Notes:	True	θ	distribution	is	assumed	to	be	standard	normal.	Exams	consist	of	50	Rasch	
items	with	bj	drawn	randomly	from	U[-2,2],	independently	for	each	examinee.	ML	
estimates	assign	scores	of	-4	to	students	answering	all	items	incorrectly,	and	+4	to	students	
answering	all	items	correctly.	Kernel	density	estimates	are	plotted,	using	bandwidths	of	0.3	
(ML	estimates)	or	0.15	and	Epanechnikov	kernels.	
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Table	1:	Distributional	assumptions	used	for	simulations	of	secondary	analyses	of	test	scores

Primitive	error	terms	{X,e,u,v}
Expectation Variance SD

0.00 0.50 0.71

Correlation
X e u v

X 1 0 0 0
e 0 1 0.50 0
u 0 0.50 1 0.50
v 0 0 0.50 1

Composites
Expectation Variance SD

θ=X+e 0 1 1
W=X+u 0 1 1
Y=4+X+θ+v 4 3 1.73

Correlation
X θ W Y

X 1 0.71 0.71 0.82
θ 0.71 1 0.75 0.87
W 0.71 0.75 1 0.87
Y 0.82 0.87 0.87 1

Simulation
#	examinees 10,000
#	test	items 20
Item	specifications Rasch,	b=0



Table	2.	Simulations	of	research	models	using	test	scores	as	dependent	variables

(1) (2) (3) (4)
Conditioning	variables: None W X W,X

True	theta
X 1.008

(0.010)

Maximum	likelihood	estimate
X 1.016

(0.012)

Posterior	means
X 0.816 0.931 1.021 1.021

(0.010) (0.009) (0.008) (0.008)

Plausible	values
X 0.817 0.923 1.022 1.012

(0.012) (0.011) (0.010) (0.010)

Notes:	Each	entry	represents	the	X	coefficient	from	a	separate	regression,	with	the	indicated	
test	score	measure	as	the	dependent	variable.	See	Table	1	for	description	of	simulation	
sample.	N=10,000.	ML	estimates	are	computed	using	maximum	and	minimum	obtainable	
scores	of	+2	and	-2,	respectively.



Table	3.	Simulations	of	regressions	with	ability	as	an	independent	variable

(1) (2) (3) (4) (5) (6)
Conditioning	variables: None X X,Y X,ln(Y) X,W X,W,Y

Panel	A	-	True	theta
θ 0.989

(0.010)
X 1.029

(0.014)

Panel	B	-	Maximum	likelihood	estimate
θ 0.645

(0.009)
X 1.371

(0.015)

Panel	C	-	Posterior	means
θ 0.809 0.972 1.301 1.180 1.113 1.301

(0.012) (0.014) (0.010) (0.011) (0.012) (0.010)
X 1.366 1.034 0.698 0.801 0.890 0.698

(0.015) (0.018) (0.013) (0.015) (0.016) (0.013)

Panel	D	-	Plausible	values
θ 0.560 0.640 0.974 0.858 0.775 0.966

(0.010) (0.012) (0.010) (0.011) (0.012) (0.010)
X 1.569 1.372 1.043 1.132 1.242 1.030

(0.015) (0.018) (0.014) (0.016) (0.017) (0.014)

Notes:	Each	panel	and	column	reports	a	separate	regression	with	the	same	dependent	variable,	
using	the	indicated	test	score	measure	as	an	independent	variable	and	X	as	a	control.	See	Table	1	
for	description	of	simulation	sample.	N=10,000.	ML	estimates	are	computed	using	maximum	and	
minimum	obtainable	scores	of	+2	and	-2,	respectively.



Panel	A:	Dependent	Variable	=	Overall	Science	Score

(1) (2) (3) (4)
PM MML PM MML

Intercept 0.9 0.96 1.29 1.19
Black -0.61 -0.77 -0.87 -0.95
Hispanic -0.52 -0.67 -0.75 -0.83
Asian -0.1 -0.115 -0.14 -0.14
Other -0.3 -0.373 -0.43 -0.46

SD 0.7 0.81 1 1

Panel	B:	Dependent	Variable	=	Science	Subscore

Life	science
Physical	
science Life	science

Physical	
science

(1) (2) (3) (4)
PM MML PM MML

Intercept 0.43 0.91 0.5 1.01
Black -0.42 -0.58 -0.38 -0.97
Hispanic -0.36 -0.48 -0.61 -0.71
Asian -0.07 -0.08 -0.25 0.04
Other -0.22 -0.31 0.02 0.5

SD 0.481 0.661 0.58 0.75

Notes:	Estimates	reproduced	from	Briggs	(2008).	N	=	433.	Columns	1	and	3	report	
estimates	when	posterior	means	(without	conditioning	variables)	are	used	as	the	
dependent	variable;	Columns	2	and	4	report	estimates	obtained	via	the	Marginal	
Maximum	Likelihood	method	discussed	in	the	text.	Briggs	does	not	report	standard	
errors,	but	all	Intercept,	Black,	and	Hispanic	coefficients	are	significantly	different	from	
zero	at	the	1%	level,	while	none	of	the	Asian	or	Other	coefficients	are	reported	to	be	
significant	at	the	5%	level.

Table	4	-	Biases	when	using	estimates	of	latent	ability	as	a	dependent	variable	(from	
Briggs	2008)

Scale	scores Z	scores

Scale	scores Z	scores



No	skill	

control

MLE	of	

literacy	

score MESE PVs

(1) (2) (3) (4)

Black -0.366 -0.144 -0.094 -0.121

(0.033) (0.033) (0.033) (0.041)

Literacy	skill 0.151 0.191 0.221

(0.008) (0.010) (0.015)

Effect	of	a	one	SD	change	in	

literacy	skill 0.19 0.218 0.221

Estimate	of	literacy	skill	used	in	model

Dependent	variable	=	log(weekly	wage)

Notes:	Estimates	reproduced	from	Junker	et	al.	(2012).	N	=	3,267.	MESE	=	Mixed	Effects	

Structural	Equations.	PV	=	Plausible	Values.		See	text	for	detailed	description	of	

estimated	models.

Table	5	-	Biases	when	using	estimates	of	latent	ability	as	an	independent	variable	
(from	Junker	et	al.	2012)



PARCC Smarter	Balanced

States	Administering	Test	
in	Spring	2015¹

Arkansas*,	Colorado,	Illinois,	Louisiana,	Maryland,	
Massachusets^,	Mississippi*,	New	Jersey,	New	
Mexico,	Ohio*,	Rhode	Island

California,	Connecticut,	Delaware,	Hawaii,	Idaho,	
Maine*,	Michigan,	Missouri*,	Montana,	Nevada,	New	
Hampshire,	North	Dakota,	Oregon,	South	Dakota,	
Vermont,	Washington,	West	Virginia,	Wisconsin*

Format Computer-based,	non-adaptive Computer	adaptive

Psychometric	contractor Educational	Testing	Service Educational	Testing	Service	(design)	
American	Institutes	for	Research	(implementation)

Scaled	score	range 650	-	850 2000	-	3000
Vertically	equated	scale? Yes Yes

Calculation	of	scaled	

score	4,5
Unknown

Maximum	likelihood	estimation	is	used	to	calculate	a	
theta	score.	The	final	vertical	scale	score	is	the	linear	
transformation	of	the	post-vertically	scaled	IRT	ability	
estimate	(theta	score).

Notes:

Sources:
1.	Ujifusa,	A.	(2015,	November	16).	Common	Core’s	Big	Test:	Tracking	2014-15	Results	-	Education	Week.	Education	Week.
2.	Ford,	L.	A.,	Michaels,	H.	R.,	&	Johnston-Fisher,	J.	L.,	(2015).	Examination	of	Test	Construction

5.		Smarter	Balanced	Scoring	Specification	2014-2015	Administration,	American	Institutes	for	Research.

Item	Types²		³

For	ELA:	Evidence-based	selected	response	(EBSR),	
Technology-enhanced	constructed-response	
(TECR),	Prose-constructed

Selected	Response,	Constructed	Response,	Extended	
Response,	Performance	Tasks

For	Math:	Tasks	assessing	concepts,	skills	and	
procedures	(Type	I);	Tasks	assessing	expressing	
mathematical	reasoning	(Type	II);	Tasks	assessing	
modeling	/	applications	(Type	III)

Table	6.	Common	Core	Assessments

Test	duration	(Math	and	
ELA	combined) 8	-	10	hours 7	-	8.5	hours

3.	"Sample	Items	and	Performance	Tasks."	Sample	Items	and	Performance	Tasks.	Smarter	Balanced	Assessment	Consortium,	n.d.	Web.	18	Dec.	2015.	
<http://www.smarterbalanced.org/sample-items-and-performance-tasks/>.
4.	PARCC:	Technical	Memorandum	for	Field	Test	Phase.	Tech.	N.p.:	Educational	Testing	Service,	2014.	Print.	Materials	across	Multiple	Assessment	Programs.	Washington,	
DC:	CCSSO.	May	2015

*State	has	subsequently	left	this	testing	consoritium,	though	in	many	cases	the	state	plans	to	use	substantial	portion	of	the	consortium's	assessment.
^Massachusetts	allowed	districts	to	choose	between	giving	their	own	tests	and	PARCC,	so	not	all	districts	administered	the	PARCC	exam	in	spring	2015


