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Economists often use test scores to measure a student’s performance or an adult’s 

human capital. In the research literature on the economics of education, student test 

scores are often used to estimate teacher effectiveness, or “value-added” (for example, 

Chetty et al. 2014a); to measure and attempt to explain the black-white achievement gap 

(for example, Fryer and Levitt 2004, 2006, 2013; Rothstein and Wozny 2013); or to 

measure the impacts of state- or district-level educational policy choices such as finance 

or accountability rules (for example, Dee and Jacob 2011; Lafortune et al. 2016).  In the 

broader labor economics literature, test scores are often used as well as proxies for human 

capital, for example in examining the black-white wage gap conditional on cognitive 

ability as in Neal and Johnson (1996).  

In our experience, many researchers think of an individual’s score as a noisy but 

unbiased measure of true ability like, for example, the simple fraction of test items a 
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student answers correctly. Unfortunately, the student achievement measures provided in 

modern assessment systems are rarely – if ever – so straightforward. Assessments 

commonly have multiple forms and are often adaptive, meaning that the questions 

students receive are based on their performance on previous questions. As a result, 

students are frequently presented with different questions that may not be of comparable 

difficulty. Moreover, modern test-making practice disparages simple summaries like the 

fraction correct in favor of estimates from complex statistical models that attempt to 

extract more information from the pattern of correct and incorrect responses. The scores 

that these models produce are generally not unbiased measures of student ability, and 

may not be suitable for many secondary analyses that economists would like to perform. 

Consider the well-known National Assessment of Educational Progress (NAEP, 

also known as “the Nation’s Report Card”). A little-known fact is that the scores 

computed for students who take the NAEP depend not only on the examinees’ responses 

to test items but also on their background characteristics, including race and gender. As a 

consequence, if a black and white student respond identically to questions on the NAEP 

assessment, the reported ability for the black student will be lower than for the white 

student—reflecting the lower average performance of black students on this assessment. 

This adjustment does not affect reported aggregate statistics such as the unconditional 

black-white test score gap, but, as we explain below, it can introduce important biases 

into many secondary analyses. Other testing systems do not incorporate students’ 

background characteristics into their scores, but report posterior mean scores for students 

that are biased estimates of the students’ ability, and therefore unsuitable for many of the 

secondary analyses that economists perform, which typically use the test scores as 
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dependent variables (for example, to estimate the effects of programs or even just the 

black-white test score gap). 

Even in the relatively rare case that the underlying student ability measure comes 

from a simple statistic such as the fraction correct, assessments often present transformed 

“scale” scores for each individual. Research using these test scores virtually always 

assumes that the ability measure has an interval property – that is, a one unit change has 

the same meaning at every point on the scale (e.g., an increase from 400 to 450 on the 

SAT represents the same improvement in student knowledge as an increase from 700 to 

750). However, as explained below, this assumption is entirely unwarranted. This fact, 

widely recognized in the testing community but often ignored, undermines many of the 

purposes to which test scores have been put.  

And, finally, the fact that test scores are inherently “noisy” measures of student 

ability has important implications for analyses that use the scores as explanatory 

variables, such as in wage regressions. As we discuss in more detail below, a recent paper 

demonstrates that the failure to properly account for measurement error in individual 

ability, when this is used as a control in a standard wage regression, would lead an 

analyst to overstate the black-white wage gap conditional on ability by nearly 50 percent 

(Junker et al. 2012).  

Our goal in this paper is to familiarize applied economists with the construction 

and properties of common cognitive score measures and with their potential implications 

for economics research using these measures. Information about how scores are 

constructed is often buried deep in technical manuals, if presented at all. While the 

literature in psychometrics (the field concerned with the theory and methodology of 
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psychological measurement) has explored many if not all of the issues that we discuss, 

economists and other applied researchers are generally unaware of them and frequently 

misuse test score measures, with potentially serious consequences for their analyses. 

These issues will become even more important in the coming years as new assessments, 

developed in conjunction with the new Common Core State Standards, are gradually 

rolled out in schools around the country. 

We begin by discussing the domain covered by a test, and then the problem of 

assigning a quantitative scale to latent student ability.1 We next turn to the statistical 

models used to convert examinees’ responses to a series of test items into scores on the 

chosen scale. We then discuss the secondary analysis of test scores, when test scores are 

used as either dependent or explanatory variables, focusing in particular on how the test’s 

measurement model can influence results. We attempt to provide both applied researchers 

and research consumers with practical guidance for evaluating the many research studies 

that use test-based cognitive ability measures.  

 

What Does the Test Measure? 

The first decision that must be made in designing a test concerns what is to be 

measured.  Historically, psychometricians have distinguished between tests of aptitude 

and achievement. IQ tests (like the Wechsler Intelligence Scale for Children or Raven’s 

Progressive Matrices) are designed to measure mental aptitude, conceptualized as a fixed 

																																																								
1 Throughout this paper, we use “ability,” “proficiency,” “achievement,” and “aptitude” 
interchangeably to refer to a latent trait that governs test performance. In many contexts 
these terms have distinct meanings—for example, some argue that IQ tests measure 
innate aptitude but not learned achievement—but such distinctions are not important for 
the purposes of this paper. 
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trait that is unaffected by educational interventions. Respondents recite long strings of 

digits from memory or recognize patterns in abstract figures. By contrast, achievement 

tests aim to capture an individual’s stock of accumulated knowledge and not his or her 

innate ability.  

The distinction between aptitude and achievement is not always clear, however. 

IQ scores are affected by educational interventions such as preschool attendance 

(Heckman et al. 2010) or by the amount of accumulated schooling (Cascio and 

Lewis 2006), though one might expect innate aptitude to be invariant to both. The 

Peabody Picture Vocabulary Test (PPVT), which is administered to children in the 

National Longitudinal Survey of Youth (NLSY), measures a child’s “receptive 

vocabulary”—that is, number of words that the child recognizes and understands. The 

PPVT is sometimes described (and was designed) as an aptitude test. Yet a child’s 

receptive vocabulary is surely affected as much by the quality of that child’s educational 

experiences as by innate aptitude, particularly given evidence of substantial variation 

across socioeconomic groups in the number of words to which young children are 

regularly exposed (Hart and Risley 1995). In our view, all cognitive scores should be 

seen as measures of what a test-taker can accomplish on the day of the test, which is 

influenced by a combination of the subject’s innate ability, the educational and non-

educational inputs received in the past, and other factors extraneous to the testing process 

like testing conditions, health, and mood.  

Two related distinctions, central to psychometrics but largely ignored by 

economists, concern the domain covered and the malleability of the trait being measured. 

It is common to have separate tests for each core academic subject, including math and 
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language arts. Within these broad subjects, many assessments have separate questions 

aimed at different sub-domains, like grammar vs. reading comprehension, or computation 

vs. geometric reasoning. Scores are sometimes reported for each sub-domain. Given a 

choice of domain, tests also differ in what is known as “instructional sensitivity.” For 

example, a history test that focuses on facts which might have been covered in class is 

likely to be very sensitive to the quality and nature of the instruction that the student has 

received. By contrast, a test of historical reasoning, divorced from specific dates, names, 

and places, may better measure the student’s accumulated skills across several academic 

subjects but be less sensitive to the specific curriculum or teaching methods of the most 

recent class. A related idea is that some tests may be more affected by the student’s 

familiarity with the test form and scoring method — for example, students taking 

multiple choice tests must decide whether and how to guess at an item when the right 

answer is unknown. In many cases, it may be easier to improve scores by teaching test-

taking strategies than by teaching the underlying material. Barlevy and Neal (2012) argue 

that avoiding this outcome should be a central consideration in the design of testing 

systems to be used for teacher accountability.  

 

Scaling 

Test scores are reported on different and arbitrary scales. The National 

Assessment of Educational Progress (NAEP), which bills itself as “The Nation’s Report 

Card,” reports scale scores, ranging from roughly 100 to 400 with standard deviations 

around 30, as well as discrete proficiency categories (basic, proficient, and advanced). 

The verbal and math sections of the SAT college entrance exam are scaled to have 
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approximately normal distributions with means around 500, standard deviations around 

100, minimum scores of 200, and maximum scores of 800. The SAT’s competitor, the 

ACT, uses integers between 1 and 36 for each of four subjects, with means around 21 and 

standard deviations around 6. These scales are arbitrary in their location (mean), range, 

and distribution. That is, there is no reason the College Board could not assign the lowest 

performing student on the SAT a score of 100, or have the highest score be 1000, or set 

the standard deviation to be 50 or 150 instead of 100, or even adopt a scale that makes 

scaled scores approximately uniformly distributed.  

 

Interval or Ordinal 

Researchers using test scores generally treat them as an interval scale, meaning 

that a one unit change in a student’s score at any point on the distribution reflects the 

same change in the underlying knowledge or skill. This assumption is implicit in any 

analysis based on score averages. However, there is generally no basis for interpreting 

test scales as having an interval property (Stevens 1946; Thorndike 1966; Bond and 

Lang 2013). Like utility and unlike income or temperature, measured achievement is best 

thought of as ordinal, not cardinal. This fact has important implications for virtually all 

empirical analyses of test scores.  

Bond and Lang (2013) illustrate the importance of arbitrary scaling decisions in 

the calculation of a widely cited statistic in education research and policy: the black-

white test score gap. Consider a test of three items, each testing a different skill, with the 

skills ranked cumulatively: A student must master skill 1 before mastering skill 2, and 

skill 2 before skill 3. Students can answer zero, one, two or all three test items correctly. 
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Suppose we have a sample of two black students who correctly answer 0 and 2 items, 

respectively, and two white students who answer 1 and 2 items correctly. The count of 

correct items is known as the “raw score.” In this example, the average raw score for 

black students is thus 1, while that for white students is 1.5. Hence, the gap in mean raw 

scores is 0.5 points, or 0.6 standard deviations.  

Now suppose that the three skills are the ability to recite the alphabet, to 

recognize letters, and to read fluently. In this case, one might consider the incremental 

knowledge represented by advancing from skill one (reciting the alphabet) to skill two 

(recognizing letters) to be smaller than the steps from zero (no measured pre-literacy) to 

one (reciting the alphabet) or from two (recognizing letters) to three (reading fluently). In 

this example, the difference between the two groups is driven by the black student who 

scored 0 and the white student who scored 1. If we assume the difference between these 

students’ achievement is much larger than that between the two white students (who also 

differ in one skill), the black-white gap in average achievement approaches 1 full point. 

By contrast, if we assume the difference in knowledge between zero and one skill is 

arbitrarily small relative to that between one and two skills, the black-white test score gap 

approaches zero. More elaborate examples, where the distribution of one group does not 

stochastically dominate the other, could even produce reversals of the sign of the gap as 

the weight put on different skills varies.  

This problem worsens if one considers changes over time. Assume that over the 

school year each student progresses one skill level, so the black students correctly answer 

1 and 3 items correctly, and the white students answer 2 and 3 items correctly. The raw 

gap remains unchanged at 0.5 points. But if we assign more weight to the first skill 
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(reciting the alphabet) than the second (recognizing letters), we would conclude that the 

black-white gap had shrunk; if we reverse these weights, we would conclude it had 

grown. Empirically, estimates of the black-white gap in achievement growth across 

grades turn out to be extremely sensitive to transformations of the test score, in a way that 

varies across test and grade level. Depending on the transformation and assessment used, 

Bond and Lang (2013) find that the change in the black-white test score gap between 

kindergarten and third grade can be as small as zero or as large as 0.6 standard deviations.  

As another example, consider value-added estimates of how teachers affect the 

achievement of students. Setting aside questions about the causal interpretation of these 

estimates (Rothstein 2010, 2015; Chetty et al. 2014a,b), any comparison of value-added 

across teachers whose students start with different baseline scores rests, implicitly, on an 

assumed interval scale. Without this, one cannot compare the impact of a teacher who 

works with very low-scoring students and raises their scores by 10 points to the impact of 

a peer who raises the scores of higher-scoring students 15 points.2  

The ordinality of test scores thus poses a serious challenge for those working with 

test score data, and has inspired several types of responses. A first approach, favored by 

many psychometricians and education researchers, is to develop a parametric model that 

defines an interval scale for the achievement parameter, and then treat the resulting scores 

as interval. (Some scholars interpret “item response theory” models, discussed below, in 

this way.) However, just as with similar uses of parametric utility functions, it is not clear 

																																																								
2 Indeed, the equation of teachers’ causal effects on their students with their effectiveness 
relies on a much stronger assumption about the test score production process: One needs 
to assume that a teacher would have the same impact, in scale score points, regardless of 
the students’ initial achievement. Even with an interval scale, this assumption of 
homogeneity of treatment effects may not hold. 
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how one might evaluate the claim that a proposed scale of knowledge generated has an 

interval property.  

A second approach, advocated by Bond and Lang (2013), is to accept the 

ordinality of test scores, limiting conclusions to those that are robust to arbitrary 

monotonic transformations of the scores. This approach drastically limits the statements 

that can be made. When scores are treated as ordinal, group achievement is only partially 

ordered; one group’s achievement can only be said to exceed another’s if the former’s 

scale score distribution stochastically dominates the latter’s. A related approach focuses 

on students’ percentile scores. Reardon (2008) calculates the probability that a randomly 

chosen black student will have a test score higher than a randomly chosen white student. 

Ho (2009) and Ho and Haertel (2006) describe how this information can be converted to 

a standardized metric-free gap measure. These measures permit complete orderings and 

are invariant to test-makers’ scaling decisions, but are nevertheless non-interval; they 

amount to re-scaling the original test, but do not avoid concerns about assigning 

importance weights to achievement gains at different points in the distribution.  

Some value-added models—known as the “Colorado Growth Model” or the 

“student growth percentile model”—also rely on percentile scores to sidestep some 

scaling issues. In these models, each student is assigned a “growth percentile” 

corresponding to the student’s percentile in the distribution of test scores among the 

sample of students who had the same test score in the prior year. A teacher’s value-added 

is computed as the median growth percentile of students in that teacher’s class. Again, 

this measure is insensitive to the particular test score scale chosen, but nevertheless 

provides a complete ordering. Barlevy and Neal (2012) propose building teacher 
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accountability and compensation systems around measures closely related to student 

growth percentiles. Interpretation of this ordering as reflecting teacher effectiveness 

depends on interval-like assumptions, however, as there is no assurance that a given 

increment to a teacher’s median growth percentile is equally easy to achieve at all points 

in the teacher or student distribution.  

While a focus on the ordinal nature of test scores is clearly more defensible from 

a psychometric perspective, it does limit the questions that can be answered in research 

and policy evaluation. An approach that has received recent attention is to translate scores 

into units of another measure that we are willing to assume is interval, such as adult 

earnings or educational attainment (Cunha and Heckman 2006; Cunha et al. 2010; Bond 

and Lang 2015; Nielsen 2015b). For example, an attainment-scaled test score would be 

the average eventual educational attainment — looking ahead in time — of all students 

with a particular test score. Bond and Lang (2015) use this approach to measure the 

black-white gap at various grades. The attainment-scaled reading gap is roughly constant 

from Kindergarten through grade seven at around 0.7 years of predicted educational 

attainment, while the math gap is close to a full year.  

This forward-linking approach yields an interpretable scale that is plausibly 

interval, but it also raises questions. First, how should one choose the specific outcome to 

which the test scores are linked? There is no assurance that the scale defined by 

educational attainment will correspond to that defined by another outcome (such as 

earnings), nor that either corresponds to a hypothetical scale representing units of 

knowledge at the time of testing. For example, it might require more inputs to move a 

student from 9 to 10 years of education than from 11 to 12 years or 15 to 16 years. 
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Second, scores on a forward-linked scale depend on both the inputs that the tested 

students received prior to the test and the inputs that earlier students received after the 

test. For example, the existence of an effective intervention program for low-scoring 

adolescents will raise the average educational attainment of children who scored poorly 

on kindergarten tests, and thus compress the left tail of forward-linked kindergarten 

scores relative to what would be seen from the same kindergarten test responses in a 

setting without such an adolescent intervention. This is contrary to the standard education 

production function approach in which a student’s ability at time t is a function of all 

inputs the student has received up to, but not following, time t. Thus, while forward-

linked scores may seem intuitive, they can sometimes produce odd results. For example, 

the black-white gap in attainment-scaled achievement at every grade is likely to be larger 

than the actual black-white gap in educational attainment, as black students tend to wind 

up with higher attainment than do white students with the same test scores. Overall, we 

regard this forward-linking approach as promising but underdeveloped, and not yet ready 

for broad application.  

Finally, it might be possible to assume that raw test scores are partially but not 

fully interval. For example, we might be willing to assume that the difference between 

SAT scores of 1500 and 1000 is larger than that between 1000 and 990, even if we aren’t 

willing to assume that it is 50 times as large. The challenge then is to parameterize and 

define this notion in some defensible way. Nielsen (2015a) provides a first step in this 

direction. His empirical results, like those of Bond and Lang (2013), suggest that cross-

sectional achievement gap estimates (for example, for black/white and high-/low-income 
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gaps) are robust to scale misspecification, but that changes in achievement gaps over time 

are considerably more sensitive to the choice of scale.  

 

Standardized Scores 

When analyzing tests that use well-known scales, such as the SAT, researchers 

often use unadjusted scale scores. When the scale is not familiar, economists frequently 

convert (or “standardize”) scores to a known scale. There are three common methods: Z-

scores are the difference between the examinee’s scale score and the mean scale score, 

divided by the scale score standard deviation; percentile scores are the examinee’s rank in 

the distribution; and normal curve equivalents (NCEs) are obtained by applying the 

standard normal inverse distribution function to the percentile score. These ad hoc 

transformations aim to be comparable across tests and samples, but they yield scales that 

are no more or less correct than the raw or scale scores.  

Even when researchers are willing to set aside concerns about non-interval scales, 

there are several practical challenges to using these transformations. The challenges 

derive from the fact that each transformation is defined relative to some norming 

population, which in practice can be small and non-representative. Comparability across 

assessments depends on the use of norming populations with identical interval-scaled 

ability distributions, which is difficult to assess unless the two populations are given the 

same test. Consider, for example, a comparison between two states that administered 

different exams. Z-scores constructed from samples from the two states are comparable 

only if the mean and standard deviation of latent achievement, if measured on the same 

scale, would be identical in the two states; comparison of percentile or normal curve 
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equivalent scores requires even stronger assumptions about latent achievement 

distributions. The same problem arises when comparing across ages or cohorts.  

Cascio and Staiger (2012) reconsider a common empirical result that interventions 

aimed at younger children tend to have larger effects on standardized test scores (z-

scores) than do those aimed at older children. They ask whether this could be attributable 

to the standardization process, rather than an indication that achievement becomes less 

malleable as children age. Scores are typically standardized separately by age. 

Differences in the effects of interventions carried out upon students of different ages 

might therefore reflect either differences in the interventions’ true effects or differences 

in the distribution of scores across students. If the standard deviation of achievement 

increases with age, a plausible hypothesis as older students have been exposed to more 

out-of-school influences whose effects may accumulate, this could explain the observed 

pattern of declining coefficients with age. Cascio and Staiger adopt a parametric, additive 

model of student test scores as depending on a permanent child ability, long-term 

knowledge that decays at a constant, geometric rate, and a transitory component that 

combines what they refer to as “short-term knowledge” with pure measurement error on 

the test. Based on this model, they conclude that while the variance of latent achievement 

does increase with age, this cannot fully explain the age pattern of estimated treatment 

effects.  

Even when interval-scaled ability is similarly distributed across groups, measured 

ability may not be. The age-specific standard deviation combines true variability of 

ability among children with measurement error in the test. The measurement error 

component may vary with age even if true ability does not. Dividing by age-specific 
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standard deviations of measured scores will tend to make between-group differences 

(like, the black-white gap) in z-scores larger at ages where test measurement error is 

smaller.  

 

Practical Guidance on Scaling 

Both those who consume and those who carry out research routinely use test 

scores in a way that assumes they have interval properties, although this assumption has 

no compelling justification. Should one only use the ordinal information contained in test 

scores, and forgo making any statements about the magnitude of effects? For example, a 

percentile-percentile plot comparing treatment and control groups would allow the 

researcher to fully characterize how the two distributions compare without relying on a 

particular scale, though in many cases the groups will not be ordered without scaling 

restrictions. While we understand this inclination, we are inclined toward the approach 

outlined by Nielsen (2015a), who seeks to narrow the class of scale transformations that 

are considered reasonable. At a minimum, we recommend that researchers make greater 

effort to test the robustness of their results to changes in the test score scale. For example, 

researchers might test their sensitivity to modest scale transformations such as the log or 

exponential of the reported scale score.  

The common practice of standardizing reported scores also raises concerns. 

Secondary researchers should standardize based on the broadest possible population, 

even if their study focuses on a subpopulation. Comparisons of standardized effect sizes 

across studies should account for differences in the norming populations. Moreover, in 

most cases the true (net of measurement error) standard deviation should be used for 
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standardization; in cases where this cannot be computed from measured scores, 

sometimes it can be backed out from information in the assessment’s technical 

documentation, such as estimates of the test-retest reliability.  

 

Measurement 

Scaling involves the conversion of some initial ability measure into scores with a 

desired distribution. In this section, we discuss how test-makers obtain those initial ability 

estimates. The simplest estimate of ability is the fraction of items an individual answers 

correctly, often referred to as the “raw” score. But this approach has several limitations. 

First, a student’s performance on a test, typically with relatively few items, measures 

student ability with error. Second, raw scores obtained from different tests or even from 

different test forms are not comparable. This is a particular issue for “adaptive” testing, 

where the student’s performance on early items determines the difficulty of the items 

presented later. Third, even within the same form, items of moderate difficulty provide 

more information about a student’s proficiency than do items that are very easy or very 

hard for that student; holding constant the difficulty of questions, some items may be 

better or worse at discriminating between more and less able individuals. For example, a 

test item about baseball statistics may measure knowledge of the sport better than it does 

statistical proficiency. These considerations motivate use of more complex performance 

measures, typically based on what is known as “item response theory.”   
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Item Response Theory  

An Item Response Theory (IRT) model specifies the probability that a student 

will answer each test item correctly as a function of a latent parameter representing the 

student’s ability and of parameters relating to the item (van der Linden and 

Hambleton 1997). In one of the simplest specifications, the probability of a correct 

answer is a logit function of the difference between the student’s ability and the item’s 

difficulty. This is known as the “1 parameter logistic” (1PL) model. The implicit 

assumption here is straightforward: higher ability students are more likely to answer each 

item correctly than are lower ability students; all students are more likely to correctly 

answer simple than difficult items; and both relationships follow a simple, parametric 

form. (Some psychometricians argue that the implicit scale assigned to student ability by 

this model should be treated as interval, and refer to it as the “Rasch Model.”)  

Most item response theory models are more complex. The most common is “three 

parameter logistic” (3PL) model, which adds two item parameters to the 1PL. One 

parameter represents a test item’s “discrimination” between high- and low-ability 

students. The more discriminating an item, the steeper the relationship between the 

student’s ability and the probability of a correct answer, and the less overlap there is in 

ability between those who answer it correctly and those who do not. The second is 

“guessability” – the probability that even a very low ability student will guess the correct 

answer. There are also item response theory models for essay questions or multiple-

correct-answer questions that are scored in ways other than simply right or wrong.3  

																																																								
3 For a more complete discussion of item response theory models, see van der Linden and 
Hambleton (1997). Embretson and Reise (2000) provide a readable introduction to the 
field for non-psychometricians. 
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Measuring Student Ability in Test Scoring 

After a particular item response theory specification—say, the three-parameter 

logistic version— is chosen, the next steps are to estimate the test item parameters (e.g., 

difficulty, discrimination, and guessability), and then to use a student’s particular 

combination of right and wrong answers, along with the item parameters, to generate a 

measure of the student’s latent ability. The item parameters are well-identified as the 

number of tested students gets large, and can typically be estimated with relatively little 

error. But the typical test has relatively few items, so that the ability of an individual 

student is not precisely identified.4 Modern assessment systems vary in the way they 

handle this.  

Some testing systems, including most state tests used for accountability purposes, 

treat student ability as a fixed effect to be estimated directly via maximum likelihood 

methods or some variant thereof, applied to the sequence of right and wrong answers. 

The resulting estimate is (approximately) unbiased in most cases, but can be very noisy. 

Moreover, when a student gets all questions incorrect or all correct, a maximum 

likelihood estimate does not exist. A former state-mandated test in Michigan (the 

Michigan Educational Assessment Program) assigned students who answered all items 

correctly a score 10 percent higher than what was otherwise possible, and conversely 

assigned students who answered all items incorrectly a score 10 percent lower than what 

was otherwise possible. Other tests simply set minimum and maximum scores, and assign 

students with perfect scores to the endpoints.  

																																																								
4 The problem is similar to that which arises in many panel data models in econometrics, 
with the individual effect the object of interest rather than a nuisance parameter. 
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Other testing systems estimate student ability using random effects models, which 

generate posterior distributions for each student’s ability (including for those who answer 

all items correctly or all incorrectly). To assign a single score to a student, some tests 

report the mean or mode of this posterior distribution. Posterior mean scores can be seen 

as Empirical Bayes estimates of students’ latent ability (Morris 1983), which “shrink” the 

individual’s own score (roughly, the maximum likelihood estimate) toward the 

population mean in proportion to the noisiness of the maximum likelihood score. In item 

response theory models, ability is estimated most precisely for individuals near the 

middle of the measured ability distribution. This is because test items are most 

“discriminating,” in the sense that a right or wrong answer provides the most information 

about the student’s ability, when the probability of a correct answer is close to 50 

percent.5 For this reason, the reported ability measure in this framework will be shrunk 

more for students who score extremely high or low on the exam.  

Importantly, neither posterior means nor posterior modes are unbiased estimates 

of student ability. Recall, an unbiased estimate is one in which the estimation error (i.e. 

the difference between the estimate and the individual’s true ability) is zero in 

expectation and is uncorrelated with the true ability. As noted above, a student’s posterior 

mean is “shrunk” toward the population mean. So, we would expect that the individual’s 

posterior mean is on average smaller (in absolute value) than his or her true ability – it is 

a biased estimate.   

																																																								
5 Interestingly, the standard errors of raw scores are largest at this point, and smaller in 
the tails: The variance of the fraction correct, p, is p(1-p)/N, and this is highest when p is 
close to 0.5. Intuitively, logistic item response theory models stretch out the tails of the 
ability scale relative to raw scores, even as test performance provides relatively little 
information to discriminate amongst students who do very well or very poorly on the test. 
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On the other hand, posterior means are unbiased predictors of true latent ability. 

In other words, the prediction error (i.e., the difference between a student’s true latent 

ability and that student’s posterior mean score) is mean zero in expectation, and is 

uncorrelated with the posterior mean score. This difference stems from the fact that when 

predicting how an individual will do in another context, it is optimal to adjust your 

prediction to account for the measurement error inherent in the student ability measure 

generated from a prior assessment. This insight has important consequences for 

secondary analysis of the scores, which we discuss below.  

Most of the longitudinal databases created and distributed by National Center for 

Education Statistics, including the Early Childhood Longitudinal Study, the National 

Educational Longitudinal Study of 1988 (NELS:88), the Educational Longitudinal Study 

(ELS), and the High School Longitudinal Study (HSLS), report scores constructed from 

posterior means. The Armed Services Vocational Aptitude Battery (ASVAB) scores 

reported in the 1997 wave of the National Longitudinal Study of Youth (NLSY97) are 

posterior modes.  

Several major assessments, including the National Assessment of Educational 

Progress, attempt to provide more information about the posterior distribution than a 

single mean or mode by reporting several “plausible values,” which are random draws 

from the examinee’s posterior distribution. Plausible values are closely related to multiple 

imputation for missing data, and derive from Rubin’s (1987; 1996) work on the topic. For 

excellent summaries of plausible values, including guidance on how to properly use them 

in secondary analyses,  useful starting points are von Davier et al. (2009) and Carstens 

and Hastedt (2010). 
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Plausible values are neither unbiased estimators (like maximum likelihood 

estiamtes) nor unbiased predictors (like posterior means) of individual ability. Their 

primary benefit is that the variance of plausible values across students equals (in a large 

sample) the variance of latent ability, which allows one to calculate population variances. 

In contrast, the variance of an unbiased estimator (like maximum likelihood) will 

overstate the population variance while the variance of an unbiased predictor (like 

posterior means) will understate it. On the other hand, as we discuss below, while 

maximum likelihood and posterior mean ability estimates can each support some 

secondary analyses without further adjustment, there is essentially no multivariate 

secondary analysis that would be of interest to economists for which plausible values will 

yield unbiased estimates.  

 

Incorporating Conditioning Variables into the Generation of Latent Student Ability 

Measures  

To minimize examinee burden, tests are often kept short. Tests with relatively few 

questions will not provide precise (posterior) estimates of individual ability. To increase 

precision, some assessments — including the premier US and international assessment 

systems, the NAEP and the Program on International Student Assessment (PISA), 

respectively — use priors that vary with student background characteristics. In this 

approach, a “conditioning model” relates performance on the exam to students’ 

background characteristics (for example, race, gender, family income), and then the prior 

used for computation of each student’s posterior ability distribution is centered at the 

predicted values from this conditioning model.  
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As with random effects approaches described above, the posterior distribution 

from a conditioning model can be summarized by its mean or by several plausible values. 

The posterior mean still can be viewed as an Empirical Bayes or shrinkage estimator, but 

instead of being shrunk toward the unconditional mean, a student’s performance is 

shrunk toward the predicted performance of students with similar background 

characteristics.  

While the conditioning approach permits more precise estimates of students’ 

ability (that is, the posterior distributions are tighter), it means that a student’s measured 

score depends on personal background characteristics, even conditional on that student’s 

test responses. Suppose, for example, that race is one of the background variables (as it is 

in National Assessment of Educational Progress tests), and that on average black students 

perform less well on the assessment than white students. Now consider two students, one 

black and one white but otherwise identical in their background characteristics and in 

their test item responses. Our two students’ performance, initially identical, is “shrunken” 

toward different group averages. As a result, the white student’s posterior distribution 

will stochastically dominate that of the black student, leading to gaps in their posterior 

means and plausible values. This does not bias the average black-white test score gap. 

The average score of all black students remains the same because the scores of high-

performing black students are pushed down just as the scores of low-performing black 

students are pushed up, and the same for white students (with each pushed toward a 

group-specific mean). However, individual scores are affected. Scores generated in this 

way are at odds with the expectations of many data users, and as we discuss below can 

create important biases in more complex secondary analyses.  
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Recent administrations of the National Assessment of Educational Progress use 

hundreds of student and school characteristics in the conditioning model, including 

student demographics (like race, gender and age), family background characteristics (like 

parental employment and parental education), school characteristics (including racial 

composition of the school and whether a school location in in an urban location), student 

self-reports of study habits and school performance (including overall grades, expected 

educational attainment, time spent on homework), and teacher reports of aspects of the 

curriculum and of school policies. The model contains few variables that are likely to be 

of interest for policy evaluations, however. For example, it does not include measures of 

whether the school offers performance pay to its teachers, the type of school 

accountability system in place in the state, or the form of the state school finance 

formula. Moreover, none of these policy variables are likely to be well-proxied by the 

student-level characteristics that are included. As we discuss below, this may mean that 

program evaluations using NAEP scores as outcomes will understate programs’ true 

effects.  

 

Secondary Analysis with Latent Ability Measures 

In this section, we discuss how the scaling and measurement issues described 

above can influence secondary analyses using test scores. For simplicity, we focus on 

ordinary least squares regressions and refer to the regression of interest as the “research 

model,” distinguishing this from the “measurement model” (that is, the item response 

theory specification) and the “conditioning model” sometimes used to construct the test 

scores. For example, if one is interested in estimating the poverty achievement gap, the 
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research model might be a regression of student ability on a binary measure of being 

above or below the poverty line. To focus specifically on issues arising from scaling and 

measurement, we ignore both sampling variability (essentially assuming that the number 

of examinees is large) and omitted variable bias (essentially assuming that linear 

projections are of interest, perhaps because the research design supports their causal 

interpretation).  

In many cases, simple estimation of the research model using the test performance 

measure provided by a test-maker will lead to biased estimates of the relationships of 

interest. It is important for secondary researchers and consumers of this research to be 

aware of these biases. Their existence and magnitude depend on the type of ability 

measure used — that is, whether it is a fixed effects approach to student ability based on 

a direct maximum likelihood estimate, a posterior mean, or a plausible value, and in the 

latter cases whether the prior distribution is unconditional or conditional on background 

characteristics — and also on whether the ability measure is a dependent or independent 

variable in the research model. An important question is whether there are options 

available to the secondary researcher that permit unbiased estimation. Fortunately, there 

are options in many cases; unfortunately, all require access to additional information 

beyond the reported test score itself, often but not always item-level test data that can be 

hard to acquire.  

While the sign of the bias arising in various scenarios is clear, the magnitude of 

the bias is not. We present illustrative evidence from two studies that assess the 

magnitude of biases that arise, one regarding racial and ethnic test score gaps and the 

other examining a “Mincerian” wage regression—that is, a regression that uses schooling 
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and experience as explanatory variables--that also includes measures of ability derived 

from test scores as an explanatory variable.  

 

Ability as the Dependent Variable 

Measures of student ability based on test score data are common outcomes in both 

descriptive analyses (for example, of disparities across demographic groups) and 

evaluations of the causal effects of education programs or policies. A lesson of basic 

statistics is that classical measurement error in a regression dependent variable will not 

lead to biased coefficient estimates, though it may reduce the precision of such estimates. 

When the available test score is of the fixed effects (maximum likelihood) type, this 

result is likely to apply. But none of the random effects approaches discussed above yield 

test scores that can be approximated as true ability plus classical measurement error, and 

regressions that use them as dependent variables are likely to be biased. Consider, for 

example, estimation of the test score gap between poor and non-poor students. If poor 

children have lower ability on average, then the poor/non-poor gap in posterior mean 

scores (without conditioning) will understate the poverty achievement gap. The same is 

true when the available scores are plausible values, which are merely the sum of the 

posterior mean and a random component uncorrelated with student ability.  

How potentially important is this bias? To measure this, we need to compare the 

biased estimates to unbiased results from the same test. Few databases of test scores 

report both random effects and fixed effects ability estimates. Some testing systems, 

however, report individual item responses. With these data, it is possible to obtain 

unbiased estimates by estimating a system of equations combining the item response 
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theory measurement model together with the research model. This system specifies the 

likelihood for the observed item responses in terms of the item parameters and the 

research model coefficients, in essence using the research model covariates as the 

conditioning set. This approach, known as Marginal Maximum Likelihood (MML), is 

described in seminal articles by Mislevy (Mislevy 1991; Mislevy et al. 1992).6 

Briggs (2008) assesses the extent of bias in estimates of racial and ethnic gaps in 

student achievement that rely on posterior mean scores without conditioning variables. 

He uses a sample of 10th graders in 1999 who were administered the Partnership for the 

Assessment of Standards-based Science (PASS) test. Table 1 reproduces his estimates. 

Column 1 shows gaps in scaled posterior mean scores. These indicate that the black-

white achievement gap is -0.61 scale points. Column 2 shows unbiased Marginal 

Maximum Likelihood (MML) estimates. These indicate a black-white gap of -0.77 scale 

points in the same sample. Columns 3 and 4 report estimates for Z-scores, created by 

dividing the scale scores by the standard deviation of these scores (column 3) or by the 

estimated standard deviation of latent proficiency (column 4). Again, the two sets of 

estimates give notably different answers: A black-white gap of -0.87 standard deviation 

units when posterior means are used, or -0.95 when computed via MML. Elsewhere, 

Briggs shows that the biases are even larger when considering sub-domains within the 

larger test.  

																																																								
6 Implementing the model requires that the researcher invest some time in coding and in 
computational techniques (like Markov Chain Monte Carlo). The National Center for 
Education Statistics once contracted with the American Institutes of Research to develop 
software intended to estimate such models (at http://am.air.org/contact2.asp), although 
this software is now dated. 
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Another application where this issue has arisen is in the examination of teacher 

value-added, which is often computed via Empirical Bayes procedures. Chetty et 

al. (2014a, Appendix Table 2) assess inequities in access to good teachers by regressing 

teacher value-added on observable student characteristics. They estimate that the value-

added scores are shrunken by 36 percent, on average, and attempt to undo this by 

multiplying their estimated coefficients by 1.56 = 1⁄1-0.36. But this is only an 

approximation. Because the Empirical Bayes estimates are shrunken differently for each 

student, the bias need not be uniform.  

The above discussion applies to random effects estimates of ability without 

conditioning variables. When a conditioning model is used, the potential biases become 

more complicated. As described above, the inclusion of conditioning variables can be 

thought of as shrinking a student’s individual performance toward the group-specific 

mean for those sharing the characteristics of that student. Thus, only the portion of 

achievement that is not predicted by the conditioning variables is shrunken. An 

implication is that the coefficients in the research model are unbiased if all of the 

explanatory variables in the research model were also included in the conditioning model 

(Mislevy 1991). However, this is unlikely to be the case in many applications. Recall that 

the conditioning model used in National Assessment of Educational Progress includes 

many student background characteristics but few, if any, variables that relate to education 

policies or programs. So if one regressed test scores on student background 

characteristics and, say, an indicator for whether the school had a high-stakes teacher 

evaluation system, the coefficient on the teacher evaluation system would be likely to be 

attenuated, and the student background coefficients might also be biased if the 
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background and policy measures were correlated. Mislevy (1991) reanalyzes data from 

the 1984 NAEP Long-Term Trend reading assessment. He finds that biases in 

coefficients on variables not included in the conditioning model can be substantial.  

But modern assessment systems typically include hundreds of variables in the 

conditioning model, much more than were used in the 1984 National Assessment of 

Educational Progress. It is not clear how important this type of bias is in today’s NAEP. 

We have investigated this as it applies to two specific examples: an evaluation of the 

federal school accountability policy No Child Left Behind (Dee and Jacob 2011) and an 

assessment of the effects of school finance reform on inequalities in spending and 

achievement across districts (Lafortune et al. 2016), both of which rely on difference-in-

differences regression using a state-by-year panel. We found that cross-sectional 

regressions of NAEP performance on either the state’s accountability rule or the district’s 

funding were insensitive to the use of plausible values versus a Marginal Maximum 

Likelihood (MML) approach. However, other studies that examine different policies or 

programs may show greater bias. We view this as an important subject for future 

research.  

 

Ability as an Independent Variable 

Now consider a research model in which ability is an independent variable: for 

example, a regression of wages on education, family background, and an ability measure 

(for example, Neal and Johnson 1996). Again, economists are generally familiar with the 

idea that classical measurement error in an explanatory variable leads to an attenuated 

coefficient on that variable — in this case, the ability measure — and to biases of 
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predictable sign and magnitude in other coefficients. Once again, however, this result 

applies only to test scores generated by a fixed-effects method. By contrast, when test 

scores are posterior means or plausible values, measurement error in these scores is 

correlated (generally negatively) with the student’s true ability. Intuitively, “shrinkage” 

estimators pull an examinee’s reported score more toward the mean the further is that 

person’s true score from the mean. Hence, classical measurement error results do not 

apply. In this setting, ordinary least squares coefficients are unbiased only in restrictive 

circumstances: for example when the test score is a posterior mean and the conditioning 

model includes the covariates from the research model but no other variables that are 

correlated with the research model outcome. Unlike in the dependent variable case, likely 

biases are quite different for posterior means than for plausible values, though as before 

they depend importantly on the presence and form of the conditioning model.  

Schofield et al. (2015) model the likelihood of the outcome variable jointly with 

that for item responses. The resulting estimator, the “Mixed Effects Structural Equations” 

(MESE) model, is similar in spirit to the Marginal Maximum Likelihood (MML) 

approach discussed above, and permits unbiased estimation. As with MML, this requires 

both access to item responses and bespoke programming and computational methods.7 

Junker et al. (2012) use this approach to assess the bias in a simple wage 

regression using data from the National Adult Literacy Survey, a nationally 

representative sample of US adults in 1992 that contains information on cognitive ability 

																																																								
7 Another approach, not pursued in the literature to our knowledge, would be to 
instrument for a noisy measure of ability with a second, independent, measure, if 
available. For example, the National Assessment of Educational Progress test consists of 
two separate blocks of items; one could use the fraction correct from the first block as an 
instrument for the fraction correct on the second. 
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along with survey information on a variety of demographic and socioeconomic outcomes 

such as educational attainment and earnings. They focus on a sub-sample of 25-55 year-

old men and women who work full-time, answered at least one item on the literacy test, 

report a weekly wage and self-report as black or non-Hispanic white. Their research 

model specifies log weekly wages as a linear function of race, a quartic in potential 

experience, indicators for urban status and census region, and the literacy test score. 

Table 2 reproduces their results for their sample of 3,267 men. Column 1 shows that the 

racial gap in wages is 36.6 log points (30.6 percent) without ability controls. Column 2 

adds a maximum likelihood estimate of individual literacy, generated from a standard 

item response theory model. The implied black-white wage gap in this model drops 

dramatically to 14.4 log points (13.4 percent). However, recall from above that the 

literacy coefficient is attenuated due to classical measurement error in the maximum 

likelihood score, implying that the racial gap is overstated here. Column 3 presents 

unbiased Mixed Effects Structural Equations (MESE) estimates. As expected, the literacy 

coefficient increases and the implied black-white wage gap drops to 9.4 log points (9 

percent). This finding suggests that latent ability accounts for 74 percent of the 

unconditional black-white log wage gap (= 1 - (-0.094/ -0.366)) when properly 

controlled, but that a naive estimator would indicate that it accounts for only 61 percent 

of the gap.  

As it happens, the National Adult Literacy Survey data report ability as a set of 

plausible values, based on a conditioning model that includes several hundred main 

effects and interactions of background variables collected in the survey. Importantly, the 

conditioning set includes measures of individual wages (the outcome variable in the 
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research model above) as well as other measures highly related to wages such as family 

income and occupation, though the complex conditioning procedure makes it difficult to 

understand the functional form assigned to the relationship between ability and wages. 

Schofield et al. (2015) demonstrate that this sort of ability measure typically will result in 

bias. Indeed, the race coefficient when controlling for the plausible value scores (column 

4) is -0.121, overstating the unbiased estimate by roughly 33 percent.  

Again, this example makes clear the importance of sometimes obscure 

measurement choices in the construction of test scores to the substantive conclusions 

from secondary analysis of these scores. Regressions with test scores as dependent 

variables are plausibly unbiased when the score is constructed as a fixed effects estimate 

or as a random effects estimate with a sufficiently large conditioning set, but in nearly all 

other cases bias is likely. The most likely result is that the coefficients on key policy 

variables (which are unlikely to be included in conditioning models) will be attenuated, 

while those on demographic covariates will be overstated. When the test score is an 

independent variable, in the most common case using plausible values and conditioning 

on a wide range of predictors of individual ability (but not the dependent variable itself), 

we are aware of no general results on the sign or magnitude of bias. Information provided 

by the assessment — namely, the reliability of the ability measure — can in some cases 

be used in to generate consistent estimates. Or even better, the reported scores can be 

discarded in favor of analyses that draw directly on examinees’ item responses. However, 

it remains unusual for analytic samples from test score data to include item-level 

responses; in any event, few secondary analysts are likely to be willing to invest in the 

appropriate analysis of these responses, which remains tedious.  
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Conclusions 

Modern psychometrics utilizes a variety of sophisticated models and techniques to 

develop cognitive assessments and produce individual ability scores. The applied 

researcher who does not possess at least a rudimentary understanding of these methods is 

liable to misuse test scores in a way that can lead to serious biases. These biases have not 

been widely recognized in the literature to date, and may be important to our 

understanding of key issues in education and labor economics. In this concluding section, 

we discuss their implications for several of the running examples discussed throughout 

this article.  

The black-white test score gap is a commonly cited statistic, used by educators 

and policymakers not only to judge specific schools or districts but also to evaluate the 

effectiveness of reform efforts. Recent studies using the nationally representative Early 

Childhood Longitudinal Survey (ECLS) have received considerable attention (for 

example, Fryer and Levitt, 2004, 2006, 2013). As Bond and Lang (2013) illustrate, this 

statistic is quite sensitive to arbitrary decisions about how to scale test scores, and 

changes in the gap are particularly unstable depending on such choices. A less 

recognized, but perhaps as important, concern is that the ECLS test scores are posterior 

means generated without any conditioning variables—that is, individual ability measures 

in ECLS are shrunk toward the population mean. This almost certainly implies that the 

black-white scale score gap in ECLS is attenuated in the cross section, although we are 

not aware of any research that seeks to assess the magnitude of this bias.  
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Value-added measures are becoming increasingly common in education, health 

care and other fields. Indeed, value-added measures of teacher effectiveness are currently 

used to evaluate teachers in many states, and value-added indicators of quality and cost 

effectiveness are used to reward hospitals as part of Medicare reforms in the recent 

Affordable Care Act. Choices about how to scale the outcome measure can have 

substantial impacts on the resulting statistic, and possibly important policy implications 

depending on exactly how such measures are used. As discussed above, we recommend 

that researchers assess the sensitivity of value-added measures by comparing the results 

of models that use scale scores with those that rely only on percentile ranks. We also 

caution researchers and policymakers to more carefully match the calculation of value-

added (particularly the choice between fixed-effects-style estimators and random-effects-

style predictors) to the use to which the scores will be put, as mismatches create biases of 

the forms discussed above.  

Regressions that control for some measure of human capital are common in labor 

economics (for example, Neal and Johnson 1996). While measures of cognitive ability 

can be powerful controls in many models, estimated coefficients will be biased under 

typical conditions. If a maximum likelihood-based estimate of cognitive ability based on 

underlying test scores is used as a predictor, the coefficient on ability will likely be 

attenuated, and its relationship with other covariates will be under-controlled. In this 

case, if the test-maker reports the reliability of the test score, standard errors-in-variables 

results allow unbiased coefficients to be reverse-engineered. If the test score is instead 

derived from a random effects framework, either a posterior mean or a plausible value, 

the nature of the bias is much harder to determine as it depends on the other covariates in 
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the model and the correlation between these covariates and ability. There are no simple 

fixes, other than to be cautious in interpreting results.  

Finally, policy evaluations that use aggregate panel data (at the state-by-year 

level, for example) on student outcomes may be biased due to inappropriate construction 

of the underlying test scores. While the few cases that we have explored (specifications 

like those used in Dee and Jacob 2011 and Lafortune et al. 2016) do not seem to suffer 

from important biases, there is no guarantee of the same result in other contexts. In such 

cases, researchers must first make sure that they understand the cognitive ability data they 

are using well enough to recognize what biases might be relevant. Also, we suggest that 

researchers test the sensitivity of their results as much as possible. For example, with 

surveys such as National Assessment of Educational Progress it is possible to obtain 

item-level data, with which one can either implement one of the more sophisticated 

approaches, such as the one suggested by Schofield et al. (2015), or a quick-and-dirty 

check such as testing robustness of results to using the fraction of items correct for each 

student as an alternative outcome.  

The issues that arise in quantitative analysis of cognitive traits are only becoming 

more salient. The landscape of testing in US schools is changing rapidly, driven by the 

widespread adoption of the Common Core state standards for K-12 education.8 In spring 

2015, more than half the states introduced new assessments to match the Common Core 

																																																								
8 The Common Core standards have been developed by a consortium of states, with 
strong encouragement from the federal government. They articulate in some detail what 
students should know and be able to do in each grade and subject in elementary and 
secondary school. A running theme is a reduced emphasis on memorization and rote 
computation, in favor of more problem-solving and higher-order thinking. Despite 
considerable controversy, as of August 2015, 42 states and the District of Columbia had 
adopted the Common Core standards in English/language arts and math. 
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standards. These assessments all rely on sophisticated item response theory models to 

generate the exams and to calculate estimates of individual proficiency. One of the two 

new assessments (Smarter Balance) is computer-adaptive, so that a student who does well 

on early items is routed to hard items later in the test. This method can allow for more 

efficient estimation of student proficiency by ensuring that students are given many items 

that are appropriately difficult for them, but makes the resulting scores more sensitive to 

the underlying item response theory specification and measurement model.  

There is some discussion of developing of standardized assessments aimed at 

college students, too. Moreover, psychometric methods are are spreading beyond 

cognitive skill assessment. Common measures of “non-cognitive” traits such as 

persistence, self-esteem, and socio-emotional regulation, as well as of more cognitive 

traits such as working memory, rely on the same item response theory-based 

measurement models discussed above, typically applied to batteries of very few survey 

items Schofield (2015). Test score-like measures are also being used in health, as health 

care reform has encouraged increased emphasis on quantitative measurement. Across all 

of these domains, secondary researchers will need to account more carefully for scaling 

and measurement issues.  
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(1) (2) (3) (4)

Posterior	

Mean MML

Posterior	

Mean MML

Intercept 0.9 0.96 1.29 1.19

Black -0.61 -0.77 -0.87 -0.95

Hispanic -0.52 -0.67 -0.75 -0.83

Asian -0.1 -0.115 -0.14 -0.14

Other -0.3 -0.373 -0.43 -0.46

N 420 433 420 433

SD	of	test	score 0.7 0.81 1 1

Notes:	Estimates	reproduced	from	Briggs	(2008),	Tables	4	and	6.	N	=	433.	MML	=	

Marginal	Maximum	Likelihood.	Data	pertain	to	performance	on	a	10th	grade	science	

assessment.	Columns	1	and	3	report	estimates	when	posterior	mean	(without	

conditioning	variables)	are	used	as	the	dependent	variable	in	an	OLS	regression;	

Columns	2	and	4	report	estimates	obtained	via	the	Marginal	Maximum	Likelihood	

method	discussed	in	the	text.	In	Columns	1-2,	scores	use	the	scale	of	a	logit	index	(so	

that	the	probability	of	a	correct	answer	equals	the	logit	function	applied	to	the	scaled	

score	with	an	additive	adjustment);	in	Columns	3-4	these	are	divided	by	their	

estimated	standard	deviation.	Briggs	does	not	report	standard	errors,	but	all	Intercept,	

Black,	and	Hispanic	coefficients	are	significantly	different	from	zero	at	the	1%	level,	

while	none	of	the	Asian	or	Other	coefficients	are	reported	to	be	significant	at	the	5%	

level.

Table	1.	Biases	when	using	posterior	mean	test	scores	as	a	dependent	variable	(from	
Briggs	2008)

Logit	units Z	scores



No	skill	

control

MLE	of	

literacy	

score MESE PV

(1) (2) (3) (4)

Black -0.366 -0.144 -0.094 -0.121

(0.033) (0.033) (0.033) (0.041)

Literacy	skill 0.151 0.191 0.221

(0.008) (0.010) (0.015)

Effect	of	a	one	SD	change	in	

literacy	skill 0.19 0.218 0.221

Estimate	of	literacy	skill	used	in	model

Dependent	variable	=	log(weekly	wage)

Notes:	Estimates	reproduced	from	Junker	et	al.	(2012).	N	=	3,267.	MLE	=	Maximum	

Likelihood	Estimates;	MESE	=	Mixed	Effects	Structural	Equations;	PV	=	Plausible	Values.		

In	Columns	2	and	4,	MLE	and	PV	test	scores	(respectively)	are	entered	as	regressors	in	

OLS	regressions.	Column	3	applies	the	MESE	system-of-equations	method.	The	research	

model	in	each	column	includes	controls	for	a	quartic	in	potential	experience	as	well	as	

indicators	for	urban	status	and	census	region.

Table	2.	Biases	when	using	estimates	of	latent	ability	as	an	independent	variable	
(from	Junker	et	al.	2012)


