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Abstract

Growing concerns over the inadequate achievement of U.S. students have led to pro-
posals to reward good teachers and penalize (or fire) bad ones. The leading method for
assessing teacher quality is “value added” modeling (VAM),which decomposes students’
test scores into components attributed to student heterogeneity and to teacher quality. Im-
plicit in the VAM approach are strong assumptions about the nature of the educational
production function and the assignment of students to classrooms. In this paper, I develop
falsification tests for three widely used VAM specifications, based on the idea that future
teachers cannot influence students’ past achievement. In data from North Carolina, each
of the VAMs’ exclusion restrictions are dramatically violated. In particular, these models
indicate large “effects” of 5th grade teachers on 4th grade test score gains. I also find that
conventional measures of individual teachers’ value addedfade out very quickly and are
at best weakly related to long-run effects. I discuss implications for the use of VAMs as
personnel tools.

∗Industrial Relations Section, Firestone Library, Princeton, NJ 08544. E-mail: jrothst@princeton.edu. Earlier
versions of this paper circulated under the title “Do Value Added Models Add Value?” I am grateful to Nathan
Wozny and Enkeleda Gjeci for exceptional research assistance. I thank Orley Ashenfelter, Henry Braun, David
Card, Henry Farber, Bo Honoré, Brian Jacob, Tom Kane, Larry Katz, Alan Krueger, Sunny Ladd, David Lee, Lars
Lefgren, Austin Nichols, Amine Ouazad, Mike Rothschild, Cecilia Rouse, Diane Schanzenbach, Eric Verhoogen,
Tristan Zajonc, anonymous referees, and conference and seminar participants for helpful conversations and sug-
gestions. I also thank the North Carolina Education Data Research Center at Duke University for assembling,
cleaning, and making available the confidential data used inthis study. Financial support was generously provided
by the Princeton Industrial Relations Section and Center for Economic Policy Studies and the U.S. Department of
Education (under grant R305A080560).

1



I I NTRODUCTION

Parallel literatures in labor economics and education adopt similar econometric strategies for

identifying the effects of firms on wages and of teachers on student test scores. Outcomes are

modeled as the sum of the firm or teacher effect, individual heterogeneity, and transitory, or-

thogonal error. The resulting estimates of firm effects are used to gauge the relative importance

of firm and worker heterogeneity in the determination of wages. In education, so-called “value

added models” (hereafter, VAMs) have been used to measure the importance of teacher qual-

ity to educational production, to assess teacher preparation and certification programs, and as

important inputs to personnel evaluations and merit pay programs.1

All of these applications suppose that the estimates can be interpreted causally. But ob-

servational analyses can identify causal effects only under unverifiable assumptions about the

correlation between treatment assignment – the assignmentof students to teachers, or the match-

ing of workers to firms – and other determinants of test scoresand wages. If these assumptions

do not hold, the resulting estimates of teacher and firm effects are likely to be quite misleading.

Anecdotally, assignments of students to teachers incorporate matching to take advantage

of teachers’ particular specialties, intentional separation of children who are known to interact

badly, efforts on the principal’s part to reward favored teachers through the allocation of easy-to-

teach students, and parental requests (see, e.g., Jacob andLefgren, 2007; Monk, 1987). These

are difficult to model statistically. Instead, VAMs typically assume that teacher assignments are

random conditional on a single (observed or latent) factor.

In this paper, I develop and implement tests of the exclusionrestrictions of commonly-

used value added specifications. My strategy exploits the fact thatfuture teachers cannot have

causal effects onpastoutcomes, while violations of model assumptions may lead toapparent

counterfactual “effects” of this form. Test scores, like wages, are serially correlated, and as a

result an association between the current teacher and the lagged score is strong evidence against

1On firm effects, see, e.g., Abowd and Kramarz (1999). For recent examinations of teacher effects modeling,
see Braun (2005a,b); Harris and Sass (2006); McCaffrey et al. (2003); and Wainer (2004).
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exogeneity with respect to the current score.

I examine three commonly used VAMs, two of which have direct parallels in the firm ef-

fects literature. In the simplest, most widely used VAM – which resembles the most common

specification for firm effects – the necessary exclusion restriction is that teacher assignments

are orthogonal to all other determinants of the so-called “gain” score, the change in a student’s

test score over the course of the year. If this restriction holds, 5th grade teacher assignments

should not be correlated with students’ gains in 4th grade. Using a large micro-data set de-

scribing North Carolina elementary students, I find that there is in fact substantial within-school

dispersion of students’ 4th grade gains across 5th grade classrooms. Sorting on past reading

gains is particularly prominent, though there is clear evidence of sorting on math gains as well.

Because test scores exhibit strong mean reversion – and thusgains are negatively autocorrelated

– sorting on past gains produces bias in the simple VAM’s estimates.

The other VAMs that I consider rely on different exclusion restrictions, namely that class-

room assignments are as good as random conditional on eitherthe lagged test score or the

student’s (unobserved, but permanent) ability. I discuss how similar strategies can be used to

test these restrictions as well. I find strong evidence in thedata against each.

Evidently, classroom assignments respond dynamically to annual achievement in ways that

are not captured by the controls typically included in VAM specifications. To evaluate the mag-

nitude of the biases that assignments produce, I compare common VAMs to a richer model

that conditions on the complete achievement history. Estimated teacher effects from the rich

model diverge importantly from those obtained from the simple VAMs in common use. I dis-

cuss how selection onunobservablesis likely to produce substantial additional biases. I use

a simple simulation to explore the sensitivity of teacher rankings to these biases. Under plau-

sible assumptions, simple VAMs can be quite misleading. Therich VAM that controls for all

observables does better, but still yields rankings that diverge meaningfully from the truth.

My estimates also point to an important substantive result.To the extent that any of the

VAMs that I consider identify causal effects, they indicatethat teachers’ long-run effects are at
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best weakly proxied by their immediate impacts. A teacher’seffect in the year of exposure –

the universal focus of value added analyses – is correlated only 0.3 to 0.5 with her cumulative

effect over two years, and even less with her effect over three years. Accountability policies

that rely on measures of short-term value added would do an extremely poor job of rewarding

the teachers who are best for students’ longer run outcomes.

An important caveat to the empirical results is that they maybe specific to North Carolina.

Students in other states or in individual school districts might be assigned to classrooms in

ways that satisfy the assumptions required for common VAMs.But at the least, VAM-style

analyses should attempt to evaluate the model assumptions,perhaps with methods like those

used here. Models that rely on incorrect assumptions are likely to yield misleading estimates,

and policies that use these estimates in hiring, firing, and compensation decisions may reward

and punish teachers for the students they are assigned as much as for their actual effectiveness

in the classroom.

Section II reviews the use of pre-assignment variables to test exogeneity assumptions. Sec-

tion III introduces the three VAMs, discusses their implicit assumptions, and describes my

proposed tests. Section IV describes the data. Section V presents results. Section VI attempts

to quantify the biases that non-random classroom assignments produce in VAM-based analy-

ses. Section VII presents evidence on teachers’ long-run effects. I conclude, in Section VIII, by

discussing some implications for the design of incentive pay systems in education.

II U SING PANEL DATA TO TEST EXCLUSION RESTRICTIONS

A central assumption in all econometric studies of treatment effects is that the treatment is

uncorrelated with other determinants of the outcome, conditional on covariates. Although the

assumption is ultimately untestable – the “fundamental problem of causal inference” (Holland,

1986) – the data can provide indications that it is unlikely to hold. In experiments, for exam-

ple, significant correlations between treatment and pre-assignment variables are interpreted as
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evidence that randomization was unsuccessful.2 Panel data can be particularly useful. A cor-

relation between treatment and some pre-assignment variable X need not indicate bias in the

estimated treatment effect ifX is uncorrelated with the outcome variable of interest. But out-

comes are typically correlated within individuals over time, so an association between treatment

and the lagged outcome strongly suggests that the treatmentis not exogenous with respect to

post-treatment outcomes.

This insight has been most fully explored in the literature on the effect of job training on

wages and employment. Today’s wage or employment status is quite informative about to-

morrow’s, even after controlling for all observables. Evidence that assignment to job training is

correlated with lagged wage dynamics indicates that simplespecifications for the effect of train-

ing on outcomes are likely to yield biased estimates (Ashenfelter, 1978). Richer models of the

training assignment process may absorb this correlation while permitting identification (Heck-

man et al., 1987). But even these models may impose testable restrictions on the relationship

between treatment and the outcome history (Ashenfelter andCard, 1985; Card and Sullivan,

1988; Jacobson et al., 1993).3

In value added studies, the multiplicity of teacher “treatments” can blur the connection to

program evaluation methods. But the utility of past outcomes for specification diagnostics car-

ries over directly. Identification of a teacher’s effect rests on assumptions about the relationship

between the teacher assignment and the other determinants of future achievement, and the rela-

tionship with past achievement can be informative about theplausibility of these assumptions.

Only a few studies have attempted to validate VAMs. Jacob andLefgren (2008) and Harris

and Sass (2007) show that value added coefficients are weaklybut significantly correlated with

principals’ ratings of teacher performance. Of course, if principal decisions about classroom

assignments create bias in the VAMs, causality could run from principal opinions to estimated

2Similar tests are often used in non-experimental analyses:Researchers conducting propensity score matching
studies frequently check for “balance” of covariates conditional on the propensity score (Rosenbaum and Rubin,
1984), and Imbens and Lemieux (2008) recommend analogous tests for regression discontinuity analyses.

3Of course, these sorts of tests cannot diagnose all model violations. If treatment assignments depend on
unobserved determinants of future outcomes that are uncorrelated with the outcome history, the treatment effect
estimator may be biased even though treatment is uncorrelated with past outcomes.
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value added rather than the reverse. More relevant to the current analysis, Kane and Staiger

(2008) demonstrate that VAM estimates from observational data are approximately unbiased

predictors of teachers’ effects when students are randomlyassigned. While I examine a closely

related question to that considered by Kane and Staiger, my larger and more representative

sample permits me to extend their analysis in two ways. First, I have much more statistical

power. This enables me to identify biases that are substantively important but that lie well

within Kane and Staiger’s confidence intervals. Second, my sample resembles the sort that

would be used for any VAM intended as a teacher compensation or retention tool. In particular,

it includes teachers specializing in students (e.g., late readers) who cannot be readily identified

and excluded from large scale analyses. The likely exclusion of such teachers from Kane and

Staiger’s sample quite plausibly avoids the most severe biases in observational VAM estimates.4

III STATISTICAL MODEL AND METHODS

This Section develops the statistical framework for VAM analysis and introduces my tests. I

begin by defining the parameters of interest, in Section III.A. In Section III.B, I introduce the

three VAMs that I consider. Section III.C describes the exclusion restrictions that the VAM

requires to permit identification of the causal effects of interest and develops the implications of

these restrictions for the relationship between the current teacher and lagged outcome. Section

III.D discusses the implementation of the tests.

III.A Defining the Problem

I take the parameter of interest in value added modeling to bethe effect on a student’s test

score at the end of gradeg of being assigned to a particular grade-g classroom rather than to

another classroom at the same school. Later, I extend this tolook at dynamic treatment effects

4In the Kane and Staiger experiment, principals were given the name of one teacher and asked to identify a
comparison teacher such that it would be appropriate to randomly assign students within the pair. One imagines
that principals generally chose a comparison who was assigned similar students as the focal teacher in the pre-
experimental data. Moreover, a substantial majority of principals declined to participate, perhaps because the
initial teacher was a specialist for whom no similar comparison could be found.
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(that is, the effect of the grade-g classroom on theg+ s score). I do not distinguish between

classroomandteachereffects, and use the terms interchangably. In the Appendix,I consider

this distinction, defining a teacher’s effect as the time-invariant component of the effects of the

classrooms taught by the teacher over several years. The basic conclusions are unaffected by

this redefinition.

I am interested in whether common VAMs identify classroom effects with arbitrarily large

samples. I therefore sidestep small sample issues by considering the properties of VAM esti-

mates as the number of students grows with the number of teachers (and classrooms) fixed.5

If classroom effects are identified under these unrealisticasymptotics, VAMs may be usable

in compensation and retention policy with appropriate allowances for the sampling errors that

arise with finite class sizes;6 if not, these corrections are likely to go awry.

A final important distinction is between identification of the variance of teacher quality and

the identification of individual teachers’ effects. I focusexclusively on the latter. It is imprac-

tical to report each of several thousand teachers’ estimated effects, however. I therefore report

only the implied standard deviations (across teachers) of teachers’ actual and counterfactual

effects, along with tests of the hypothesis that the teachereffects are all zero.7

III.B Data Generating Process and the Three VAMs

I develop the three VAMs and the associated tests in the context of a relatively general educa-

tional production function, modeled on those used by Todd and Wolpin (2003) and Harris and

Sass (2006), that allows student achievement to depend on the full history of inputs received to

date plus the student’s innate ability. Separating classroom effects from other inputs, I assume

5Under realistic asymptotics, the number of classrooms should rise in proportion to the number of students. If
so, classroom effects are not identified under any exogeneity restrictions: Even in the asymptotic limit, the number
of students per teacher remains finite and the sampling errorin an individual teacher’s effect remains non-trivial.

6A typical approach shrinks a teacher’s estimated effect toward the population mean in proportion to the degree
of imprecision in the estimate. The resulting empirical Bayes estimate is the best linear predictor of the teacher’s
true effect, given the noisy estimate. See McCaffrey et al. (2003), pp. 63-68.

7Rivkin et al. (2005) develop a strategy for identifying the variance of teachers’ effects, but not the effect of
individual teachers, under weaker assumptions than are required by the VAMs described below.
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that the test score of studenti at the end of gradeg, Aig, can be written as

Aig = αg+
g

∑
h=1

βhgc(i,h) + µiτg+
g

∑
h=1

εihφhg+vig. (1)

Here,βhgc is the effect of being in classroomc in gradeh on the grade-g test score, andc(i, h)∈

{1, . . . ,Jh} indexes the classroom to which studenti is assigned in gradeh. µi is individual

ability. We might expect the achievement gap between high-ability and low-ability students to

grow over time; this would correspond toτk > τg > 0 for eachk> g. εih captures all other inputs

in gradeh, including those received from the family, non-classroom peers, and the community.

It might also include developmental factors: A precocious child might have positiveεs in early

grades and negativeεs in later grades as her classmates catch up. As this example shows,ε

is quite likely to be serially correlated within students across grades. Finally,vig represents

measurement error in the grade-g test relative to the student’s “true” grade-g achievement. This

is independent across grades within students.8

A convenient restriction on the time pattern of classroom effects is uniform geometric decay,

βhg′c = βhgcλ g′−g for some 0≤ λ ≤ 1 and allh≤ g≤ g′. A special case isλ = 1, corresponding

to perfect persistence. Although my results do not depend onthese restrictions, I impose them

as needed for notational simplicity. I consider non-uniform decay in Section VII. Note that

there is no theoretical basis for restrictions on the decay of non-classroom effects (i.e. onφhg).

It will be useful to adopt some simplifying notation. Letωig ≡ ∑g
h=1 εihφhg be the composite

grade-g residual achievement, and let∆ indicate first differences across student grades:∆βhgc≡

βhgc−βh,g−1,c, ∆τg ≡ τg− τg−1, ∆ωig ≡ ωig −ωig−1, and so on.

Tractable VAMs amount to decompositions ofAig (or, more commonly, of∆Aig ≡ Aig −

Aig−1) into the current teacher’s effectβggc(i,g), a student heterogeneity component, and an

error assumed to be orthogonal to the classroom assignment.Models differ in the form of this

decomposition. In this paper I consider three specifications: A simple regression of gain scores

8I define theβ parameters to include any classroom-level component ofvig and assume thatvig is independent
across students in the same classroom.
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on grade and contemporaneous classroom indicators,

VAM1: ∆Aig = αg+βggc(i,g) +e1ig;

a regression of score levels (or, equivalently, of gains) onclassroom indicators and the lagged

score,

VAM2: Aig = αg+Aig−1λ +βggc(i,g) +e2ig;

and a regression that stacks gain scores from several gradesand adds student fixed effects,

VAM3: ∆Aig = αg+βggc(i,g) + µi +e3ig.

All three are widely used.9 VAM2 and VAM3 can both be seen as generalizations of VAM1:

Constrainingλ = 1 converts VAM2 to VAM1, while constrainingµi ≡ 0 converts VAM3.

III.C Exclusion Restrictions and Falsification Tests

Despite their similarity, the three VAMs rely on quite distinct restrictions on the process by

which students are assigned to classrooms. I discuss the three in turn.

The gain score model (VAM1)

First-differencing the production function (1), we can write the grade-g gain score as

∆Aig = ∆αg+
g−1

∑
h=1

∆βhgc(i,h) +βggc(i,g) + µi∆τg+∆ωig +∆vig. (2)

If we assume that teacher effects do not decay,∆βhgc= 0 for all h< g. The error terme1ig from

VAM1 then has three components:e1ig = µi∆τg+∆ωig +∆vig.

9The most widely used VAM, the Tennessee Value Added Assessment System (TVAAS; see Sanders et al.,
1997), is specified as a mixed model for level scores that depend on the full history of classroom assignments,
but this model implies an equation for annual gain scores of the form used in VAM1. VAM2 is more widely
used in the recent economics literature. See, for example, Aaronson et al. (2007); Kane et al. (2006); Jacob and
Lefgren (2008); and Goldhaber (2007). VAM3 was proposed by Boardman and Murnane (1979), and has been
used recently by Rivkin et al. (2005); Harris and Sass (2006); Jacob and Lefgren (2008); and Boyd et al. (2007).
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VAM1 will yield consistent estimates of the grade-g classroom effects only if, for eachc,

E
[

e1ig |c(i, g) = c
]

= 0. (3)

The most natural model that is consistent with (3) is for assignments to depend only on student

ability, µi , and for ability to have the same effect on achievement in gradesg andg−1 (i.e.,

∆τg = 0). With these restrictions, VAM1 can be seen as the first-difference estimator for a fixed

effects model, with strict exogeneity of classroom assignments conditional onµi . By contrast,

(3) is not likely to hold ifc(i, g) depends, even in part, onωig−1, vig−1, or Aig−1.

Differences in last year’s gains across this year’s classrooms are informative about the ex-

clusion restriction. Using (2), the averageg−1 gain in classroomc is:

E
[

∆Aig−1 |c(i, g) = c
]

= ∆αg−1+E
[

βg−1,g−1,c(i,g−1) |c(i, g) = c
]

+E
[

e1ig−1 |c(i, g) = c
]

.

(4)

The first term is constant acrossc and can be neglected. The second term might vary withc

if (for example) a principal compensates for a bad teacher ingradeg−1 with assignment to a

better-than-average teacher in gradeg. This can be absorbed by examining the across-c(i, g)

variation in∆Aig−1 controlling for c(i, g−1). I estimate specifications of this form below.10

Any remaining variation across grade-g classrooms ing−1 gains, after controlling forg−1

classroom assignments, must indicate that students are sorted into grade-g classrooms on the

basis ofe1ig−1.

Sorting one1ig−1 would not necessarily violate (3) ife1ig is not serially correlated. But

the definition ofe1ig above indicates four sources of potential serial correlation. First, ability

µi appears in bothe1ig ande1ig−1 (unless∆τg = 0). Second, theεig process may be serially

10This is a test of the hypothesis that students are randomly assigned to grade-g classroomsconditional on the
g−1 classroom. This test is uninformative unless there is independent variation in c(i, g−1) andc(i, g). To take
one example, Nye et al. (2004) use data from the Tennessee STAR class size experiment to study teacher effects.
In STAR, “streaming” was quite common, and in many schools there is zero independent variation in 3rd grade
classroom assignments controlling for 2nd grade assignments. In this case, identification of teacher effects rests
entirely on the assumption that past teachers’ effects do not decay.
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correlated. Third, even ifε is white noise,∆ωig is a moving average of orderg−1 (absent strong

restrictions on theφ coefficients). Finally,∆vig is an MA(1), degenerate only if var(v) = 0.11

Thus, (3) is not likely to hold ifE
[

e1ig−1 |c(i, g)
]

is non-zero.

The lagged score model (VAM2)

VAM2 frees up the coefficient on the lagged test score. If teacher effects decay geometrically

at uniform rate 1−λ , the grade-g score can be written in terms of theg−1 score:

Aig = α̌g+Aig−1λ +βggc(i,g) +e2ig, (5)

whereα̌g = αg−αg−1λ . This can equivalently be expressed as a model for the grade-g gain,

by subtractingAig−1 from each side of (5). In either case, the error is

e2ig = µi
(

τg− τg−1λ
)

+
g−1

∑
h=1

εih
(

φhg−φhg−1λ
)

+ εig +
(

vig−vig−1λ
)

. (6)

As before, each of the terms in (6) is likely to be serially correlated.

The exclusion restriction for VAM2 is thate2ig is uncorrelated withc(i, g) conditional on

Aig−1. This would hold ifc(i, g) were randomly assigned conditional onAig−1. It is unlikely to

hold if assignments depend one2ig−1 or on any of its components (includingµi).12 As with the

VAM1, I test the VAM2 exclusion restriction by re-estimating the model with theg−1 gain as

the dependent variable. By re-arranging the lag of (5), we can write theg−1 gain as

∆Aig−1 = λ−1(

α̌g+Aig−1(λ −1)+βg−1,g−1,c(i,g−1) +e2ig−1
)

. (7)

Thus, the grade-g classroom assignment will have predictive power for the gain in gradeg−1,

11Rothstein (2008) concludes that∆vig accounts for as much as 80% of the variance of∆Aig.
12Alternatively, if τg− τg−1λ is constant acrossg, (5) can be seen as a fixed effects model with a lagged depen-

dent variable.λ andβgg can be identified via IV or GMM (instrumenting for∆Aig−1 in a model for∆Aig) if c(i, g)
depends onµi but is strictly exogenous conditional on this (Anderson andHsiao, 1981; Arellano and Bond, 1991).
See, e.g., Koedel and Betts (2007). Value added researcherstypically apply OLS to (5). This is inconsistent forλ
and identifiesβggc only if c(i, g) is random conditional onAig−1.
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controlling for theg−1 achievement level, if grade-g classrooms are correlated either with the

g−1 teacher’s effect (i.e. withβg−1,g−1,c(i,g−1)) or with e2ig−1.13 As in VAM1, the former can

be ruled out by controlling forg−1 classroom assignments; the latter would indicate a violation

of the VAM2 exclusion restriction ife2 is serially correlated.

The fixed effects in gains model (VAM3)

For the final VAM, we return to equation (2) and to the earlier assumption of zero decay of

teachers’ effects.14 The student fixed effects used in VAM3 absorb any variation inµi (assuming

that∆τg = 1 for eachg). Thus, the VAM3 error term ise3ig = ∆ωig +∆vig.

The reliance on fixed effects, combined with the small time dimension of student data sets,

means that VAM3 requires stronger assumptions than the earlier models. To avoid bias in the

teacher effectsβggc, even in large samples, teacher assignments must be strictly exogenous con-

ditional onµi : E [e3ih |c(i, g)] = 0 for all g and allh (Wooldridge, 2002, p. 253).15 Conditional

strict exogeneity means that the same information,µi or some function of it, is used to make

teacher assignments in each grade. This requires, in effect, that principals decide on classroom

assignments for the remainder of a child’s career before shestarts kindergarten. If teacher as-

signments are updated each year in response to the student’sperformance during the previous

year, strict exogeneity is violated.

As before, my test is based on analyses of the apparent effects of gradeg teachers on gains

in prior grades. Consider estimation of VAM1, without the student fixed effects that are added

in VAM3. If teacher assignments depend on ability, this willbias the VAM coefficients and

will lead me to reject the VAM1 exclusion restriction. But the conditional strict exogeneity

13The test can alternatively be expressed in terms of a model for the score level ing− 2. (Simply re-arrange
terms in (7).) The VAM2 exclusion restriction of random assignment conditional onAig−1 will be rejected if the
grade-g classroom predictsAig−2 conditional onAig−1.

14While VAM1 and VAM2 can easily be generalized to allow for non-uniform decay, VAM3 cannot.
15For practical value added implementations, it is rare to have more than 3 or 4 student grades, so asymptotics

based on theg dimension are infeasible. One approach if strict exogeneity does not hold is to focus on the first
difference of (2). OLS estimation of the first-differenced equation requires thatc(i,g) be uncorrelated withe3ig−1,
e3ig, ande3ig+1. Though this is weaker than strict exogeneity, it is difficult to imagine an assignment process that
would satisfy one but not the other. If the OLS requirements are not satisfied, the only option is IV/GMM (see note
12), instrumenting for both theg andg−1 classroom assignments. Satisfactory instruments are notapparent.
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assumption imposes restrictions on the coefficients from the VAM1 falsification test. Under this

assumption, the only source of bias in VAM1 is the omission ofcontrols forµi . As µi enters

into everygrade’s gain equation, grade-g teachers should have the same apparent effects on

g−2 gains as they do ong−1 gains. An indication that these differ would indicate thatomitted

time-varying determinants of gains are correlated with teacher assignments, and therefore that

assignments are not strictly exogenous.

Following Chamberlain (1984), consider a projection ofµ onto the full sequence of class-

room assignments in grades 1 throughG:

µi = ξ1c(i,1) + . . .+ξGc(i,G) +ηi . (8)

ξhc is the incremental information aboutµi provided by the knowledge that the student was in

classroomc in gradeh, conditional on classroom assignments in all other grades.Substituting

(8) into (2), we obtain

∆Aig = ∆αg+
G

∑
h=1

πhgc(i,h) +ηi +e3ig, (9)

whereπggc = ξgc∆τg +βggc andπhgc = ξhc∆τg for h 6= g. Under conditional strict exogeneity,

E [e3ih |c(i,1) , . . . , c(i,G)] = 0 for eachh, and the fact that (8) is a linear projection ensures

that ηi is uncorrelated with the regressors as well. An OLS regression of grade-g gains onto

classroom indicators in grades 1 throughG thus estimates theπhgc coefficients without bias.

WhenG≥ 3, the underlying parameters are overidentified. To see this, note that

πhgc = ξhc∆τg = ξhc∆τg−1
∆τg

∆τg−1
= πh,g−1,c

∆τg

∆τg−1
(10)

for all h > g: The coefficient for grade-h classroomc in a model of gains in gradeg is propor-

tional to the same coefficient in a model of gains ing−1. If there areJh grade-h classrooms in

the sample, this representsJh−1 overidentifying restrictions on the 2Jh elements of the vectors

13



Πhg =
{

πhg1 . . . πhgJh

}

andΠhg−1 =
{

πh,g−1,1 . . . πh,g−1,Jh

}

.16

To test these restrictions, I estimate the theJh-vectorΞh and the scalars∆τ1 and∆τ2 that

minimize

D =
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, (11)

using the sampling variance of
(

Π̂′
hg−1 Π̂′

hg

)′
asW. Under the null hypothesis of strict exo-

geneity, the minimized valueD is distributedχ2 with Jh−1 degrees of freedom.17 If D is above

the 95% critical value from this distribution, the null is rejected. Intuitively, the correlation be-

tween corresponding elements of the coefficient vectorsΠhg−1 andΠhg, representing apparent

“effects” of grade-h teachers on gains in gradesg−1 andg (g < h), should be 1 or -1 under the

null; a correlation far from this would suggest that the exclusion restriction is violated.

III.D Implementation

To put the three VAMs in the best possible light, I focus on estimation of within-school differ-

ences in classroom effects. For many purposes, one might want to make across-school com-

parisons. But students are not randomly assigned to schools, and those at one school may gain

systematically faster than those at another for reasons unrelated to teacher quality. Random as-

signment to classrooms within schools is at least somewhat plausible. To isolate within-school

variation, I augment each of the estimating equations discussed above with a set of indicators

for the school attended.18 The tests for VAM1 and VAM2 then amount to tests of whether stu-

dents are (conditionally) randomly assigned to classroomswithin schools. They resemble tests

16WhenG > 3, there are many such pairs of vectors that must be proportional. Even whenG = 3, there are
additional overidentifying restrictions created by similar proportionality relationships for teachers’ effects onfuture
gains. These restrictions might fail either because strictexogeneity is violated or because teachers’ effects decay
(that is,βhh 6= βhg for someg > h). I therefore focus on restrictions on the coefficients for teachers’ effects onpast
gains, as these provide sharper tests of strict exogeneity.

17Although there areJh + 2 unknown parameters, they are underidentified: Multiplying ξh by a constant and
dividing ∆τg−1 and∆τg by the same constant does not change the fit.

18This makesW singular in (11). For the OMD analysis of VAM3, I drop the elements ofπgh that correspond to
the largest class at each school.
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of successful randomization in stratified experiments, treating schools as strata.

Intuitively, I will reject random assignment if replacing aset of school indicators with grade-

g grade classroom indicators adds more explanatory power forg−1 gains than would be ex-

pected by chance alone. LetSg andTg be matrices of indicators for grade-g classrooms and

schools. These are collinear, so to eliminate this I defineT̃g as the submatrix ofTg that results

from excluding the columns corresponding to one classroom per school. The VAM1 test is

based on a simple regression:

∆Ag−1 = α +Sgδ + T̃gβ +e. (12)

The identifying assumption of VAM1 is rejected ifβ 6= 0. I use a heteroskedasticity-robust

score test (Wooldridge, 2002, p. 60) to evaluate this. I alsoestimate versions of (12) that

include controls for grade-g−1 classroom assignments. To test VAM2, I simply add a control

for Ag−1 on the right-hand-side of (12).

It is clear from the definition of̃Tg that only schools with multiple classrooms per grade

can contribute to the analysis. One might be concerned that schools with only two or three

classrooms will be misleading, as even with random assignment of students to classrooms there

will be substantial overlap in the composition of a student’s grade-g and grade-g−1 classrooms.

The Appendix presents a Monte Carlo analysis of the VAM1 and VAM2 tests in schools of

varying sizes. The VAM1 test has appropriate size even with just two classrooms per school,

so long as the number of students per classroom is large. (Recall that I focus on large-class

asymptotics.) With small classes, the asymptotic distribution of the test statistic is an imperfect

approximation, and as a result the test over-rejects slightly. When there are 20 students per

class, the test of VAM1 has size around 10%. With empiricallyreasonable parameter values,
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the VAM2 test performs similarly.19,20

I also report the standard deviation of the teacher coefficients (theβs in (12)) themselves.

The standard deviation of the estimated coefficients necessarily exceeds that of the true coeffi-

cients (those that would be identified with large samples of students per teacher, even if these

are biased estimates of teachers’ true causal effects). Aaronson et al. (2007) propose a simple

estimator for the variance of the true coefficients across teachers. Letβ be a mean-zero vec-

tor of true projection coefficients and letβ̂ be an unbiased finite-sample estimate ofβ , with

E
[

β ′
(

β̂ −β
)]

= 0. The variance (across elements) ofβ can be written as:

E
[

β ′β
]

= E
[

β̂ ′β̂
]

−E

[

(

β̂ −β
)′(

β̂ −β
)

]

. (13)

E
[

β̂ ′β̂
]

is simply the variance across teachers of the coefficient estimates.21 E

[

(

β̂ −β
)′(

β̂ −β
)

]

is the average heteroskedasticity-robust sampling variance. I weight each by the number of stu-

dents taught.

Specifications that include indicators for classroom assignments in several grades simultane-

ously – like that used for the test of VAM3 – introduce two complications. First, the coefficients

for teachers in different grades can only be separately identified when there is sufficient shuffling

of students between classrooms. If students are perfectly streamed – if a student’s classmates

in 4th grade were also her classmates in 3rd grade – the 3rd and4th grade classroom indicators

are collinear. I exclude from my samples a few schools where inadequate shuffling leads to

perfect collinearity. Second, these regressions are difficult to compute, due to the presence of

several overlapping sets of fixed effets. As discussed in theAppendix, these are ameliorated

19When students are assigned to classrooms based on the laggedscore and when this score incorporates implau-
sibly high degrees of clustering at the 4th grade classrom level, the VAM2 test rejects at high rates even with large
classes. This reflects my use of a test that assumes independence of residuals within schools. Unfortunately, it is
not possible to allow for dependence, as clustered variance-covariance matrices are consistent only if the number of
clusters grows with the number of parameters fixed (Kezdi, 2004) and in my application, the number of parameters
grows with the number of clusters.

20Kinsler (2008) claims that the VAM3 test also over-rejects in simulations. In personal communication, he
reports that the problem disappears with large classes.

21β̂ is normalized to have mean zero across teachers at the same school, and its variance is adjusted for the
degrees of freedom that this consumes.
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by restricting the samples to students who do not switch schools during the grades for which

classroom assignments are controlled.

IV DATA AND SAMPLE CONSTRUCTION

The specifications described in Section III require longitudinal data that track students’ out-

comes across several grades, linked to classroom assignments in each grade. I use administra-

tive data on elementary students in North Carolina public schools, assembled and distributed

by the North Carolina Education Research Data Center. Thesedata have been used for several

previous value added analyses (see, e.g., Clotfelter et al., 2006; Goldhaber, 2007).

I examine end-of-grade math and reading tests from grades 3 through 5, plus “pre-tests”

from the beginning of 3rd grade (which I treat as 2nd grade tests). I standardize the scale scores

separately for each subject-grade-year combination.22

The North Carolina data identify the school staff member whoadministered the end-of-

grade tests. In the elementary grades, this was usually the regular teacher. Following Clotfelter

et al. (2006), I count a student-teacher match as valid if thetest administrator taught a “self-

contained” (i.e. all day, all subject) class for the relevant grade in the relevant year, if that class

was not designated as special education or honors, and if at least half of the tests that the teacher

administered were to students in the correct grade. Using this definition, 73% of 5th graders

can be matched to teachers. In each of my analyses, I restrictthe sample to students with valid

teacher matches in all grades for which teacher assignmentsare controlled.

I focus on the cohort of students who were in 5th grade in 2000-2001. Beginning with

the population (N=99,071), I exclude students who have inconsistent longitudinal records (e.g.

gender changes between years); who were not in 4th grade in 1999-2000; who are missing

4th or 5th grade test scores; or who cannot be matched to a 5th grade teacher. I additionally

exclude 5th grade classrooms that contain fewer than 12 sample students or are the only included

22The original score scale is meant to ensure that one point corresponds to an equal amount of learning at
each grade and at each point in the within-grade distribution. Rothstein (2008) and Ballou (2008) emphasize the
importance of this property for value added modeling. All ofthe results here are robust to using the original scale.
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classroom at the school. This leaves my base sample, consisting of 60,740 students from 3,040

5th grade classrooms and 868 schools.

My analyses all use subsets of this sample that provide sufficient longitudinal data. In

analyses of 4th grade gains, for example, I exclude studentswho have missing 3rd grade scores

or who were not in 3rd grade in 1998-1999. In specifications that include identifiers for teachers

in multiple grades, I further exclude students who changed schools between grades, plus a few

schools where streaming produces perfect collinearity.

Table I presents summary statistics. I show statistics for the population, for the base sample,

and for my most restricted sample (used for estimation of equation (9)). The last is much smaller

than the others, largely because I require students to have attended the same school in grades 3

through 5 and to have valid teacher matches in each grade. Table I indicates that the restricted

sample has higher mean 5th grade scores than the full population. This primarily reflects the

lower scores of students who switch schools frequently.23 Average 5th grade gains are similar

across samples. The Appendix describes each sample in more detail.

As discussed above, my tests can be applied only if there is sufficient re-shuffling of class-

rooms between grades. Table A2 in the Appendix shows the fraction of students’ 5th grade

classmates who were also in the same 4th grade classes, by thenumber of 4th grade classes

at the school. Complete reshuffling (combined with equally-sized classes) would produce 0.5

with two classes, 0.33 with three, and so on. The actual fractions are larger than this, but only

slightly. In schools with exactly three 5th grade teachers,for example, 35% of students’ 5th

grade classmates were also their classmates in 4th grade. Inonly 7% of multiple-classroom

schools do the 4th and 5th grade classroom indicators have deficient rank.

Table II presents the correlation of test scores and gains across grades and subjects. The

table indicates that 5th grade scores are correlated above 0.8 with 4th grade scores in the same

subject, while correlations with scores in earlier grades or other subjects are somewhat lower.

23Table I shows that average 3rd and 4th grade scores in the “population” are well above zero. The norming
sample that I use to standardize scores in each grade consists of all students in that grade in the relevant year (i.e.
of all 3rd graders in 1999), while only those who make normal progress to 5th grade in 2001 are included in the
sample for Columns (1)-(2). The low scores of students who repeat grades account for the discrepancy.
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5th grade gains are strongly negatively correlated with 4thgrade levels and gains in the same

subject and weakly negatively with those in the other subject. The correlations between 5th and

3rd grade gains are small but significant both within and across subjects.

VAM3 is predicated on the notion that student ability is an important component of annual

gains. Assuming that high-ability students gain faster, this would imply positive correlations

between gains in different years. There is no indication of this in Table II. One potential expla-

nation is that noise in the annual tests introduces negativeautocorrelation in gains, but Rothstein

(2008) concludes that even true gains are negatively autocorrelated. This strongly suggests that

VAM3 is poorly suited to the test score data generating process.

V RESULTS

Tables III, IV, and V present results for the three VAMs in turn. I begin with VAM1, in Table III.

I regress 5th grade math and reading gains (in Columns (1) and(2), respectively) on indicators

for 5th grade schools and classrooms, excluding one classroom per school. In each case, the

hypothesis that all of the classroom coefficients are zero (i.e. that classroom indicators have no

explanatory power beyond that provided by school indicators) is decisively rejected. The VAM

indicates that the within-school standard deviations of 5th grade teachers’ effects on math and

reading are 0.15 and 0.11, respectively. This is similar to what has been found in other studies

(e.g., Aaronson et al., 2007; Rivkin et al., 2005).

Columns (3) and (4) present falsification tests in which 4th grade gains are substituted for

the 5th grade gains as dependent variables, with the specification otherwise unchanged. The

standard deviation of 5th grade teachers’ “effects” on 4th grade gains is 0.08 in each subject,

and the hypothesis of zero association is rejected in each specification.24 In both the standard

deviation and statistical significance senses, 5th grade classroom assignments are slightly more

strongly associated with 4th grade reading gains than with math gains.

24The Table shows analytic p-values based on theF distribution. As noted earlier, simulations suggest that my
tests over-reject slightly. When I use the empirical distribution of test statistics from an appropriately calibrated
Monte Carlo simulation (discussed in the Appendix) to construct p-values, these are 0.031 and 0.004, respectively.
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One potential explanation for these counterfactual effects is that they represent omitted vari-

ables bias deriving from my failure to control for 4th grade teachers. Columns (5)-(8) present

estimates that do control for 4th grade classroom assignments, using a sample of students who

attended the same school in 4th and 5th grades and can be matched to teachers in each grade.

Two aspects of the results are of interest. First, 4th grade teachers have strong independent pre-

dictive power for 5th grade gains. This is at least suggestive that the “zero decay” assumption

is violated. I return to this in Section VII. Second, the coefficients on 5th grade classroom

indicators in models for 4th grade gains remain quite variable – even more so than in the sparse

specifications in Columns (3) and (4) – and are significantly different from zero. Evidently, the

correlation between 5th grade teachers and 4th grade gains derives from sorting on the basis of

the 4th graderesidual, not merely from between-grade correlation of teacher assignments.

These results strongly suggest that the exclusion restrictions for VAM1 are violated. To

demonstrate this conclusively, however, we need to show that the residual in VAM1,e1ig, is

serially correlated. To examine this, I re-estimated VAM1 for 4th grade teachers’ effects on 4th

grade gains. The correlation between ˆe1i4 andê1i5 is -0.38 in math and -0.37 in reading.

The negative serial correlation ofe1 implies that students with high gains in 4th grade will

tend to have low gains in 5th grade, and vice versa. Because VAM1 evidently does not ade-

quately control for classroom assignments, it gives unearned credit to teachers who are assigned

students who did poorly in 4th grade, as these students will predictably post unusually high 5th

grade gains when they revert toward their long-run means. Similarly, teachers whose students

did unusually well in 4th grade will be penalized by the students’ fall back toward their long-

run means in 5th grade. Indeed, an examination of the VAM1 coefficients indicates that 5th

grade teachers whose students have above-average 4th gradegains have systematically lower

estimated value added than teachers whose students underperformed in the prior year. Impor-

tantly, this pattern is stronger than can be explained by sampling error in the estimated teacher

effects; it reflect true mean reversion and not merely measurement error.

Table IV repeats the falsification exercise for VAM2. The structure is identical to that of
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Table III. Columns (1) and (2) present estimates of the basicVAM for 5th grade teachers’

effects on 5th grade gains, controlling for 4th grade math and reading scores. The standard

deviations of 5th grade teachers’ effects are nearly identical to those in Table III. Columns (3)

and (4) substitute 4th grade gains as the dependent variable. Once again, we see that 5th grade

teachers are strongly predictive, more so in reading than inmath.25 Columns (5)-(8) augment

the specification with controls for 4th grade teachers. The 5th grade teacher coefficients are

no longer jointly significant in the 4th grade math gain specification, though they remain quite

large in magnitude. They are still highly significant in the specification for 4th grade reading

gains.

The VAM2 residuals, like those from VAM1, are non-triviallycorrelated between 4th and

5th grades, -0.21 for math gains and -0.19 for reading. They are also correlated across sub-

jects: -0.14 between 4th grade reading and 5th grade math. Thus, the evidence that 5th grade

teacher assignments are correlated with the 4th grade residuals indicates that the VAM2 ex-

clusion restriction is violated, regardless of whether thedependent variable is the math or the

reading score. As before, 5th grade teachers’ effects on 5thgrade scores are negatively cor-

related with their counterfactual “effects” on 4th grade gains, suggesting that mean reversion

in student achievement – combined with non-random classroom assignments – is an important

source of bias in VAM2.

To implement the VAM3 falsification test, I begin by selecting the subsample with non-

missing 3rd and 4th grade gains; valid teacher assignments in grades 3, 4, and 5; and continuous

enrollment at the same school in all three grades. I exclude 26 schools where the three sets of

indicators for teachers in grades 3, 4, and 5 (dropping one teacher in each grade from each

school) are collinear. I then regress both the 3rd and 4th grade gains on school indicators and

on each of the three sets of teacher indicators.26

25P-values based on Monte Carlo simulations (see note 24) are 0.086 and 0.018 in Columns (3) and (4), respec-
tively.

26It is not essential to the correlated random effects test that the full sequence of teacher assignments back to
grade 1 be observed, but the test may over-reject if classroom assignments in grades 3-5 are correlated with those
in 1st and 2nd grade and if the latter have continuing effectson 3rd and 4th grade gains. Recall, however, that
VAM3 assumes such lagged effects away.
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Table V reports estimates for math gains, in Columns (1) and (2), and for reading gains,

in Columns (4) and (5). The first panel shows the standard deviations (adjusted for sampling

error) of the coefficients for each grade’s teachers. Gains in each subject and in each grade

are substantially correlated with classroom assignments in all three grades. Although p-values

are not shown, in all 12 cases the hypothesis of zero effects is rejected. Columns (3) and (6)

report the across-teacher correlations between the coefficients in the models for 3rd and 4th

grade gains (i.e., betweenΠg3 andΠg4). The most important correlation is that for 5th grade

teachers, -0.04 for math and -0.06 for reading. Recall that strict exogeneity implies that the

5th grade teacher coefficients in the model for 4th grade gains should be proportional to the

corresponding coefficients in the model for 3rd grade gains,Π54 = (∆τ4/∆τ3)Π53, implying a

correlation of±1. The near-zero correlations strongly suggest that a single ability factor is

unable to account for the apparent “effects” of 5th grade teachers on gains in earlier grades.

Indeed, these correlations are direct evidence against theVAM3 identifying assumption of

conditional strict exogeneity. The lower panel of Table V presents OMD estimates of the re-

stricted model.27 For math scores, the estimated ratio∆τ4/∆τ3 is 0.14, implying that student

ability is much more important to 3rd grade than to 4th grade gains. Thus, the constrained es-

timates imply negligible coefficients for 5th grade teachers in the equation for 4th grade gains,

and do a very poor job of fitting the unconstrained estimate ofthe standard deviation of these

coefficients, 0.099. The test statisticD is 2,136, and the overidentifying restrictions are over-

whelmingly rejected. In the reading specification, the∆τ4/∆τ3 ratio is close to one, and the

restricted model allows for meaningful coefficients on 5th grade teachers in both the 3rd and

4th grade gain equations, albeit much less variability thanis seen in the unconstrained model.

But the test statistic is even larger here, and the restricted model is again rejected. We can

thus conclude that 5th grade teacher assignments are not strictly exogenous with respect to ei-

ther math or reading gains, even conditional on single-dimensional (subject-specific) student

heterogeneity. The identifying assumption for VAM3 is thusviolated.

27The OMD analysis uses a variance-covariance matrixW that is robust to arbitrary heteroskedasticity and
within-student, between-grade clustering. See the Appendix.
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The results in Tables III, IV, and V indicate that all three ofthe VAMs considered here rely

on incorrect exclusion restrictions – teacher assignmentsevidently depend on the past learning

trajectory even after controlling for student ability or the prior year’s test score. It is possible,

however, that slight modifications of the VAMs could eliminate the endogeneity. I have explored

several alternative specifications to gauge the robustnessof the results. I have re-estimated

VAM1 and VAM2 with controls for student race, gender, free lunch status, 4th grade absences,

and 4th grade TV viewing; these have no effect on the tests. The three VAMs also continue

to fail falsification tests when I use the original score scales or score percentiles in place of

standardized-by-grade scores, or when I use data from othercohorts. As a final investigation,

I have extended the tests to evaluate VAM analyses that use data from multiple cohorts of

students to distinguish between permanent and transitory components of a teacher’s “effect.”

As discussed in the Appendix, the implicit assumptions under which this can avoid the biases

identified here do not appear to hold in the data.

VI H OW MUCH DOES THIS MATTER?

The results in Section V indicate that the identifying assumptions for all three VAMs are violated

in the North Carolina data. However, if classroom assignments nearly satisfy the assumptions

underlying the VAMs, the models might yield almost unbiasedestimates of teachers’ causal

effects. In this Section, I use the degree of sorting on prioroutcomes to quantify the magnitude

of the biases resulting from non-random assignments. I focus on VAM1 and VAM2, as the lack

of correlation between 3rd and 5th grade gains (Table II) strongly suggests that the additional

complexity and strong maintained assumptions of VAM3 are unnecessary.

In general, classroom assignments may depend both on variables observed by the econo-

metrician and on unobserved factors. The former can in principle be incorporated into VAM

specifications. Accordingly, the first part of my investigation focuses on the role of observ-

able characteristics that are omitted from VAM1 and VAM2. I compare VAM1 and VAM2 to

a richer specification, VAM4, that controls for teacher assignments in grades 3 and 4, end-of-
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grade scores in both subjects in both grades, and scores fromthe tests given at the beginning of

3rd grade. This would identify 5th grade teachers’ effects if assignments were random condi-

tional on the test score and teacher assignment history. It is thus more general than VAM2. It

does not strictly nest VAM1, however: Assignment of teachers based purely on student ability

(µi) would satisfy the VAM1 exclusion restriction but not that for VAM4. If assignments depend

on both ability and lagged scores, VAM1, VAM2, and VAM4 are all misspecified.

Table VI presents the comparisons. The first rows show the estimated standard deviations

of teachers’ effects obtained from VAM1 and VAM2, as appliedto the subset of students with

complete test score histories and valid teacher assignments in each prior grade. The unadjusted

estimates are somewhat higher than those in Tables III and IV, as the smaller sample yields

noisier estimates, but the sampling-adjusted estimates are quite similar to those seen earlier. The

next two rows of the Table show estimates from the richer specification. Standard deviations

are somewhat larger, but not dramatically so.

The final two rows describe the bias in the simpler VAMs relative to VAM4 (that is,βVAM1
55 −

βVAM4
55 andβVAM2

55 −βVAM4
55 ). I again show both the raw standard deviation of the point estimates

and an adjusted standard deviation that removes the portiondue to sampling error. For VAM1,

the bias has a standard deviation over a third as large as thatof the VAM4 effects. For VAM2,

which already includes a subset of the controls in VAM4, the bias is somewhat smaller. For

both VAMs, the bias is more important in estimates of teachers’ value added for math scores

than for reading scores.

Of course, the exercise carried out here can only diagnose bias in VAM1 and VAM2 from

selection onobservables– variables that can easily be included in the VAM specification. In a

companion paper (Rothstein, forthcoming), I attempt to quantify the bias that is likely to result

from selection on unobservables. Following the intuition of Altonji et al. (2005) that the weight

of observable (to the econometrician) and unobservable variables in classroom assignments is

likely to mirror their relative weights in predicting achievement, one can use the degree of sort-

ing on observables to estimate the importance of unobservables and therefore the magnitude
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of the bias in estimated teacher effects. Under varying assumptions about the amount of infor-

mation that parents and principals have, I find that the bias from non-random assignments is

quite plausibly 75% as large (in standard deviation terms) as the estimates of teachers’ effects

in VAM1, and perhaps half this large in VAM2.28

To provide a better sense of the import of non-random classroom assignments for the value

of VAMs in teacher compensation and retention decisions, I simulate true and estimated teacher

effects with joint distributions resembling those reported in Table VI and in Rothstein (forth-

coming). For each of several scenarios characterizing the assignment of students to classrooms,

I generate 10,000 teachers’ true effects and coefficients from VAMs 1, 2, and 4.29 I assume

that true effects and biases are both normally distributed,and that the VAM coefficients are free

of sampling error. I then compute three statistics to summarize the relationship of the VAM

estimates to teachers’ true effects: the correlation between teachers’ true effects and the VAM

coefficients, the rank correlation, and the fraction of teachers with true effects in the top quintile

who are indicated to be in the top quintile by the VAMs.

Results are presented in Table VII. Each panel corresponds to a distinct assumption about

the classroom assignment process. In the first panel, I assume that selection is solely on the

basis of the observed test score history. Using the model forreading scores from Table VI, the

standard deviation of teachers’ true effects is 0.148, and the standard deviations of the biases

in VAM1 and VAM2 are 0.054 and 0.028, respectively. Columns (4)-(6) show the reliability of

teacher quality under different metrics. True effects and ranks are very highly correlated with

the effects and ranks indicated by VAMs 1 and 2. 79 to 90% of teachers who are in the top

quintile of the actual quality distribution are judged to beso by the simple VAMs.

But this analysis assumes, implausibly, that selection is solely on observables. Panels B-

E present alternative estimates that allow variables that are not controlled even in VAM4 to

play a role in classroom assignments, as in Rothstein (forthcoming). In Panel B, I assume that

28Kane and Staiger’s (2008) comparison of experimental and non-experimental value added estimates would be
unlikely to detect biases of this magnitude.

29It is not possible to use the estimates from Table VI directlybecause I wish to abstract from the role of sampling
error. The simulation is described in greater detail in the Appendix.
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classroom assignments depend both on the test score historythat is reported in my data and

a on second, unobserved history (e.g., student grades) thatprovides an independent, equally

noisy measure of the student’s trajectory through grades 2-4. Allowing for this moderate de-

gree of selection-on-unobservables notably degrades the performance of VAM1, but VAM2 and

VAM4 continue to perform reasonably well. In Panel C, I assume that there are two separate

unobserved achievement measures. Performance degrades still further; while the correlations

between true effects and the VAM2 and VAM4 estimates remain large, only about four fifths of

top-quintile teachers are judged to be so by the two VAMs.

Panel D allows for even more unobserved information to be used in classroom assignments:

I assume that the principal knows the student’s true achievement in grades 2-4. Now, even

VAM4 is correlated less than 0.9 with teachers’ true effects, and less than three quarters of true

top-quintile teachers get top-quintile ratings from any the VAMs. Finally, Panel E presents an

extreme scenario corresponding to Altonji et al.’s (2005) assumption that selection on unobserv-

ables is like selection on observables. This is not realistic, as principals cannot perfectly predict

student achievement, but it provides a useful bound for the degree of bias that non-random

classroom assignments might produce in VAM-based estimates. This bound is tight enough to

be informative: Even in this worst case, the VAMs retain somesignal, and VAM2 and VAM4

continue to correctly classify over half of top-quintile teachers.

It is difficult to know which of the scenarios is the most accurate. Panel E likely assumes

too much sorting on unobservables, while Panel A almost certainly assumes too little. The truth

almost certainly lies in between, perhaps resembling the scenarios depicted in Panels B and C.

These suggest that VAMs that control only for past test scores – typically the only available

variables – have substantial signal but nevertheless introduce important misclassification into

any assessment of teacher quality. Only 60-80% of the highest quality teachers will receive

rewards given on the basis of high VAM scores.

Moreover, Table VII omits three major sources of error in VAM-based quality measures that

would magnify the misclassification rates seen there. First, I have suppressed the role of sam-
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pling error that would inevitably arise in VAM-based estimates. It is well documented (Lock-

wood et al., 2002; McCaffrey et al., 2008) that this alone produces high misclassification rates.

Second, all of the analyses in this paper are based on comparisons of teachers within schools.

Like most other value added studies, I make no effort to measure across-school differences in

teacher quality. But most policy applications of value added would require comparisons across

as well as within schools. Because students are not even approximately randomly assigned to

schools, these comparisons are likely to be less informative about causal effects than are the

within-school comparisons considered here.

Finally, I have assumed that teachers’ effects on their students’ end-of-grade scores are

the sole outcome of interest. This may be incorrect. In particular, if teachers can allocate

effort between teaching-to-the-test and raising students’ long-run learning trajectories (e.g., by

working to instill a love of reading), one would like to reward the second rather than the first.

This suggests that the effects that matter may be those on students’ long-run outcomes rather

than on their end-of-grade scores. I consider this issue in the next Section.

VII SHORT-RUN VS. LONG-RUN EFFECTS

Recall from Columns (5)-(6) of Tables III and IV that 4th grade teachers appear to have large

effects on students’ 5th grade gains. Given the results for 4th grade gains, these “effects” cannot

be treated as causal. But setting this issue aside, we can usethe lagged teacher coefficients to

evaluate restrictions on time pattern of teachers’ effects(that is, on the relationship betweenβgg

andβg,g+s in the production function (1)) that are universally imposed in value added analyses.

When only a single grade’s teacher assignment is included, VAM2 implicitly assumes that

teachers’ effects decay at a uniform, geometric rate (βg,g+s = βggλ s for λ ∈ [0, 1]), while VAM1

assumes zero decay (λ = 0). It is not clear that either restriction is reasonable.30 While several

30Although a full discussion is beyond the scope of this paper,assumptions about “decay” are closely related to
issues of test scaling and content coverage (Rothstein, 2008; Ballou, 2008; Martineau, 2006). To illustrate, consider
a 3rd grade teacher who focuses on addition and subtraction.This will raise her students’ 3rd grade scores but may
do little for their performance on a 5th grade multiplication test.

27



studies have estimatedλ ,31 all have done so under the restriction that decay is uniform.As

a final investigation, I analyze the validity of this restriction by comparing a grade-g teacher’s

initial effect in gradeg with her longer-run effect on scores in gradeg+ 1 or g+ 2, without

restricting the relationships among them.32 If in fact teachers’ effects decay uniformly, the

initial and longer-run effects should be perfectly correlated (except for sampling error).

I begin by estimating VAM1 and VAM2 for 3rd, 4th, and 5th gradescores or gains, aug-

menting each specification with controls for past teachers back to 3rd grade. I then compute

3rd and 4th grade teachers’ cumulative effects over one, two, and (for 3rd grade teachers)

three years. Table VIII presents summary statistics for these cumulative effects. I show their

standard deviation; the implied average persistence of teachers’ first year effects (computed

asλ = cov(β44,β45)/var(β44)); and the correlation between the initial and cumulative effects. All

statistics are adjusted for sampling error in theβ coefficients. Three aspects of the results are

of note. First, there is much more variation in 4th grade teachers’ effects on 4th grade scores

than in those same teachers’ effects on 5th grade scores. With uniform decay at rate(1−λ ),

var(βg,g+s) = λ 2svar(βgg), so this is consistent with the mounting recent evidence that teach-

ers’ effects decay importantly in the year after contact (Andrabi et al., 2009; Kane and Staiger,

2008; Jacob et al., 2008). Second, the average persistence of 4th grade teachers’ effects one

year later is only around 0.3, again consistent with recent evidence.33 Third, the data are not

even approximately consistent with the notion that this persistence rate is uniform across teach-

ers: The correlation between teachers’ first year effects and their two year cumulative effects

is much less than one, ranging between 0.33 and 0.51 depending on the model and subject.

Three-year cumulative effects show a similar pattern, correlated around 0.4 with the immediate

31See, e.g., Andrabi et al. (2009), Sanders and Rivers (1996),and Konstantopoulos (2007).
32For VAM1, the effect of being in classroomc in gradeg on achievement in gradeg+s is simply∑s

t=0 βg,g+t,c.
In VAM2, the presence of a lagged dependent variable complicates the calculation of cumulative effects. If only the
same-subject score is controlled, the effect of 3rd grade teacherc on 5th grade achievement is(β33cλ + β34c)λ +
β35c. A similar but more complex expression characterizes the effects when lagged scores in both math and reading
are controlled, as in my estimates.

33In other contexts, experiments have shown short-term effects on test scores that do not persist, as well as
long-term effects on other outcomes (see, e.g., Schweinhart et al., 2005). If teachers’ effects have this form, we
might wish to focus on short-run rather than long-run test score effects. But there is no direct evidence that teacher
effects follow this pattern.
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effect. Even if we assume that the VAM-based estimates can betreated as causal, a teacher’s

first year effect is a poor proxy for her longer-run impact.

The final panel of Table VII explores the implications of thisanalysis for teacher quality

measurement. I use the estimates in Table VIII as parametersfor my simulation to compare

traditional end-of-year VAM coefficients to teachers’ longer-run (two year) effects, treating the

latter as the “truth.” The results are not encouraging. Correlations are well below 0.5, and only

about a third of teachers in the top quintile of the distribution of two-year cumulative effects are

also in the top quintile of the one-year effect distribution. It is apparent that misspecification

of the outcome variable produces extreme amounts of misclassification. Note, moreover, that

this analysis assumes that the VAM1 and VAM2 exclusion restrictions are valid. A full account

of the utility of VAMs for identifying good teachers would need to combine the analyses of

lagged effects and endogenous classroom assignments. Thiswould imply even higher rates of

misclassification than are produced by either on its own.

VIII D ISCUSSION

Panel data allows flexible controls for individual heterogeneity, but even panel data models can

identify treatment effects only if assignment to treatmentsatisfies strong exclusion restrictions.

This has long been recognized in the literature on program evaluation, but has received relatively

little attention in the literature on the estimation of teachers’ effects on student achievement.

In this paper, I have shown how the availability of lagged outcome measures can be used to

evaluate common value added specifications.

The results presented here show that the assumptions underlying common VAMs are sub-

stantially incorrect, at least in North Carolina. Classroom assignments are not exogenous con-

ditional on the typical controls, and estimates of teachers’ effects based on these models cannot

be interpreted as causal. Clear evidence of this is that eachVAM indicates that 5th grade teach-

ers have quantitatively important “effects” on students’ 4th grade learning. These results have

important implications for educational research, for research in a variety of related areas, and
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for education policy. I discuss these in turn.

First, it is clear that an important priority in educationalresearch should be to build richer

VAMs that can accommodate dynamic sorting of students to classrooms. By contrast, there is

little apparent need to allow for permanent heterogeneity in students’ rates of growth. One ap-

proach might be to assume that classroom assignments dependon the principal’s best prediction

of students’ unobserved ability, with predictions updatedeach year based on student grades and

test scores. None of the VAMs considered here can accommodate assignments of this form,

which on its face seems quite plausible, but approaches likethose taken by Altonji et al. (2005)

and Rothstein (forthcoming) may be useful.

I am skeptical, however, that purely econometric solutionswill be adequate. There is likely

to be important heterogeneity across schools in both information structures and principal objec-

tives. Thus, there would be large returns to incorporating information about the actual school-

level assignment process – perhaps gathered from surveys ofprincipals, as in Monk (1987) –

into the value added specification. In addition, more attention to the specification of the out-

come variable is needed. Are we interested in measuring a teacher’s short-run effect or her

impact on test scores in later grades? The former is evidently a poor proxy for the latter.

Any proposed VAM should be subjected to thorough validationand falsification analyses.

The tests implemented here suggest a starting point, and maybe adaptable to richer models.

Failure to reject the exclusion restrictions need not indicate that the restrictions are correct, as

my tests can identify only sorting based on past observables. But rejection does indicate that

the VAM-based estimates are likely to be misleading about teachers’ causal effects.

The present analysis also has implications beyond the specific application to measuring

teacher productivity. Estimates of the quality of schools and of the effects of firms on workers’

wages use identical econometric models, and rely on similarexclusion restrictions. Evidence

about the “effects” of future schools and employers on current outcomes would be informative

about the validity of both sets of estimates.

Finally, the results here have important implications for the use of existing VAMs in ed-
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ucation policy. My results indicate that policies based on these VAMs will reward or punish

teachers who do not deserve it and fail to reward or punish teachers who do. The literature

on pay-for-performance suggests some consequences of thisresult. First, and most clearly, the

stakes attached to VAM-based measures should be relativelysmall. Baker (1992, 2002) consid-

ers a performance measure that is less than perfectly correlated with the worker’s contribution

to firm output. He notes that high-stakes compensation will create incentives for workers to di-

rect excess effort to the unproductive component of the performance measure. In education, this

might take the form of teachers lobbying their principals tobe assigned the “right” students who

will yield predictably high value added scores. In Baker’s model, misallocation of effort can be

kept to a tolerable level by keeping the variable component of compensation small.34 Another

argument for low stakes in VAM-based compensation is provided by Hölmstrom (1991), who

discuss implications of the results presented in Section VII above: If short-term test scores are

poor proxies for the dimensions of achievement that really matter, it may be better to forgo or

limit incentive pay rather than encourage excessive teaching to the test.

A second and more speculative suggestion is that VAM-based estimates should be used as

only one among several inputs into an accountability systemthat also incorporates principals’

subjective ratings (see, e.g., Baker et al., 1994). There are two reasons for this. First, principals

may have information about the direction of the bias in a particular teacher’s VAM-based es-

timate that is not otherwise available to the econometrician, so incorporation of their opinions

might lead to better-targeted incentives (Hölmstrom, 1979). Second, use of the VAM as the sole

basis for teacher compensation and/or retention would permit principals to reward or punish

teachers only through the assignment of desirable or undesirable students. Anecdotally, this is

an important management tool for principals, who may inducedisfavored teachers to resign by

assigning them difficult students. But there is evidence that teacher-student matching is an im-

portant determinant of student learning (Clotfelter et al., 2006; Dee, 2005), so manipulation of

34See also Milgrom (1988), who argues that an important goal oforganizational design should be to limit the
incentive for workers to devote their time to “influence activities,” and Lazear (1989), who argues that tournament
stakes should be kept small to limit the incentive for “sabotage.”
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matches can have real efficiency consequences. If the principal’s subjective judgment is incor-

porated directly into the incentive scheme, he or she will beable to allocate students to teachers

to maximize output without sacrificing his or her ability to influence rewards and sanctions.

Of course, this suggestion presumes high quality principals who have enough time to observe

teachers’ classrooms and enough training to distinguish good from bad teachers. Without this,

neither subjective evaluations nor VAM-based estimates that depend importantly on classroom

assignments are likely to provide much useful information.
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Mean SD Mean SD Mean SD
(1) (2) (3) (4) (5) (6)

# of students 99,071 60,740 23,415
# of schools 1,269 868 598

1 5th grade teacher 122 0 0
2 5th grade teacher 168 207 122
3-5 5th grade teachers 776 602 440
>5 5th grade teacher 203 59 36

# of 5th grade classrooms 4,876 3,040 2,116
# of 5th grade classrooms w/ valid teacher match 3,315 3,040 2,116
Female 49% 50% 51%
Black 29% 28% 23%
Other non-white 8% 7% 6%
Consistent student record 99% 100% 100%
Complete test score record, G4-5 88% 99% 100%
Complete test score record, G3-5 81% 91% 100%
Complete test score record, G2-5 72% 80% 100%
Changed schools between G3 and G5 30% 27% 0%
Valid teacher assignment in grade 3 68% 78% 100%
Valid teacher assignment in grade 4 70% 86% 100%
Valid teacher assignment in grade 5 72% 100% 100%
Fr. of students in G5 class in same G4 class 0.22 [0.19] 0.22 [0.17] 0.30 [0.19]
Fr. of students in G5 class in same G3 class 0.15 [0.15] 0.15 [0.13] 0.28 [0.18]
Math scores 3rd grade (beginning of year) 0.11 [0.97] 0.14 [0.96] 0.20 [0.96]

3rd grade (end of year) 0.09 [0.94] 0.11 [0.94] 0.19 [0.91]
4th grade (end of year) 0.04 [0.97] 0.07 [0.97] 0.20 [0.93]
5th grade (end of year) 0.00 [1.00] 0.09 [0.98] 0.20 [0.94]
3rd grade gain -0.02 [0.70] -0.02 [0.69] 0.00 [0.69]
4th grade gain -0.02 [0.58] -0.01 [0.58] 0.01 [0.56]
5th grade gain -0.01 [0.55] 0.01 [0.55] -0.01 [0.53]

Reading scores 3rd grade (beginning of year) 0.08 [0.98] 0.12 [0.98] 0.17 [0.98]
3rd grade (end of year) 0.08 [0.95] 0.11 [0.94] 0.19 [0.91]
4th grade (end of year) 0.04 [0.98] 0.07 [0.97] 0.18 [0.93]
5th grade (end of year) 0.00 [1.00] 0.07 [0.97] 0.17 [0.94]
3rd grade gain 0.01 [0.76] 0.00 [0.75] 0.01 [0.75]
4th grade gain -0.02 [0.59] -0.02 [0.59] 0.00 [0.57]
5th grade gain -0.01 [0.59] 0.00 [0.58] -0.02 [0.57]

Table I
Summary Statistics

Notes:  Summary statistics are computed over all available observations.  Test scores are standardized using all 
3rd graders in 1999, 4th graders in 2000, and 5th graders in 2001, respectively, regardless of grade progress.  
"Population" in Columns (1)-(2) is students enrolled in 5th grade in 2001, merged to 3rd and 4th grade records (if 
present) for the same students in 1999 and 2000, respectively.  Columns (3)-(4) describe the base sample 
discussed in the text; it excludes students with missing 4th and 5th grade test scores, students without valid 5th 
grade teacher matches, 5th grade classes with fewer than 12 sample students, and schools with only one 5th 
grade class.  Columns (5)-(6) further restrict the sample to students with non-missing scores in grades 3-5 (plus 
the 3rd grade beginning-of-year tests) and valid teacher assignments in each grade, at schools with multiple 
classes in each school in each grade and without perfect collinearity of classroom assignments in different 
grades.

Population Base sample Most restricted sample



N

Mean SD Math Reading Math Reading
(1) (2) (3) (4) (5) (6) (7)

Math scores
G5 0.02 1.00 1 0.78 0.29 0.08 70,740
G4 0.07 0.97 0.84 0.73 -0.27 -0.07 61,535
G3 0.09 0.95 0.80 0.70 -0.02 -0.03 57,382
G3 pretest 0.08 0.97 0.71 0.64 0.00 -0.03 50,661

Reading scores
G5 0.01 1.00 0.78 1 0.10 0.31 70,078
G4 0.06 0.97 0.73 0.82 -0.05 -0.29 61,535
G3 0.09 0.95 0.70 0.78 -0.01 -0.05 57,344
G3 pretest 0.08 0.99 0.59 0.65 0.00 -0.05 50,629

Math gains
G4-G5 0.01 0.55 0.29 0.10 1 0.25 61,349
G3-G4 -0.01 0.58 0.11 0.07 -0.41 -0.07 56,171
G2-G3 0.02 0.70 0.08 0.05 -0.02 0.01 50,615

Reading gains
G4-G5 0.00 0.58 0.08 0.31 0.25 1 60,987
G3-G4 -0.02 0.59 0.08 0.10 -0.08 -0.41 56,159
G2-G3 0.02 0.75 0.09 0.10 -0.01 0.02 50,558

Table II
Correlations of Test Scores and Score Gains Across Grades 

Notes:  Each statistic is calculated using the maximal possible sample of valid student 
records with observations on all necessary scores and normal grade progress between 
the relevant grades.  Column (7) lists the sample size for each row variable; correlations 
use smaller samples for which the column variable is also available.  Italicized 
correlations are not different from zero at the 5% level.

Correlations
5th grade score 5th grade gain

Summary 
statistics



Math Reading Math Reading Math Reading Math Reading
(1) (2) (3) (4) (5) (6) (7) (8)

Teacher coefficients
5th grade teachers

Unadjusted SD 0.179 0.160 0.134 0.142 0.197 0.181 0.151 0.168
Adjusted SD 0.149 0.113 0.077 0.084 0.163 0.126 0.090 0.105
p-value <0.001 <0.001 0.016 0.002 <0.001 <0.001 0.035 <0.001

4th grade teachers
Unadjusted SD 0.188 0.181 0.220 0.193
Adjusted SD 0.150 0.125 0.182 0.140
p-value <0.001 <0.001 <0.001 <0.001

n n n n y y y y

# of students 55,142 55,142 55,142 55,142 40,661 40,661 40,661 40,661
# of 5th grade teachers 3,038 3,038 3,038 3,038 2,761 2,761 2,761 2,761
# of schools 868 868 868 868 783 783 783 783
R2 0.195 0.100 0.132 0.086 0.297 0.176 0.254 0.174
Adjusted R2 0.148 0.047 0.081 0.033 0.203 0.066 0.154 0.064

Table III
Evaluation of VAM1: Regression of Gain Scores on Teacher Indicators

Notes:  Dependent variables are as indicated at the top of each column.  Regressions include school 
indicators, 5th grade teacher indicators, and (in columns (5)-(8)) 4th grade teacher indicators, with one 
teacher per school per grade excluded.  P-values are for test of hypothesis that all teacher coefficients 
equal zero, using the heteroskedasticity-robust score test proposed by Wooldridge (2002, p. 60).  
Standard deviations are of teacher coefficients, normalized to have mean zero at each school and 
weighted by the number of students taught.  Adjusted standard deviations are computed as described in 
Appendix B2.  Sample for Columns (1)-(4) includes students from the base sample (see text) with non-
missing scores in each subject in grades 3-5.  Columns (5)-(8) exclude students without valid 4th grade 
teacher matches and those who switched schools between 4th and 5th grade. 

4th grade gain

Exclude invalid 4th grade 
teacher assignments & 
5th grade movers?

5th grade gain 4th grade gain 5th grade gain



Math Reading Math Reading Math Reading Math Reading
(1) (2) (3) (4) (5) (6) (7) (8)

Teacher coefficients
5th grade teachers

Unadjusted SD 0.176 0.150 0.120 0.129 0.191 0.169 0.138 0.150
Adjusted SD 0.150 0.109 0.067 0.076 0.161 0.121 0.079 0.091
p-value <0.001 <0.001 0.040 0.007 <0.001 <0.001 0.162 0.001

4th grade teachers
Unadjusted SD 0.160 0.162 0.182 0.175
Adjusted SD 0.121 0.109 0.142 0.126
p-value <0.001 <0.001 <0.001 <0.001

Continuous controls
4th grade math score -0.317 0.239 0.368 -0.213 -0.292 0.255 0.332 -0.229

(0.004) (0.004) (0.004) (0.004) (0.004) (0.005) (0.005) (0.005)
4th grade reading score 0.195 -0.383 -0.218 0.380 0.189 -0.387 -0.206 0.379

(0.004) (0.004) (0.004) (0.004) (0.004) (0.005) (0.005) (0.005)

n n n n y y y y

# of students 55,142 55,142 55,142 55,142 40,661 40,661 40,661 40,661
# of 5th grade teachers 3,038 3,038 3,038 3,038 2,761 2,761 2,761 2,761
# of schools 868 868 868 868 783 783 783 783
R2 0.313 0.249 0.274 0.237 0.385 0.315 0.354 0.307
Adjusted R2 0.273 0.206 0.231 0.193 0.302 0.224 0.268 0.215

Table IV
Evaluation of VAM2: Regressions with Controls for Lagged Score Levels

Notes:  Dependent variables are as indicated at the top of each column.  Regressions include school 
indicators, 4th grade math and reading scores, 5th grade teacher indicators, and (in columns (5)-(8)) 4th 
grade teacher indicators, with one teacher per school per grade excluded.  P-values are for test of 
hypothesis that all teacher coefficients equal zero, using the heteroskedasticity-robust score test 
proposed by Wooldridge (2002, p. 60).  Standard deviations are of teacher coefficients, normalized to 
have mean zero at each school and weighted by the number of students taught.  Adjusted standard 
deviations are computed as described in Appendix B2.  Samples correspond to those in Table III. 

4th grade gain

Exclude invalid 4th grade 
teacher assignments & 5th 
grade movers?

5th grade gain 4th grade gain 5th grade gain



3rd grade 4th grade Corr((1),(2)) 3rd grade 4th grade Corr((4),(5))
(1) (2) (3) (4) (5) (6)

Unrestricted model
Standard deviation of teacher effects, adjusted

5th grade teacher 0.135 0.099 -0.04 0.144 0.123 -0.06
4th grade teacher 0.136 0.193 -0.07 0.160 0.163 -0.08
3rd grade teacher 0.228 0.166 -0.36 0.183 0.145 -0.24

Fit statistics
R2 0.314 0.376 0.245 0.284
Adjusted R2 0.129 0.209 0.042 0.092

Restricted model (Optimal Minimum Distance)
Ratio, effect on G4 / effect on G3
SD of G5 teacher effects 0.126 0.018 0.088 0.103
Objective function
95% critical value
p value

Table V

Notes:  N=25,974.  Students who switched schools between 3rd and 5th grade, who are missing test scores in 
3rd or 4th grade (or on the 3rd grade beginning-of-year tests), or who lack valid teacher assignments in any 
grade 3-5 are excluded.  Schools with only one included teacher per grade or where teacher indicators are 
collinear across grades are also excluded.  "Unrestricted model" reports estimates from a specification with 
school indicators and indicators for classrooms in grades 3, 4, and 5.  Restricted model reports optimal 
minimum distance estimates obtained from the coefficients from the unrestricted models for 3rd and 4th grade 
gains, excluding the largest class in each grade in each school.  Restriction is that the 4th grade effects are a 
scalar multiple of the 3rd grade effects.  Weighting matrix is the inverse of the robust sampling variance-
covariance matrix for the unrestricted estimates, allowing for cross-grade covariances.

Math Reading

<0.001

1.17

2,174
1,684

<0.001

0.14

1,684
2,136

Correlated Random Effects Evaluation of VAM3:  Gain Score Specification with Student Fixed Effects



Math Reading Math Reading
(1) (2) (3) (4)

Standard deviation of 5th grade teachers' estimated effects from traditional VAM
Unadjusted for sampling error 0.203 0.189 0.197 0.176
Adjusted for sampling error 0.162 0.127 0.162 0.121

SD of 5th grade teachers' estimated effects from rich specification (VAM4)
Unadjusted for sampling error 0.206 0.200 0.206 0.200
Adjusted for sampling error 0.172 0.148 0.172 0.148

SD of bias in traditional VAMs relative to the rich specification
Unadjusted for sampling error 0.118 0.130 0.097 0.106
Adjusted for sampling error 0.060 0.054 0.037 0.028

Table VI

Notes:  N=23,415.  Sample is that used in Table V, less observations with missing 5th 
grade scores and those in schools rendered unusable (i.e. only one valid classroom or 
collinearity between 3rd, 4th, and 5th grade classroom indicators) by this exclusion.  
"Rich" specification controls for classroom assignments in grades 3 and 4 and for scores 
in math and reading in grades 2, 3, and 4.  "Bias" is the difference between the 
VAM1/VAM2 estimates and those from the rich specification.  Unadjusted estimates 
summarize the estimated coefficients.  Adjustments for sampling error are described in 
Appendix B.

VAM1 VAM2

Magnitude of Bias in VAM1 and VAM2 Relative to a Richer Specification that Controls for 
All Past Observables



SD of truth SD of bias (2) as % of 
(1)

Correlation Rank 
correlation

Reliability of top 
quintile ranking

(1) (2) (3) (4) (5) (6)
Panel A:  Selection is on observables

VAM1 0.148 0.054 36% 0.93 0.93 0.79
VAM2 0.148 0.028 19% 0.98 0.98 0.90
VAM4 0.148 0 0% 1.00 1.00 1.00

Panel B: Selection is on history of two tests, one observed
VAM1 0.148 0.124 84% 0.77 0.75 0.62
VAM2 0.148 0.049 33% 0.95 0.94 0.82
VAM4 0.148 0.028 19% 0.98 0.98 0.89

Panel C: Selection is on history of three tests, one observed
VAM1 0.148 0.137 92% 0.74 0.73 0.60
VAM2 0.148 0.060 40% 0.93 0.92 0.78
VAM4 0.148 0.041 28% 0.96 0.96 0.85

Panel D: Selection is on true and observed achievement history
VAM1 0.148 0.166 112% 0.64 0.63 0.52
VAM2 0.148 0.089 60% 0.86 0.85 0.70
VAM4 0.148 0.078 53% 0.89 0.88 0.73

Panel E: Selection on unobservables is like selection on observables
VAM1 0.148 0.212 143% 0.57 0.56 0.49
VAM2 0.148 0.140 95% 0.73 0.71 0.59
VAM4 0.148 0.147 99% 0.71 0.70 0.58

VAM1 0.118 0.148 125% 0.42 0.40 0.38
VAM2 0.110 0.147 133% 0.33 0.32 0.34

Simulation: Comparisons between true 
effects and those indicated by VAM

Data generating process

Table VII

Notes:  Estimates in Column (1) are taken from the rich specification for reading in Table VI (Panels A-E) 
and from Columns (2) and (4) of Table VIII (Panel F).  Column (2) is from Table VI, Columns (2) and (4) in 
Panel A and is computed from the models reported in Table VIII in Panel F.  In Panels B-E, estimates from 
Table 10 of Rothstein (2008) are used, with an adjustment for the different test scale used here.  See 
Appendix for details.  Columns (4)-(6) are computed by drawing 10,000 teachers from normal distributions 
with the standard deviations described in Columns (1)-(2).  Estimates of the correlation between teachers' 
true effects and the bias in their estimated effects (-0.33 for VAM 1 and -0.43 for VAM2) are used in Panel 
A.  In Panels B-E, this correlation is constrained to zero.  In Panel F, the estimated correlation is used 
again; this is -0.38 for VAM1 and -0.43 for VAM2.  "Reliability of top quintile" in Column (6) is the fraction of 
teachers whose true effects are in the top quintile who are estimated to be in the top quintile by the 
indicated VAM.

Panel F: Selection conforms to VAM assumptions, but effects of interest are those on the following year's 
score

Simulations of the Effects of Student Selection and Heterogeneous Decay on Teacher Quality Estimates



Math Reading Math Reading
(1) (2) (3) (4)

Cumulative effect of 4th grade teachers over two years
Standard deviation of 4th grade teacher effects, adjusted

on 4th grade scores 0.184 0.150 0.188 0.140
on 5th grade scores 0.108 0.118 0.118 0.110

Average persistence of 4th grade teacher's 
   immediate effect one year later 0.269 0.325 0.320 0.262
Correlation(effect on 4th grade, 
   effect on 5th grade), adjusted 0.455 0.413 0.511 0.334

Cumulative effect of 3rd grade teachers over three years
Standard deviation of 3rd grade teacher effects, adjusted

on 3rd grade scores 0.218 0.172 0.209 0.167
on 4th grade scores 0.136 0.126 0.120 0.130
on 5th grade scores 0.185 0.199 0.129 0.147

Average persistence of 3rd grade teacher's 
   immediate effect two years later 0.335 0.394 0.277 0.394
Correlation(effect on 3rd grade, 
   effect on 5th grade), adjusted 0.395 0.341 0.450 0.447

VAM1 VAM2

Notes:  N=23,415.  Sample is identical to that used in Table VI.  Effects of 4th grade teachers on 
5th grade scores and of 3rd grade teachers on 4th and 5th grade scores are cumulative effects.  
For VAM1, the specification for gains in grade g includes controls for teachers in grades 3 
through g, and the cumulative effect of the grade h teacher on the grade g gain is the sum of the 
effects in h, h+1, ..., g.  For VAM2, the specification is augmented with controls for math and 
reading scores in grade g-1.  The calculation of cumulative effects is described in footnote 31.  
"Average persistence" is the coefficient from a regression of effects on 5th grade scores on 
effects on 4th (Panel A) or 3rd (Panel B) scores, and indicates the expected effect on 5th grade 
scores for a teacher whose initial effect was +1.  All standard deviations, correlations, and 
persistence parameters are adjusted for the influence of sampling error, as described in 
Appendix B.

Table VIII
Persistence of Teacher Effects in VAMs with Lagged Teachers
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