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Abstract

Growing concerns over the inadequate achievement of LWu8ests have led to pro-
posals to reward good teachers and penalize (or fire) bad drtes leading method for
assessing teacher quality is “value added” modeling (VANYich decomposes students’
test scores into components attributed to student heteeityeand to teacher quality. Im-
plicit in the VAM approach are strong assumptions about taeine of the educational
production function and the assignment of students to rdasss. In this paper, | develop
falsification tests for three widely used VAM specificatipbased on the idea that future
teachers cannot influence students’ past achievement. tdnfrden North Carolina, each
of the VAMs’ exclusion restrictions are dramatically vitdd. In particular, these models
indicate large “effects” of 5th grade teachers on 4th gradedcore gains. | also find that
conventional measures of individual teachers’ value adddd out very quickly and are
at best weakly related to long-run effects. | discuss inapilms for the use of VAMs as
personnel tools.
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I INTRODUCTION

Parallel literatures in labor economics and education adiopilar econometric strategies for
identifying the effects of firms on wages and of teachers odestt test scores. Outcomes are
modeled as the sum of the firm or teacher effect, individutgrogeneity, and transitory, or-
thogonal error. The resulting estimates of firm effects aeduto gauge the relative importance
of firm and worker heterogeneity in the determination of veade education, so-called “value
added models” (hereafter, VAMS) have been used to measearetbortance of teacher qual-
ity to educational production, to assess teacher preparatnd certification programs, and as
important inputs to personnel evaluations and merit pagrams:

All of these applications suppose that the estimates camtkepreted causally. But ob-
servational analyses can identify causal effects only undeerifiable assumptions about the
correlation between treatment assignment — the assigrohsttdents to teachers, or the match-
ing of workers to firms — and other determinants of test scanelswages. If these assumptions
do not hold, the resulting estimates of teacher and firm &fi@e likely to be quite misleading.

Anecdotally, assignments of students to teachers incatpanatching to take advantage
of teachers’ particular specialties, intentional sepanadf children who are known to interact
badly, efforts on the principal’s part to reward favorectctezrs through the allocation of easy-to-
teach students, and parental requests (see, e.g., Jactlefgneh, 2007; Monk, 1987). These
are difficult to model statistically. Instead, VAMSs typibahssume that teacher assignments are
random conditional on a single (observed or latent) factor.

In this paper, | develop and implement tests of the exclusastrictions of commonly-
used value added specifications. My strategy exploits tttetfiatfuture teachers cannot have
causal effects opastoutcomes, while violations of model assumptions may leaapigarent
counterfactual “effects” of this form. Test scores, likeg®a, are serially correlated, and as a

result an association between the current teacher andggedascore is strong evidence against

10n firm effects, see, e.g., Abowd and Kramarz (1999). Formeeeaminations of teacher effects modeling,
see Braun (2005a,b); Harris and Sass (2006); McCaffrey €@03); and Wainer (2004).



exogeneity with respect to the current score.

| examine three commonly used VAMs, two of which have direatafiels in the firm ef-
fects literature. In the simplest, most widely used VAM — @thresembles the most common
specification for firm effects — the necessary exclusiorricin is that teacher assignments
are orthogonal to all other determinants of the so-calledri'gscore, the change in a student’s
test score over the course of the year. If this restrictiold$)dbth grade teacher assignments
should not be correlated with students’ gains in 4th gradsindgJa large micro-data set de-
scribing North Carolina elementary students, | find thatehein fact substantial within-school
dispersion of students’ 4th grade gains across 5th gradsrolams. Sorting on past reading
gains is particularly prominent, though there is clear ewitk of sorting on math gains as well.
Because test scores exhibit strong mean reversion — anddinsare negatively autocorrelated
— sorting on past gains produces bias in the simple VAM's1esies.

The other VAMs that | consider rely on different exclusiostrections, namely that class-
room assignments are as good as random conditional on d¢itbdagged test score or the
student’s (unobserved, but permanent) ability. | discusg similar strategies can be used to
test these restrictions as well. | find strong evidence irdtita against each.

Evidently, classroom assignments respond dynamicallpboal achievement in ways that
are not captured by the controls typically included in VAMesf{lications. To evaluate the mag-
nitude of the biases that assignments produce, | comparenconVAMs to a richer model
that conditions on the complete achievement history. Eeohteacher effects from the rich
model diverge importantly from those obtained from the denyAMs in common use. | dis-
cuss how selection onnobservabless likely to produce substantial additional biases. | use
a simple simulation to explore the sensitivity of teachekmags to these biases. Under plau-
sible assumptions, simple VAMs can be quite misleading. fidte VAM that controls for all
observables does better, but still yields rankings thagrdie meaningfully from the truth.

My estimates also point to an important substantive resldtthe extent that any of the

VAMs that | consider identify causal effects, they indicHtat teachers’ long-run effects are at



best weakly proxied by their immediate impacts. A teacheiffsct in the year of exposure —
the universal focus of value added analyses — is correlatld0o3 to 0.5 with her cumulative

effect over two years, and even less with her effect overetlygars. Accountability policies
that rely on measures of short-term value added would do taregly poor job of rewarding

the teachers who are best for students’ longer run outcomes.

An important caveat to the empirical results is that they magpecific to North Carolina.
Students in other states or in individual school districighhhbe assigned to classrooms in
ways that satisfy the assumptions required for common VARat at the least, VAM-style
analyses should attempt to evaluate the model assumppersaps with methods like those
used here. Models that rely on incorrect assumptions agdylik yield misleading estimates,
and policies that use these estimates in hiring, firing, ampensation decisions may reward
and punish teachers for the students they are assigned &samfar their actual effectiveness
in the classroom.

Section Il reviews the use of pre-assignment variablessticeteogeneity assumptions. Sec-
tion Il introduces the three VAMSs, discusses their imgliassumptions, and describes my
proposed tests. Section IV describes the data. Sectiondépteresults. Section VI attempts
to quantify the biases that non-random classroom assigisnpenduce in VAM-based analy-
ses. Section VII presents evidence on teachers’ long-fentsf | conclude, in Section VIII, by

discussing some implications for the design of incentivepeatems in education.

[l USING PANEL DATA TO TEST EXCLUSION RESTRICTIONS

A central assumption in all econometric studies of treatneffects is that the treatment is
uncorrelated with other determinants of the outcome, ¢adil on covariates. Although the
assumption is ultimately untestable — the “fundamentabl@m of causal inference” (Holland,
1986) — the data can provide indications that it is unlikehhold. In experiments, for exam-

ple, significant correlations between treatment and psegament variables are interpreted as



evidence that randomization was unsuccessfBhanel data can be particularly useful. A cor-
relation between treatment and some pre-assignment l@dabeed not indicate bias in the
estimated treatment effect ¥ is uncorrelated with the outcome variable of interest. Butt o
comes are typically correlated within individuals overgiyso an association between treatment
and the lagged outcome strongly suggests that the treaisant exogenous with respect to
post-treatment outcomes.

This insight has been most fully explored in the literatunetioe effect of job training on
wages and employment. Today’s wage or employment statusitis impformative about to-
morrow’s, even after controlling for all observables. Eande that assignment to job training is
correlated with lagged wage dynamics indicates that sisymeifications for the effect of train-
ing on outcomes are likely to yield biased estimates (Askearf 1978). Richer models of the
training assignment process may absorb this correlatigle\wkrmitting identification (Heck-
man et al., 1987). But even these models may impose testilictions on the relationship
between treatment and the outcome history (AshenfelterGard, 1985; Card and Sullivan,
1988; Jacobson et al., 1993).

In value added studies, the multiplicity of teacher “treatrs” can blur the connection to
program evaluation methods. But the utility of past outcsfioe specification diagnostics car-
ries over directly. Identification of a teacher’s effecttsesn assumptions about the relationship
between the teacher assignment and the other determiridatare achievement, and the rela-
tionship with past achievement can be informative aboupthesibility of these assumptions.

Only a few studies have attempted to validate VAMs. JacoblLafigren (2008) and Harris
and Sass (2007) show that value added coefficients are weak$ygnificantly correlated with
principals’ ratings of teacher performance. Of course rilmgpal decisions about classroom

assignments create bias in the VAMSs, causality could rum fpoincipal opinions to estimated

2Similar tests are often used in non-experimental analyResearchers conducting propensity score matching
studies frequently check for “balance” of covariates ctindal on the propensity score (Rosenbaum and Rubin,
1984), and Imbens and Lemieux (2008) recommend analogsissite regression discontinuity analyses.

30f course, these sorts of tests cannot diagnose all modktigios. If treatment assignments depend on
unobserved determinants of future outcomes that are wrlated with the outcome history, the treatment effect
estimator may be biased even though treatment is uncardaldath past outcomes.



value added rather than the reverse. More relevant to threrduainalysis, Kane and Staiger
(2008) demonstrate that VAM estimates from observatioagh dre approximately unbiased
predictors of teachers’ effects when students are randassigned. While | examine a closely
related question to that considered by Kane and Staiger,anged and more representative
sample permits me to extend their analysis in two ways. ,Hiflsve much more statistical
power. This enables me to identify biases that are subgéytimportant but that lie well
within Kane and Staiger’s confidence intervals. Second, ampde resembles the sort that
would be used for any VAM intended as a teacher compensatiatention tool. In particular,

it includes teachers specializing in students (e.g., kEdeers) who cannot be readily identified
and excluded from large scale analyses. The likely exatusfsuch teachers from Kane and

Staiger’s sample quite plausibly avoids the most sevesebim observational VAM estimatés.

[l STATISTICAL MODEL AND METHODS

This Section develops the statistical framework for VAM lgees and introduces my tests. |
begin by defining the parameters of interest, in SectioAllln Section III.B, | introduce the
three VAMs that | consider. Section Ill.C describes the esidn restrictions that the VAM
requires to permit identification of the causal effects ¢diiast and develops the implications of
these restrictions for the relationship between the cttesacher and lagged outcome. Section

[11.D discusses the implementation of the tests.

llILA Defining the Problem

| take the parameter of interest in value added modeling tthbeeffect on a student’s test
score at the end of gradgof being assigned to a particular gragletassroom rather than to

another classroom at the same school. Later, | extend tho®koat dynamic treatment effects

4In the Kane and Staiger experiment, principals were givenniéime of one teacher and asked to identify a
comparison teacher such that it would be appropriate toamhdassign students within the pair. One imagines
that principals generally chose a comparison who was asdigimilar students as the focal teacher in the pre-
experimental data. Moreover, a substantial majority ofigigals declined to participate, perhaps because the
initial teacher was a specialist for whom no similar comgamicould be found.



(that is, the effect of the gradgelassroom on thg+ s score). | do not distinguish between
classroomandteachereffects, and use the terms interchangably. In the Appendiansider
this distinction, defining a teacher’s effect as the timeirant component of the effects of the
classrooms taught by the teacher over several years. Tiedmslusions are unaffected by
this redefinition.

| am interested in whether common VAMs identify classroofeas with arbitrarily large
samples. | therefore sidestep small sample issues by @vimgjdhe properties of VAM esti-
mates as the number of students grows with the number ofgesand classrooms) fixéd.
If classroom effects are identified under these unreal&gionptotics, VAMs may be usable
in compensation and retention policy with appropriatevedioces for the sampling errors that
arise with finite class siz€sif not, these corrections are likely to go awry.

A final important distinction is between identification ogtlariance of teacher quality and
the identification of individual teachers’ effects. | foaeeclusively on the latter. It is imprac-
tical to report each of several thousand teachers’ estareftects, however. | therefore report
only the implied standard deviations (across teachersgaxhters’ actual and counterfactual

effects, along with tests of the hypothesis that the teaeffiects are all zerd.

ll.LB Data Generating Process and the Three VAMs

| develop the three VAMs and the associated tests in the xbote relatively general educa-
tional production function, modeled on those used by Todt\&blpin (2003) and Harris and
Sass (2006), that allows student achievement to dependedaltthistory of inputs received to

date plus the student’s innate ability. Separating classreffects from other inputs, | assume

SUnder realistic asymptotics, the number of classroomslshise in proportion to the number of students. If
so, classroom effects are not identified under any exogergstrictions: Even in the asymptotic limit, the number
of students per teacher remains finite and the sampling iereor individual teacher’s effect remains non-trivial.

6A typical approach shrinks a teacher’s estimated effecatdhe population mean in proportion to the degree
of imprecision in the estimate. The resulting empirical 8agstimate is the best linear predictor of the teacher’s
true effect, given the noisy estimate. See McCaffrey e8l08), pp. 63-68.

’Rivkin et al. (2005) develop a strategy for identifying thariance of teachers’ effects, but not the effect of
individual teachers, under weaker assumptions than atgresgbpy the VAMs described below.



that the test score of studdrdt the end of gradg, Aig, can be written as
9 9
Aig=0g+ > Bngaih) +HiTg+ D Endhg+ Vig. (1)
h=1 h=1

Here,Bngcis the effect of being in classrooain gradeh on the gradeg test score, and(i, h) €
{1,...,3} indexes the classroom to which studér$ assigned in gradk. p; is individual
ability. We might expect the achievement gap between higlaand low-ability students to
grow over time; this would correspondtp> 14 > 0 for eachk > g. & captures all other inputs
in gradeh, including those received from the family, non-classroaerg, and the community.
It might also include developmental factors: A precociohiddcmight have positives in early
grades and negatives in later grades as her classmates catch up. As this exahmples s
is quite likely to be serially correlated within studentsass grades. Finallyig represents
measurement error in the grageest relative to the student’s “true” gradeachievement. This
is independent across grades within studénts.

A convenient restriction on the time pattern of classrocima$ is uniform geometric decay,
Bhgc = Bngch 9-9forsome 0< A <landallh<g<g. Aspecial case i3 = 1, corresponding
to perfect persistence. Although my results do not depenthese restrictions, | impose them
as needed for notational simplicity. | consider non-umifaitecay in Section VII. Note that
there is no theoretical basis for restrictions on the ded¢apn-classroom effects (i.e. amg).

It will be useful to adopt some simplifying notation. L@y = zﬂzl &ihhg be the composite
gradeg residual achievement, and Ietndicate first differences across student gradggsg. =
Bnge— Bhg—1.c) ATg = Tg— Tg_1, Ag = Wg — Wg-1, and so on.

Tractable VAMs amount to decompositions &f (or, more commonly, oAy = Aig —
Aig-1) into the current teacher’s effe@,q; ), @ student heterogeneity component, and an
error assumed to be orthogonal to the classroom assignidelels differ in the form of this

decomposition. In this paper | consider three specificatidnsimple regression of gain scores

8] define theB parameters to include any classroom-level componewg @nd assume thaly is independent
across students in the same classroom.



on grade and contemporaneous classroom indicators,

a regression of score levels (or, equivalently, of gainsglassroom indicators and the lagged

score,

VAM2: Ag = ag+Aig—1A +ngo(i,g) + €2ig;

and a regression that stacks gain scores from several gradeslds student fixed effects,
VAM3: AAig = ag+ Bygqi,g) + Hi + €3ig-

All three are widely used. VAM2 and VAM3 can both be seen as generalizations of VAM1:
Constrainingd = 1 converts VAM2 to VAM1, while constraining; = 0 converts VAM3.

[1I.C Exclusion Restrictions and Falsification Tests

Despite their similarity, the three VAMs rely on quite drstt restrictions on the process by
which students are assigned to classrooms. | discuss #ithturn.

The gain score model (VAM1)

First-differencing the production function (1), we canterihe gradeg gain score as

g-1
DAg = Dag+ S BBnggin + Bygai.g) + HibbTg +Ag + Avg. 2
H=1

If we assume that teacher effects do not deAg@yc = O for allh < g. The error terney;g from

VAM1 then has three componentsig = [iATg+ Awg + Avig.

9The most widely used VAM, the Tennessee Value Added AssassSystem (TVAAS; see Sanders et al.,
1997), is specified as a mixed model for level scores thatriepa the full history of classroom assignments,
but this model implies an equation for annual gain scoredefform used in VAM1. VAM2 is more widely
used in the recent economics literature. See, for exampeson et al. (2007); Kane et al. (2006); Jacob and
Lefgren (2008); and Goldhaber (2007). VAM3 was proposed bgrBman and Murnane (1979), and has been
used recently by Rivkin et al. (2005); Harris and Sass (200#)ob and Lefgren (2008); and Boyd et al. (2007).



VAM1 will yield consistent estimates of the gradeslassroom effects only if, for eaa

E [exg|c(i,g) =c] =0. (3)

The most natural model that is consistent with (3) is forgasients to depend only on student
ability, u;, and for ability to have the same effect on achievement idegg andg— 1 (i.e.,
Aty = 0). With these restrictions, VAM1 can be seen as the firdedihce estimator for a fixed
effects model, with strict exogeneity of classroom assignts conditional om;. By contrast,
(3) is not likely to hold ifc(i, g) depends, even in part, @og—_1, Vig—1, Or Aig—1.

Differences in last year’s gains across this year’s clasasoare informative about the ex-

clusion restriction. Using (2), the average 1 gain in classroona is:

E [AAg-1]c(i,9) =c] =Aag 1+E [By_1¢-1¢(i,g-1)|C(i,9) = c| +E [eng-1]|c(i,g) =] .
4)

The first term is constant acrossand can be neglected. The second term might vary with
if (for example) a principal compensates for a bad teachgradeg — 1 with assignment to a
better-than-average teacher in gradeThis can be absorbed by examining the acogsg)
variation inAAg_; controlling for c(i, g— 1). | estimate specifications of this form beldf.
Any remaining variation across gradeclassrooms irg — 1 gains, after controlling fog — 1
classroom assignments, must indicate that students aexlsoto gradeg classrooms on the
basis ofeyjg—_1.

Sorting oneyig—1 would not necessarily violate (3) &g is not serially correlated. But
the definition ofejijg above indicates four sources of potential serial cormatiFirst, ability

Hi appears in botleg andesig—1 (unlessAtg = 0). Second, thejg process may be serially

0This is a test of the hypothesis that students are randorsigred to graderclassroomsonditional on the
g— 1classroom This test is uninformative unless there is independernitian inc(i, g— 1) andc(i, g). To take
one example, Nye et al. (2004) use data from the TennesselRe Sl8As size experiment to study teacher effects.
In STAR, “streaming” was quite common, and in many schooésehs zero independent variation in 3rd grade
classroom assignments controlling for 2nd grade assigtsném this case, identification of teacher effects rests
entirely on the assumption that past teachers’ effects tdexay.

10



correlated. Third, even # is white noiseAwyg is a moving average of ordgr 1 (absent strong
restrictions on thep coefficients). FinallyAvig is an MA(1), degenerate only if vav) = 01

Thus, (3) is not likely to hold iE [e1ig_1|c(i, )] is non-zero.

The lagged score model (VAM2)

VAM2 frees up the coefficient on the lagged test score. Ifheaeffects decay geometrically

at uniform rate - A, the gradeg score can be written in terms of tige- 1 score:

Aig = Og+Aig-1A + Bygq(i,g) + €2ig; ®)

wheredg = ag— ag_1A. This can equivalently be expressed as a model for the grayen,
by subtractinghig—1 from each side of (5). In either case, the error is

-1
&ig = Hi (Tg—Tg-1A) + > & (thg— ¢hg-1A) + &g+ (Vig — Vig-14) - (6)
=

As before, each of the terms in (6) is likely to be seriallyretated.

The exclusion restriction for VAM2 is thabig is uncorrelated witfe(i, g) conditional on
Aig—1. This would hold ifc(i, g) were randomly assigned conditional Ag—1. It is unlikely to
hold if assignments depend eg)y_1 or on any of its components (including).!? As with the
VAML, | test the VAM2 exclusion restriction by re-estimagithe model with thgy — 1 gain as

the dependent variable. By re-arranging the lag of (5), wevaidte theg — 1 gain as
AAig-1=A - (Gg+Ag-1(A —1)+ By-1,9-1cig-1) T &ig-1) - (7)

Thus, the graderclassroom assignment will have predictive power for the gagradeg — 1,

HRothstein (2008) concludes thiatiy accounts for as much as 80% of the variancAAj.

Lplternatively, if Tg— Tg—1A is constant acrogs (5) can be seen as a fixed effects model with a lagged depen-
dent variableA andfgyg can be identified via IV or GMM (instrumenting féwA;_1 in a model forAAy) if c(i, 9)
depends om; but is strictly exogenous conditional on this (Anderson Bischo, 1981; Arellano and Bond, 1991).
See, e.g., Koedel and Betts (2007). Value added reseatypéarally apply OLS to (5). This is inconsistent far
and identifiegBygc only if c(i, g) is random conditional 0Ag_1.

11



controlling for theg — 1 achievement level, if gradgelassrooms are correlated either with the
g— 1 teacher’s effect (i.e. wity_1 g1 (i g-1)) O with eig—1.12 As in VAM1, the former can
be ruled out by controlling fog— 1 classroom assignments; the latter would indicate a vawlat

of the VAM2 exclusion restriction i&, is serially correlated.

The fixed effects in gains model (VAM3)

For the final VAM, we return to equation (2) and to the earlisstanption of zero decay of
teachers’ effect$? The student fixed effects used in VAM3 absorb any variatiqn i@ssuming
thatAtg = 1 for eachg). Thus, the VAMS3 error term issig = Awyg + Avig.

The reliance on fixed effects, combined with the small tirmeethsion of student data sets,
means that VAM3 requires stronger assumptions than theeearbdels. To avoid bias in the
teacher effectyqc, €ven in large samples, teacher assignments must beysérioiyenous con-
ditional ony;: E [esn |c(i, g)] = O for all g and allh (Wooldridge, 2002, p. 253y Conditional
strict exogeneity means that the same informatjgrgr some function of it, is used to make
teacher assignments in each grade. This requires, in gffi@ttprincipals decide on classroom
assignments for the remainder of a child’s career beforestdres kindergarten. If teacher as-
signments are updated each year in response to the stugeritsmance during the previous
year, strict exogeneity is violated.

As before, my test is based on analyses of the apparentseéiegtadeg teachers on gains
in prior grades. Consider estimation of VAM1, without thadsnt fixed effects that are added
in VAM3. If teacher assignments depend on ability, this wikhs the VAM coefficients and

will lead me to reject the VAM1 exclusion restriction. Butetltonditional strict exogeneity

13The test can alternatively be expressed in terms of a modéhéoscore level ig— 2. (Simply re-arrange
terms in (7).) The VAM2 exclusion restriction of random gssnent conditional org_1 will be rejected if the
gradeg classroom predictdg_» conditional onAig_s.

4While VAM1 and VAM2 can easily be generalized to allow for roniform decay, VAM3 cannot.

5For practical value added implementations, it is rare teehaore than 3 or 4 student grades, so asymptotics
based on thg dimension are infeasible. One approach if strict exoggrgies not hold is to focus on the first
difference of (2). OLS estimation of the first-differencephation requires that(i, g) be uncorrelated witksig_1,
€3ig, andesig+1. Though this is weaker than strict exogeneity, it is difficolimagine an assignment process that
would satisfy one but not the other. If the OLS requiremergswat satisfied, the only option is IV/GMM (see note
12), instrumenting for both thgandg — 1 classroom assignments. Satisfactory instruments ar@ppatrent.

12



assumption imposes restrictions on the coefficients fraViVi1 falsification test. Under this
assumption, the only source of bias in VAML1 is the omissioraitrols fory;. As L enters
into everygrade’s gain equation, gradeteachers should have the same apparent effects on
g— 2 gains as they do ag— 1 gains. An indication that these differ would indicate thititted
time-varying determinants of gains are correlated witlchea assignments, and therefore that
assignments are not strictly exogenous.

Following Chamberlain (1984), consider a projectionuobnto the full sequence of class-

room assignments in grades 1 through

Hi = §1c(in) +- -+ Eacie) T M- )

éne is the incremental information aboput provided by the knowledge that the student was in
classroont in gradeh, conditional on classroom assignments in all other gra8ebstituting
(8) into (2), we obtain
G

AAg = Dag+ h; Thgq(i,h) + Ni + €3ig, 9)
wheremyge = §gcATg + Byge and Thge = éncATg for h# g. Under conditional strict exogeneity,
Elesn|c(i,1),...,c(i,G)] = 0 for eachh, and the fact that (8) is a linear projection ensures
that nj is uncorrelated with the regressors as well. An OLS regoessf gradeg gains onto
classroom indicators in grades 1 throu@hhus estimates thapgc coefficients without bias.
WhenG > 3, the underlying parameters are overidentified. To seenhbige that

Aty ATy
ATg_]_ - TE—"gil’CATg_l

Thge = éncATg = EncATg—1 (10)

for all h > g: The coefficient for gradé&-classroont in a model of gains in gradgis propor-
tional to the same coefficient in a model of gaingjin 1. If there arel, gradeh classrooms in

the sample, this represerdks— 1 overidentifying restrictions on theJRelements of the vectors

13



Mhg= {Thgt - Thoy, } andMng 1 = {Thg-11 .- Thg-13,}'°
To test these restrictions, | estimate the Jhevector=;, and the scalarAt; and A1, that
minimize
/
Mng 1 ZhATg 1 Mng-1 ZhATg 1

D= — w1t X — . (11)
Mhg =hATy Mhg =hATg

using the sampling variance (éﬁ’hg_l A’hg>/ asW. Under the null hypothesis of strict exo-
geneity, the minimized valuB is distributedy? with J, — 1 degrees of freedod{. If D is above

the 95% critical value from this distribution, the null igegeted. Intuitively, the correlation be-
tween corresponding elements of the coefficient vediiggs 1 andlMyg, representing apparent
“effects” of gradeh teachers on gains in gradgs- 1 andg (g < h), should be 1 or -1 under the

null; a correlation far from this would suggest that the asabn restriction is violated.

[I.D Implementation

To put the three VAMSs in the best possible light, | focus onneation of within-school differ-
ences in classroom effects. For many purposes, one mighttavanake across-school com-
parisons. But students are not randomly assigned to sgleowlghose at one school may gain
systematically faster than those at another for reasoredaiad to teacher quality. Random as-
signment to classrooms within schools is at least somewhasible. To isolate within-school
variation, | augment each of the estimating equations dsediabove with a set of indicators
for the school attendetf. The tests for VAM1 and VAM2 then amount to tests of whether stu

dents are (conditionally) randomly assigned to classrowitisn schools They resemble tests

16When G > 3, there are many such pairs of vectors that must be propaiti&€ven wherG = 3, there are
additional overidentifying restrictions created by seniproportionality relationships for teachers’ effectdature
gains. These restrictions might fail either because stsogeneity is violated or because teachers’ effects decay
(thatis,Bnn # Bng for someg > h). | therefore focus on restrictions on the coefficients émchers’ effects opast
gains, as these provide sharper tests of strict exogeneity.

7although there argl, + 2 unknown parameters, they are underidentified: Multigjy§p by a constant and
dividing Atyg_; andAtg by the same constant does not change the fit.

18This make&V singular in (11). For the OMD analysis of VAM3, | drop the elents ofryy, that correspond to
the largest class at each school.
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of successful randomization in stratified experimentsiting schools as strata.

Intuitively, I will reject random assignment if replacingat of school indicators with grade-
g grade classroom indicators adds more explanatory powey-fot gains than would be ex-
pected by chance alone. L& and Ty be matrices of indicators for gradgelassrooms and
schools. These are collinear, so to eliminate this | defjnas the submatrix ofy that results
from excluding the columns corresponding to one classroemsphool. The VAML1 test is

based on a simple regression:

Mg 1=a+S0+TgB+e (12)

The identifying assumption of VAM1 is rejected f # 0. | use a heteroskedasticity-robust
score test (Wooldridge, 2002, p. 60) to evaluate this. | astimate versions of (12) that
include controls for gradg— 1 classroom assignments. To test VAM2, | simply add a control
for Ag_1 on the right-hand-side of (12).

It is clear from the definition ofg that only schools with multiple classrooms per grade
can contribute to the analysis. One might be concerned tinto$s with only two or three
classrooms will be misleading, as even with random assighofestudents to classrooms there
will be substantial overlap in the composition of a studegtadeg and gradeg— 1 classrooms.
The Appendix presents a Monte Carlo analysis of the VAM1 aA#N¥ tests in schools of
varying sizes. The VAML1 test has appropriate size even wish two classrooms per school,
so long as the number of students per classroom is large.allRkat | focus on large-class
asymptotics.) With small classes, the asymptotic distitlouof the test statistic is an imperfect
approximation, and as a result the test over-rejects $fight’hen there are 20 students per

class, the test of VAM1 has size around 10%. With empiricedigsonable parameter values,
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the VAM2 test performs similarly?-2°

| also report the standard deviation of the teacher coefiisi@éhefs in (12)) themselves.
The standard deviation of the estimated coefficients nadggssexceeds that of the true coeffi-
cients (those that would be identified with large sampledwdents per teacher, even if these
are biased estimates of teachers’ true causal effectshn8an et al. (2007) propose a simple
estimator for the variance of the true coefficients acroashers. Le{3 be a mean-zero vec-
tor of true projection coefficients and Iét be an unbiased finite-sample estimateBofwith

E [B’ (B — B)] = 0. The variance (across elementsBofan be written as:
e (pp] —€ (B3] € |(B-) (5-5)] (13

E [ﬁ’ﬁ] is simply the variance across teachers of the coefficieimagts?! E {(ﬁ — B)l (ﬁ — B)}
is the average heteroskedasticity-robust sampling vegidnveight each by the number of stu-
dents taught.

Specifications that include indicators for classroom assignts in several grades simultane-
ously — like that used for the test of VAM3 — introduce two cditgtions. First, the coefficients
for teachers in different grades can only be separatelyiftishwhen there is sufficient shuffling
of students between classrooms. If students are perfdotignsed — if a student’s classmates
in 4th grade were also her classmates in 3rd grade — the 3rdtamplade classroom indicators
are collinear. | exclude from my samples a few schools wheaeequate shuffling leads to
perfect collinearity. Second, these regressions are diffio compute, due to the presence of

several overlapping sets of fixed effets. As discussed irAfhiendix, these are ameliorated

BWhen students are assigned to classrooms based on the Bmednd when this score incorporates implau-
sibly high degrees of clustering at the 4th grade classrogl,lthe VAM2 test rejects at high rates even with large
classes. This reflects my use of a test that assumes indepenoleresiduals within schools. Unfortunately, it is
not possible to allow for dependence, as clustered variaaeariance matrices are consistent only if the number of
clusters grows with the number of parameters fixed (Kezdi42@nd in my application, the number of parameters
grows with the number of clusters.

20Kinsler (2008) claims that the VAM3 test also over-rejectsimulations. In personal communication, he
reports that the problem disappears with large classes.

213 is normalized to have mean zero across teachers at the stwal,sand its variance is adjusted for the
degrees of freedom that this consumes.
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by restricting the samples to students who do not switchashauring the grades for which

classroom assignments are controlled.

IV DATA AND SAMPLE CONSTRUCTION

The specifications described in Section Il require longjital data that track students’ out-
comes across several grades, linked to classroom assitgmimerach grade. | use administra-
tive data on elementary students in North Carolina publioets, assembled and distributed
by the North Carolina Education Research Data Center. Tiietsehave been used for several
previous value added analyses (see, e.g., Clotfelter, &0416; Goldhaber, 2007).

| examine end-of-grade math and reading tests from gradbso8gh 5, plus “pre-tests”
from the beginning of 3rd grade (which I treat as 2nd gradis}ekstandardize the scale scores
separately for each subject-grade-year combinafon.

The North Carolina data identify the school staff member vaddministered the end-of-
grade tests. In the elementary grades, this was usuallgthdar teacher. Following Clotfelter
et al. (2006), | count a student-teacher match as valid iteseadministrator taught a “self-
contained” (i.e. all day, all subject) class for the releévgnade in the relevant year, if that class
was not designated as special education or honors, ancdsithalf of the tests that the teacher
administered were to students in the correct grade. Usisgd#finition, 73% of 5th graders
can be matched to teachers. In each of my analyses, | rebisample to students with valid
teacher matches in all grades for which teacher assignraemtontrolled.

| focus on the cohort of students who were in 5th grade in 200@t. Beginning with
the population (N=99,071), | exclude students who haveriastent longitudinal records (e.g.
gender changes between years); who were not in 4th grade9®+2@®00; who are missing
4th or 5th grade test scores; or who cannot be matched to ar&de geacher. | additionally

exclude 5th grade classrooms that contain fewer than 12lsatuglents or are the only included

22The original score scale is meant to ensure that one poimésponds to an equal amount of learning at
each grade and at each point in the within-grade distributiRothstein (2008) and Ballou (2008) emphasize the
importance of this property for value added modeling. Altle# results here are robust to using the original scale.
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classroom at the school. This leaves my base sample, aogsi$t60,740 students from 3,040
5th grade classrooms and 868 schools.

My analyses all use subsets of this sample that provide muffidongitudinal data. In
analyses of 4th grade gains, for example, | exclude studémshave missing 3rd grade scores
or who were notin 3rd grade in 1998-1999. In specificatioasiticlude identifiers for teachers
in multiple grades, | further exclude students who changbodals between grades, plus a few
schools where streaming produces perfect collinearity.

Table | presents summary statistics. | show statisticdi®population, for the base sample,
and for my most restricted sample (used for estimation oagqu (9)). The lastis much smaller
than the others, largely because | require students to hteredad the same school in grades 3
through 5 and to have valid teacher matches in each gradée Meddicates that the restricted
sample has higher mean 5th grade scores than the full papulathis primarily reflects the
lower scores of students who switch schools frequéitijwerage 5th grade gains are similar
across samples. The Appendix describes each sample in mtaié d

As discussed above, my tests can be applied only if therdfisieut re-shuffling of class-
rooms between grades. Table A2 in the Appendix shows thédraof students’ 5th grade
classmates who were also in the same 4th grade classes, hyrtiteer of 4th grade classes
at the school. Complete reshuffling (combined with equsiied classes) would produce 0.5
with two classes, 0.33 with three, and so on. The actualifnastare larger than this, but only
slightly. In schools with exactly three 5th grade teachasexample, 35% of students’ 5th
grade classmates were also their classmates in 4th gradmlyiriv% of multiple-classroom
schools do the 4th and 5th grade classroom indicators hdiogeaé rank.

Table Il presents the correlation of test scores and gairessagrades and subjects. The
table indicates that 5th grade scores are correlated ab8weith 4th grade scores in the same

subject, while correlations with scores in earlier gradestber subjects are somewhat lower.

23Table | shows that average 3rd and 4th grade scores in theul@ign” are well above zero. The norming
sample that | use to standardize scores in each grade cook#t students in that grade in the relevant year (i.e.
of all 3rd graders in 1999), while only those who make nornragpess to 5th grade in 2001 are included in the
sample for Columns (1)-(2). The low scores of students wpeaegrades account for the discrepancy.
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5th grade gains are strongly negatively correlated withgdétte levels and gains in the same
subject and weakly negatively with those in the other subjEte correlations between 5th and
3rd grade gains are small but significant both within and ssceubjects.

VAM3 is predicated on the notion that student ability is apartant component of annual
gains. Assuming that high-ability students gain fastdg #ould imply positive correlations
between gains in different years. There is no indicatiorhisf inh Table II. One potential expla-
nation is that noise in the annual tests introduces negaiii@orrelation in gains, but Rothstein
(2008) concludes that even true gains are negatively autdated. This strongly suggests that

VAM3 is poorly suited to the test score data generating pece

V RESULTS

Tables lll, IV, and V present results for the three VAMs inrtul begin with VAML1, in Table IlI.

| regress 5th grade math and reading gains (in Columns (1j2Zndespectively) on indicators
for 5th grade schools and classrooms, excluding one clagsper school. In each case, the
hypothesis that all of the classroom coefficients are zego tfhat classroom indicators have no
explanatory power beyond that provided by school indicjtisrdecisively rejected. The VAM
indicates that the within-school standard deviations bfgsade teachers’ effects on math and
reading are 0.15 and 0.11, respectively. This is similarhatihas been found in other studies
(e.g., Aaronson et al., 2007; Rivkin et al., 2005).

Columns (3) and (4) present falsification tests in which 4tidg gains are substituted for
the 5th grade gains as dependent variables, with the s@itficotherwise unchanged. The
standard deviation of 5th grade teachers’ “effects” on 4tug gains is 0.08 in each subject,
and the hypothesis of zero association is rejected in eastife@tion?* In both the standard
deviation and statistical significance senses, 5th grasiom assignments are slightly more

strongly associated with 4th grade reading gains than withmains.

24The Table shows analytic p-values based orRtdistribution. As noted earlier, simulations suggest thgt m
tests over-reject slightly. When | use the empirical disttion of test statistics from an appropriately calibrated
Monte Carlo simulation (discussed in the Appendix) to cardtp-values, these are 0.031 and 0.004, respectively.
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One potential explanation for these counterfactual edfescthat they represent omitted vari-
ables bias deriving from my failure to control for 4th gradadhers. Columns (5)-(8) present
estimates that do control for 4th grade classroom assigtanesing a sample of students who
attended the same school in 4th and 5th grades and can beethatcteachers in each grade.
Two aspects of the results are of interest. First, 4th greaehters have strong independent pre-
dictive power for 5th grade gains. This is at least suggeghat the “zero decay” assumption
is violated. | return to this in Section VII. Second, the dméénts on 5th grade classroom
indicators in models for 4th grade gains remain quite végialeven more so than in the sparse
specifications in Columns (3) and (4) — and are significanffent from zero. Evidently, the
correlation between 5th grade teachers and 4th grade gaiiivesi from sorting on the basis of
the 4th gradeesidual not merely from between-grade correlation of teachegassents.

These results strongly suggest that the exclusion rastigfor VAM1 are violated. To
demonstrate this conclusively, however, we need to showttigaresidual in VAM1,eyjg, is
serially correlated. To examine this, | re-estimated VAM@L4th grade teachers’ effects on 4th
grade gains. The correlation betwesp ande;;s is -0.38 in math and -0.37 in reading.

The negative serial correlation ef implies that students with high gains in 4th grade will
tend to have low gains in 5th grade, and vice versa. Becaudé¢lM&vidently does not ade-
guately control for classroom assignments, it gives urezhonedit to teachers who are assigned
students who did poorly in 4th grade, as these students seidliptably post unusually high 5th
grade gains when they revert toward their long-run meansil&iy, teachers whose students
did unusually well in 4th grade will be penalized by the studéfall back toward their long-
run means in 5th grade. Indeed, an examination of the VAMfficants indicates that 5th
grade teachers whose students have above-average 4thggiadéhave systematically lower
estimated value added than teachers whose students uridergs in the prior year. Impor-
tantly, this pattern is stronger than can be explained byptiamerror in the estimated teacher
effects; it reflect true mean reversion and not merely measent error.

Table IV repeats the falsification exercise for VAM2. Theusture is identical to that of
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Table Ill. Columns (1) and (2) present estimates of the b&aigl for 5th grade teachers’
effects on 5th grade gains, controlling for 4th grade matth meading scores. The standard
deviations of 5th grade teachers’ effects are nearly idahto those in Table Ill. Columns (3)
and (4) substitute 4th grade gains as the dependent varfahkze again, we see that 5th grade
teachers are strongly predictive, more so in reading thanath?®> Columns (5)-(8) augment
the specification with controls for 4th grade teachers. Tiegbade teacher coefficients are
no longer jointly significant in the 4th grade math gain sfieation, though they remain quite
large in magnitude. They are still highly significant in theesification for 4th grade reading
gains.

The VAM2 residuals, like those from VAM1, are non-trivialprrelated between 4th and
5th grades, -0.21 for math gains and -0.19 for reading. Theabkso correlated across sub-
jects: -0.14 between 4th grade reading and 5th grade maiins, Tline evidence that 5th grade
teacher assignments are correlated with the 4th gradeusdsithdicates that the VAM2 ex-
clusion restriction is violated, regardless of whetherdependent variable is the math or the
reading score. As before, 5th grade teachers’ effects omyraitle scores are negatively cor-
related with their counterfactual “effects” on 4th gradéngasuggesting that mean reversion
in student achievement — combined with non-random class@gsignments — is an important
source of bias in VAM2.

To implement the VAM3 falsification test, | begin by selegtithe subsample with non-
missing 3rd and 4th grade gains; valid teacher assignmegtades 3, 4, and 5; and continuous
enrollment at the same school in all three grades. | exclédgcBools where the three sets of
indicators for teachers in grades 3, 4, and 5 (dropping oaeht in each grade from each
school) are collinear. | then regress both the 3rd and 4ttleggains on school indicators and

on each of the three sets of teacher indicatbrs.

25p-values based on Monte Carlo simulations (see note 24)@86 @nd 0.018 in Columns (3) and (4), respec-
tively.

261t is not essential to the correlated random effects testthwafull sequence of teacher assignments back to
grade 1 be observed, but the test may over-reject if classassignments in grades 3-5 are correlated with those
in 1st and 2nd grade and if the latter have continuing effent8rd and 4th grade gains. Recall, however, that
VAM3 assumes such lagged effects away.
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Table V reports estimates for math gains, in Columns (1) &)dand for reading gains,
in Columns (4) and (5). The first panel shows the standardatlews (adjusted for sampling
error) of the coefficients for each grade’s teachers. Gairsach subject and in each grade
are substantially correlated with classroom assignmerddl three grades. Although p-values
are not shown, in all 12 cases the hypothesis of zero effeatgected. Columns (3) and (6)
report the across-teacher correlations between the deetficin the models for 3rd and 4th
grade gains (i.e., betwediyz andlg,). The most important correlation is that for 5th grade
teachers, -0.04 for math and -0.06 for reading. Recall ttrett £xogeneity implies that the
5th grade teacher coefficients in the model for 4th gradesgstiould be proportional to the
corresponding coefficients in the model for 3rd grade gdihg,= (A1/ats) Ms3, implying a
correlation of+1. The near-zero correlations strongly suggest that aesiapility factor is
unable to account for the apparent “effects” of 5th gradeltees on gains in earlier grades.

Indeed, these correlations are direct evidence againMAMS identifying assumption of
conditional strict exogeneity. The lower panel of Table \ég@nts OMD estimates of the re-
stricted modef’ For math scores, the estimated rasia/ar; is 0.14, implying that student
ability is much more important to 3rd grade than to 4th graal@g Thus, the constrained es-
timates imply negligible coefficients for 5th grade teasharthe equation for 4th grade gains,
and do a very poor job of fitting the unconstrained estimatiefstandard deviation of these
coefficients, 0.099. The test statiskicis 2,136, and the overidentifying restrictions are over-
whelmingly rejected. In the reading specification, thear; ratio is close to one, and the
restricted model allows for meaningful coefficients on Stadg teachers in both the 3rd and
4th grade gain equations, albeit much less variability ikaeen in the unconstrained model.
But the test statistic is even larger here, and the redtrictedel is again rejected. We can
thus conclude that 5th grade teacher assignments are tlystkogenous with respect to ei-
ther math or reading gains, even conditional on single-dsimnal (subject-specific) student

heterogeneity. The identifying assumption for VAM3 is tiviglated.

2'The OMD analysis uses a variance-covariance maffithat is robust to arbitrary heteroskedasticity and
within-student, between-grade clustering. See the Append
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The results in Tables I, IV, and V indicate that all threetloé VAMs considered here rely
on incorrect exclusion restrictions — teacher assignmaritkently depend on the past learning
trajectory even after controlling for student ability oetprior year’s test score. It is possible,
however, that slight modifications of the VAMSs could elimi@¢he endogeneity. | have explored
several alternative specifications to gauge the robusiofe®e results. | have re-estimated
VAM1 and VAM2 with controls for student race, gender, freadh status, 4th grade absences,
and 4th grade TV viewing; these have no effect on the teste tiitee VAMs also continue
to fail falsification tests when | use the original score esabr score percentiles in place of
standardized-by-grade scores, or when | use data from ottherts. As a final investigation,
| have extended the tests to evaluate VAM analyses that usefidan multiple cohorts of
students to distinguish between permanent and transitamponents of a teacher’s “effect.”
As discussed in the Appendix, the implicit assumptions umdech this can avoid the biases

identified here do not appear to hold in the data.

VI How MucH DOESTHIS MATTER?

The results in Section V indicate that the identifying asptioms for all three VAMs are violated
in the North Carolina data. However, if classroom assigriseaarly satisfy the assumptions
underlying the VAMSs, the models might yield almost unbiagstimates of teachers’ causal
effects. In this Section, | use the degree of sorting on migcomes to quantify the magnitude
of the biases resulting from non-random assignments. sSfoalMVAM1 and VAM2, as the lack
of correlation between 3rd and 5th grade gains (Table |9rgtly suggests that the additional
complexity and strong maintained assumptions of VAM3 aneagessary.

In general, classroom assignments may depend both on lariabserved by the econo-
metrician and on unobserved factors. The former can in jpliede incorporated into VAM
specifications. Accordingly, the first part of my investigatfocuses on the role of observ-
able characteristics that are omitted from VAM1 and VAM2.ohgare VAM1 and VAM2 to

a richer specification, VAM4, that controls for teacher gssients in grades 3 and 4, end-of-
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grade scores in both subjects in both grades, and scoregtimtasts given at the beginning of
3rd grade. This would identify 5th grade teachers’ effecassignments were random condi-
tional on the test score and teacher assignment history.thius more general than VAM2. It

does not strictly nest VAM1, however: Assignment of teash®sed purely on student ability
(i) would satisfy the VAM1 exclusion restriction but not that VAM4. If assignments depend

on both ability and lagged scores, VAM1, VAM2, and VAM4 aréralsspecified.

Table VI presents the comparisons. The first rows show thmatd standard deviations
of teachers’ effects obtained from VAM1 and VAM2, as appliedhe subset of students with
complete test score histories and valid teacher assigsinreaach prior grade. The unadjusted
estimates are somewhat higher than those in Tables Ill andd¥he smaller sample yields
noisier estimates, but the sampling-adjusted estimagegate similar to those seen earlier. The
next two rows of the Table show estimates from the richerifipaton. Standard deviations
are somewhat larger, but not dramatically so.

The final two rows describe the bias in the simpler VAMs refatb VAM4 (that is,BY/ M —
BYAMA andBYAM2 — gVAMA) 1| again show both the raw standard deviation of the poititneges
and an adjusted standard deviation that removes the paitieno sampling error. For VAM1,
the bias has a standard deviation over a third as large aeftttee VAM4 effects. For VAM2,
which already includes a subset of the controls in VAM4, thes s somewhat smaller. For
both VAMs, the bias is more important in estimates of tea€helue added for math scores
than for reading scores.

Of course, the exercise carried out here can only diagn@seibiVAM1 and VAM2 from
selection orobservables- variables that can easily be included in the VAM specifaratin a
companion paper (Rothstein, forthcoming), | attempt tongjfiathe bias that is likely to result
from selection on unobservables. Following the intuitibAbonji et al. (2005) that the weight
of observable (to the econometrician) and unobservablablas in classroom assignments is
likely to mirror their relative weights in predicting ackiEmment, one can use the degree of sort-

ing on observables to estimate the importance of unobsiewvand therefore the magnitude
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of the bias in estimated teacher effects. Under varyingrapions about the amount of infor-
mation that parents and principals have, | find that the bia® fnon-random assignments is
quite plausibly 75% as large (in standard deviation terragha estimates of teachers’ effects
in VAM1, and perhaps half this large in VAMZ.

To provide a better sense of the import of non-random classrassignments for the value
of VAMs in teacher compensation and retention decisionsukate true and estimated teacher
effects with joint distributions resembling those repdrie Table VI and in Rothstein (forth-
coming). For each of several scenarios characterizinggbigiament of students to classrooms,
| generate 10,000 teachers’ true effects and coefficients WAMs 1, 2, and £° | assume
that true effects and biases are both normally distributed that the VAM coefficients are free
of sampling error. | then compute three statistics to sunmadhe relationship of the VAM
estimates to teachers’ true effects: the correlation batweachers’ true effects and the VAM
coefficients, the rank correlation, and the fraction of kesis with true effects in the top quintile
who are indicated to be in the top quintile by the VAMs.

Results are presented in Table VII. Each panel correspandglistinct assumption about
the classroom assignment process. In the first panel, | a&ssuah selection is solely on the
basis of the observed test score history. Using the modeétating scores from Table VI, the
standard deviation of teachers’ true effects is 0.148, hadstandard deviations of the biases
in VAM1 and VAM2 are 0.054 and 0.028, respectively. Columis(6) show the reliability of
teacher quality under different metrics. True effects anks are very highly correlated with
the effects and ranks indicated by VAMs 1 and 2. 79 to 90% afhtees who are in the top
quintile of the actual quality distribution are judged todweby the simple VAMSs.

But this analysis assumes, implausibly, that selectiomlisls on observables. Panels B-
E present alternative estimates that allow variables treanat controlled even in VAM4 to

play a role in classroom assignments, as in Rothstein @fortfing). In Panel B, | assume that

28Kane and Staiger’s (2008) comparison of experimental anmdaxperimental value added estimates would be
unlikely to detect biases of this magnitude.

2tis not possible to use the estimates from Table VI diretigause | wish to abstract from the role of sampling
error. The simulation is described in greater detail in tippéndix.
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classroom assignments depend both on the test score hiktiris reported in my data and
a on second, unobserved history (e.g., student gradespitnties an independent, equally
noisy measure of the student’s trajectory through gradés 2Howing for this moderate de-
gree of selection-on-unobservables notably degradestiiermance of VAM1, but VAM2 and
VAM4 continue to perform reasonably well. In Panel C, | assuimat there are two separate
unobserved achievement measures. Performance degraidestser; while the correlations
between true effects and the VAM2 and VAM4 estimates renai, only about four fifths of
top-quintile teachers are judged to be so by the two VAMS.

Panel D allows for even more unobserved information to bd urselassroom assignments:
| assume that the principal knows the student’s true achiew in grades 2-4. Now, even
VAMA4 is correlated less than 0.9 with teachers’ true effeatal less than three quarters of true
top-quintile teachers get top-quintile ratings from ang YAMs. Finally, Panel E presents an
extreme scenario corresponding to Altonji et al.’s (20GSuenption that selection on unobserv-
ables is like selection on observables. This is not realias principals cannot perfectly predict
student achievement, but it provides a useful bound for #grae of bias that non-random
classroom assignments might produce in VAM-based estandtieis bound is tight enough to
be informative: Even in this worst case, the VAMs retain saigmal, and VAM2 and VAM4
continue to correctly classify over half of top-quintil@atders.

It is difficult to know which of the scenarios is the most aater Panel E likely assumes
too much sorting on unobservables, while Panel A almosaitgytassumes too little. The truth
almost certainly lies in between, perhaps resembling teeaios depicted in Panels B and C.
These suggest that VAMs that control only for past test sceréypically the only available
variables — have substantial signal but neverthelessdat® important misclassification into
any assessment of teacher quality. Only 60-80% of the highedity teachers will receive
rewards given on the basis of high VAM scores.

Moreover, Table VII omits three major sources of error in VAidsed quality measures that

would magnify the misclassification rates seen there. ,Hifsive suppressed the role of sam-
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pling error that would inevitably arise in VAM-based esties It is well documented (Lock-
wood et al., 2002; McCaffrey et al., 2008) that this alonedpices high misclassification rates.
Second, all of the analyses in this paper are based on caoparof teachers within schools.
Like most other value added studies, | make no effort to nteagcross-school differences in
teacher quality. But most policy applications of value atld®uld require comparisons across
as well as within schools. Because students are not evemdapyately randomly assigned to
schools, these comparisons are likely to be less informathout causal effects than are the
within-school comparisons considered here.

Finally, 1 have assumed that teachers’ effects on theiresttgd end-of-grade scores are
the sole outcome of interest. This may be incorrect. In paldr, if teachers can allocate
effort between teaching-to-the-test and raising studéorig-run learning trajectories (e.g., by
working to instill a love of reading), one would like to rewiathe second rather than the first.
This suggests that the effects that matter may be those derggi long-run outcomes rather

than on their end-of-grade scores. | consider this issugaméxt Section.

VIl SHORT-RUN VvS. LONG-RUN EFFECTS

Recall from Columns (5)-(6) of Tables Il and 1V that 4th geatachers appear to have large
effects on students’ 5th grade gains. Given the resultstfograde gains, these “effects” cannot
be treated as causal. But setting this issue aside, we cahaitsyged teacher coefficients to
evaluate restrictions on time pattern of teachers’ eff@bts is, on the relationship betweggy
andfgq g+s in the production function (1)) that are universally imposevalue added analyses.
When only a single grade’s teacher assignment is includét2/implicitly assumes that
teachers’ effects decay at a uniform, geometric 8§ (s = BygA *for A € [0, 1]), while VAM1

assumes zero decay & 0). It is not clear that either restriction is reasonaBl&Vhile several

30Although a full discussion is beyond the scope of this pagsyumptions about “decay” are closely related to
issues of test scaling and content coverage (Rothstei®; Ballou, 2008; Martineau, 2006). To illustrate, consider
a 3rd grade teacher who focuses on addition and subtradieswill raise her students’ 3rd grade scores but may
do little for their performance on a 5th grade multiplicattest.
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studies have estimatedd®! all have done so under the restriction that decay is unifofs.
a final investigation, | analyze the validity of this restionn by comparing a gradgteacher’s
initial effect in gradeg with her longer-run effect on scores in gragle- 1 or g+ 2, without
restricting the relationships among théfn.If in fact teachers’ effects decay uniformly, the
initial and longer-run effects should be perfectly correth(except for sampling error).

| begin by estimating VAM1 and VAM2 for 3rd, 4th, and 5th grasieores or gains, aug-
menting each specification with controls for past teachack bo 3rd grade. | then compute
3rd and 4th grade teachers’ cumulative effects over one, amd (for 3rd grade teachers)
three years. Table VIII presents summary statistics fosgtmimulative effects. | show their
standard deviation; the implied average persistence cheza’ first year effects (computed
asA = cov(Bas. Bas)/var(Bss)); @and the correlation between the initial and cumulatieats. All
statistics are adjusted for sampling error in fheoefficients. Three aspects of the results are
of note. First, there is much more variation in 4th gradehees effects on 4th grade scores
than in those same teachers’ effects on 5th grade scoreb. wform decay at ratél — A ),
var(Bggts) = A2var(Byg), SO this is consistent with the mounting recent evidencetézech-
ers’ effects decay importantly in the year after contactdrabi et al., 2009; Kane and Staiger,
2008; Jacob et al., 2008). Second, the average persistédtie grade teachers’ effects one
year later is only around 0.3, again consistent with receittemce3® Third, the data are not
even approximately consistent with the notion that thisiséence rate is uniform across teach-
ers: The correlation between teachers’ first year effeatistheir two year cumulative effects
is much less than one, ranging between 0.33 and 0.51 degeaodithe model and subject.

Three-year cumulative effects show a similar pattern,etated around 0.4 with the immediate

31see, e.g., Andrabi et al. (2009), Sanders and Rivers (1886)Konstantopoulos (2007).

32For VAML, the effect of being in classrooain gradeg on achievement in gradg+ sis simply 52 Bg.g+t.c-
In VAM2, the presence of a lagged dependent variable comglithe calculation of cumulative effects. If only the
same-subject score is controlled, the effect of 3rd graaehterc on 5th grade achievement(ifzacA + Baac) A +
Bssc. A similar but more complex expression characterizes tleeefwhen lagged scores in both math and reading
are controlled, as in my estimates.

33In other contexts, experiments have shown short-term tsffee test scores that do not persist, as well as
long-term effects on other outcomes (see, e.g., Schwdiehat., 2005). If teachers’ effects have this form, we
might wish to focus on short-run rather than long-run testseffects. But there is no direct evidence that teacher
effects follow this pattern.
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effect. Even if we assume that the VAM-based estimates careh&ed as causal, a teacher’s
first year effect is a poor proxy for her longer-run impact.

The final panel of Table VII explores the implications of thisalysis for teacher quality
measurement. | use the estimates in Table VIII as paramietersy simulation to compare
traditional end-of-year VAM coefficients to teachers’ lengun (two year) effects, treating the
latter as the “truth.” The results are not encouraging. €lations are well below 0.5, and only
about a third of teachers in the top quintile of the distridbf two-year cumulative effects are
also in the top quintile of the one-year effect distributidhis apparent that misspecification
of the outcome variable produces extreme amounts of mfitzdion. Note, moreover, that
this analysis assumes that the VAM1 and VAM2 exclusion i&gtns are valid. A full account
of the utility of VAMs for identifying good teachers would eé to combine the analyses of
lagged effects and endogenous classroom assignmentswadtlid imply even higher rates of

misclassification than are produced by either on its own.

VIII D IscussIiON

Panel data allows flexible controls for individual hetenogiéy, but even panel data models can
identify treatment effects only if assignment to treatnmettsfies strong exclusion restrictions.
This has long been recognized in the literature on prograuation, but has received relatively
little attention in the literature on the estimation of tears’ effects on student achievement.
In this paper, | have shown how the availability of laggedcoute measures can be used to
evaluate common value added specifications.

The results presented here show that the assumptions vindecbmmon VAMs are sub-
stantially incorrect, at least in North Carolina. Classnoassignments are not exogenous con-
ditional on the typical controls, and estimates of teacledfscts based on these models cannot
be interpreted as causal. Clear evidence of this is that\éakhindicates that 5th grade teach-
ers have quantitatively important “effects” on studentsi grade learning. These results have

important implications for educational research, for eesk in a variety of related areas, and
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for education policy. | discuss these in turn.

First, it is clear that an important priority in educatiomesearch should be to build richer
VAMs that can accommodate dynamic sorting of students tesoteoms. By contrast, there is
little apparent need to allow for permanent heterogenaistudents’ rates of growth. One ap-
proach might be to assume that classroom assignments dep&mel principal’s best prediction
of students’ unobserved ability, with predictions updatadh year based on student grades and
test scores. None of the VAMs considered here can accommadatgnments of this form,
which on its face seems quite plausible, but approachesidse taken by Altonji et al. (2005)
and Rothstein (forthcoming) may be useful.

| am skeptical, however, that purely econometric solutiilisbe adequate. There is likely
to be important heterogeneity across schools in both irdition structures and principal objec-
tives. Thus, there would be large returns to incorporatirigrmation about the actual school-
level assignment process — perhaps gathered from survegyoipals, as in Monk (1987) —
into the value added specification. In addition, more aitbento the specification of the out-
come variable is needed. Are we interested in measuringché€a short-run effect or her
impact on test scores in later grades? The former is evidargbor proxy for the latter.

Any proposed VAM should be subjected to thorough validatiod falsification analyses.
The tests implemented here suggest a starting point, ancomayglaptable to richer models.
Failure to reject the exclusion restrictions need not iatichat the restrictions are correct, as
my tests can identify only sorting based on past observalidas rejection does indicate that
the VAM-based estimates are likely to be misleading abadhers’ causal effects.

The present analysis also has implications beyond the fapegiplication to measuring
teacher productivity. Estimates of the quality of schoold af the effects of firms on workers’
wages use identical econometric models, and rely on simxelusion restrictions. Evidence
about the “effects” of future schools and employers on curoeitcomes would be informative
about the validity of both sets of estimates.

Finally, the results here have important implications fog tise of existing VAMs in ed-
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ucation policy. My results indicate that policies based loese VAMs will reward or punish
teachers who do not deserve it and fail to reward or punisthexa who do. The literature
on pay-for-performance suggests some consequences oéshis. First, and most clearly, the
stakes attached to VAM-based measures should be relasivedil. Baker (1992, 2002) consid-
ers a performance measure that is less than perfectly atadelvith the worker’s contribution
to firm output. He notes that high-stakes compensation vakite incentives for workers to di-
rect excess effort to the unproductive component of theoperdince measure. In education, this
might take the form of teachers lobbying their principalbécassigned the “right” students who
will yield predictably high value added scores. In Bakergdal, misallocation of effort can be
kept to a tolerable level by keeping the variable componénbmpensation smaftt Another
argument for low stakes in VAM-based compensation is preidy Holmstrom (1991), who
discuss implications of the results presented in Sectidrabbve: If short-term test scores are
poor proxies for the dimensions of achievement that realiyten, it may be better to forgo or
limit incentive pay rather than encourage excessive tegdo the test.

A second and more speculative suggestion is that VAM-basea&tes should be used as
only one among several inputs into an accountability systeahalso incorporates principals’
subjective ratings (see, e.g., Baker et al., 1994). Therévaw reasons for this. First, principals
may have information about the direction of the bias in aipaldr teacher's VAM-based es-
timate that is not otherwise available to the econometricsa incorporation of their opinions
might lead to better-targeted incentives (H6lmstrom, )9%@cond, use of the VAM as the sole
basis for teacher compensation and/or retention would ipgmimcipals to reward or punish
teachers only through the assignment of desirable or uradidsistudents. Anecdotally, this is
an important management tool for principals, who may indlis&avored teachers to resign by
assigning them difficult students. But there is evidencetdacher-student matching is an im-

portant determinant of student learning (Clotfelter et2006; Dee, 2005), so manipulation of

34see also Milgrom (1988), who argues that an important goakgénizational design should be to limit the
incentive for workers to devote their time to “influence wities,” and Lazear (1989), who argues that tournament
stakes should be kept small to limit the incentive for “salget”
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matches can have real efficiency consequences. If the palfgsubjective judgment is incor-
porated directly into the incentive scheme, he or she wilitile to allocate students to teachers
to maximize output without sacrificing his or her ability tafluence rewards and sanctions.
Of course, this suggestion presumes high quality prinsipdio have enough time to observe
teachers’ classrooms and enough training to distinguiskl gmm bad teachers. Without this,
neither subjective evaluations nor VAM-based estimatasdbpend importantly on classroom
assignments are likely to provide much useful information.
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Table |

Summary Statistics

Population Base sample Most restricted sample

Mean SD Mean SD Mean SD

@) 2) 3 4 5) (6)
# of students 99,071 60,740 23,415
# of schools 1,269 868 598
1 5th grade teacher 122 0 0
2 5th grade teacher 168 207 122
3-5 5th grade teachers 776 602 440
>5 5th grade teacher 203 59 36
# of 5th grade classrooms 4,876 3,040 2,116
# of 5th grade classrooms w/ valid teacher match 3,315 3,040 2,116
Female 49% 50% 51%
Black 29% 28% 23%
Other non-white 8% 7% 6%
Consistent student record 99% 100% 100%
Complete test score record, G4-5 88% 99% 100%
G3-5 81% 91% 100%
G2-5 72% 80% 100%
Changed schools between G3 and G5 30% 27% 0%
Valid teacher assignment in grade 3 68% 78% 100%
grade 4 70% 86% 100%
grade 5 72% 100% 100%

Fr. of students in G5 class in same G4 class 0.22 [0.19] 0.22 [0.17] 0.30 [0.19]

Fr. of students in G5 class in same G3 class 0.15 [0.15] 0.15 [0.13] 0.28 [0.18]

Math scores 3rd grade (beginning of year) 0.11 [0.97] 0.14 [0.96] 0.20 [0.96]

3rd grade (end of year) 0.09 [0.94] 0.11 [0.94] 0.19 [0.91]

4th grade (end of year) 0.04 [0.97] 0.07 [0.97] 0.20 [0.93]

5th grade (end of year) 0.00 [1.00] 0.09 [0.98] 0.20 [0.94]

3rd grade gain -0.02 [0.70] -0.02 [0.69] 0.00 [0.69]

4th grade gain -0.02 [0.58] -0.01 [0.58] 0.01 [0.56]

5th grade gain -0.01 [0.55] 0.01 [0.55] -0.01 [0.53]

Reading scores 3rd grade (beginning of year) 0.08 [0.98] 0.12 [0.98] 0.17 [0.98]

3rd grade (end of year) 0.08 [0.95] 0.11 [0.94] 0.19 [0.91]

4th grade (end of year) 0.04 [0.98] 0.07 [0.97] 0.18 [0.93]

5th grade (end of year) 0.00 [1.00] 0.07 [0.97] 0.17 [0.94]

3rd grade gain 0.01 [0.76] 0.00 [0.75] 0.01 [0.75]

4th grade gain -0.02 [0.59] -0.02 [0.59] 0.00 [0.57]

5th grade gain -0.01 [0.59] 0.00 [0.58] -0.02 [0.57]

Notes: Summary statistics are computed over all available observations. Test scores are standardized using all
3rd graders in 1999, 4th graders in 2000, and 5th graders in 2001, respectively, regardless of grade progress.
"Population” in Columns (1)-(2) is students enrolled in 5th grade in 2001, merged to 3rd and 4th grade records (if

present) for the same students in 1999 and 2000, respectively. Columns (3)-(4) describe the base sample

discussed in the text; it excludes students with missing 4th and 5th grade test scores, students without valid 5th
grade teacher matches, 5th grade classes with fewer than 12 sample students, and schools with only one 5th
grade class. Columns (5)-(6) further restrict the sample to students with non-missing scores in grades 3-5 (plus
the 3rd grade beginning-of-year tests) and valid teacher assignments in each grade, at schools with multiple

classes in each school in each grade and without perfect collinearity of classroom assignments in different

grades.



Table Il

Correlations of Test Scores and Score Gains Across Grades

Summary Correlations N
statistics 5th grade score 5th grade gain
Mean SD Math  Reading Math  Reading
€] 2) 3) 4) ®) (6) ()
Math scores
G5 0.02 1.00 1 0.78 0.29 0.08 70,740
G4 0.07 0.97 0.84 0.73 -0.27 -0.07 61,535
G3 0.09 0.95 0.80 0.70 -0.02 -0.03 57,382
G3 pretest 0.08 0.97 0.71 0.64 0.00 -0.03 50,661
Reading scores
G5 0.01 1.00 0.78 1 0.10 0.31 70,078
G4 0.06 0.97 0.73 0.82 -0.05 -0.29 61,535
G3 0.09 0.95 0.70 0.78 -0.01 -0.05 57,344
G3 pretest 0.08 0.99 0.59 0.65 0.00 -0.05 50,629
Math gains
G4-G5 0.01 0.55 0.29 0.10 1 0.25 61,349
G3-G4 -0.01 0.58 0.11 0.07 -0.41 -0.07 56,171
G2-G3 0.02 0.70 0.08 0.05 -0.02 0.01 50,615
Reading gains
G4-G5 0.00 0.58 0.08 0.31 0.25 1 60,987
G3-G4 -0.02 0.59 0.08 0.10 -0.08 -0.41 56,159
G2-G3 0.02 0.75 0.09 0.10 -0.01 0.02 50,558

Notes: Each statistic is calculated using the maximal possible sample of valid student
records with observations on all necessary scores and normal grade progress between
the relevant grades. Column (7) lists the sample size for each row variable; correlations

use smaller samples for which the column variable is also available. Italicized

correlations are not different from zero at the 5% level.



Evaluation of VAM1: Regression of Gain Scores on Teacher Indicators

Table Il

5th grade gain

4th grade gain

5th grade gain

4th grade gain

Math  Reading Math Reading Math Reading Math Reading
1) (2) 3) (4) ©) (6) (1) (8)
Teacher coefficients
5th grade teachers
Unadjusted SD 0.179 0.160 0.134  0.142 0.197 0.181 0.151 0.168
Adjusted SD 0.149 0.113 0.077 0.084 0.163 0.126 0.090 0.105
p-value <0.001 <0.001 0.016 0.002 <0.001 <0.001 0.035 <0.001
4th grade teachers
Unadjusted SD 0.188 0.181 0.220 0.193
Adjusted SD 0.150 0.125 0.182 0.140
p-value <0.001 <0.001 <0.001 <0.001
Exclude invalid 4th grade
teacher assignments & n n n n y y y y

5th grade movers?
# of students

55,142 55,142

55,142 55,142

40,661 40,661

40,661 40,661

# of 5th grade teachers 3,038 3,038 3,038 3,038 2,761 2,761 2,761 2,761
# of schools 868 868 868 868 783 783 783 783

R2 0.195 0.100 0.132 0.086 0.297 0.176 0.254 0.174
Adjusted R2 0.148 0.047 0.081 0.033 0.203 0.066 0.154 0.064

Notes: Dependent variables are as indicated at the top of each column. Regressions include school
indicators, 5th grade teacher indicators, and (in columns (5)-(8)) 4th grade teacher indicators, with one
teacher per school per grade excluded. P-values are for test of hypothesis that all teacher coefficients
equal zero, using the heteroskedasticity-robust score test proposed by Wooldridge (2002, p. 60).
Standard deviations are of teacher coefficients, normalized to have mean zero at each school and
weighted by the number of students taught. Adjusted standard deviations are computed as described in
Appendix B2. Sample for Columns (1)-(4) includes students from the base sample (see text) with non-
missing scores in each subject in grades 3-5. Columns (5)-(8) exclude students without valid 4th grade
teacher matches and those who switched schools between 4th and 5th grade.



Table IV
Evaluation of VAM2: Regressions with Controls for Lagged Score Levels

5th grade gain 4th grade gain 5th grade gain 4th grade gain

Math Reading Math Reading Math Reading Math Reading

€)) ) @) (4) (©) (6) @) (8)

Teacher coefficients
5th grade teachers

Unadjusted SD 0.176 0.150 0.120 0.129 0.191 0.169 0.138 0.150

Adjusted SD 0.150 0.109 0.067 0.076 0.161 0.121 0.079 0.091

p-value <0.001 <0.001 0.040 0.007 <0.001 <0.001 0.162 0.001
4th grade teachers

Unadjusted SD 0.160 0.162 0.182 0.175

Adjusted SD 0.121  0.109 0.142 0.126

p-value <0.001 <0.001 <0.001 <0.001

Continuous controls
4th grade math score -0.317 0.239 0.368 -0.213  -0.292 0.255 0.332 -0.229
(0.004) (0.004) (0.004) (0.004) (0.004) (0.005) (0.005) (0.005)
4th grade reading score  0.195 -0.383 -0.218 0.380 0.189 -0.387 -0.206 0.379
(0.004) (0.004) (0.004) (0.004) (0.004) (0.005) (0.005) (0.005)

Exclude invalid 4th grade

teacher assignments & 5th n n n n y y y y
grade movers?

# of students 55,142 55,142 55,142 55,142 40,661 40,661 40,661 40,661
# of 5th grade teachers 3,038 3,038 3,038 3,038 2,761 2,761 2,761 2,761
# of schools 868 868 868 868 783 783 783 783
R2 0.313 0.249 0.274 0.237 0.385 0.315 0.354 0.307
Adjusted R2 0.273 0.206 0.231 0.193 0.302 0.224 0.268 0.215

Notes: Dependent variables are as indicated at the top of each column. Regressions include school
indicators, 4th grade math and reading scores, 5th grade teacher indicators, and (in columns (5)-(8)) 4th
grade teacher indicators, with one teacher per school per grade excluded. P-values are for test of
hypothesis that all teacher coefficients equal zero, using the heteroskedasticity-robust score test
proposed by Wooldridge (2002, p. 60). Standard deviations are of teacher coefficients, normalized to
have mean zero at each school and weighted by the number of students taught. Adjusted standard
deviations are computed as described in Appendix B2. Samples correspond to those in Table IlI.



Table V
Correlated Random Effects Evaluation of VAM3: Gain Score Specification with Student Fixed Effects

Math Reading
3rd grade 4th grade Corr((1),(2)) 3rd grade 4th grade Corr((4),(5))
1) 2) 3) 4) (5) (6)
Unrestricted model
Standard deviation of teacher effects, adjusted
5th grade teacher 0.135 0.099 -0.04 0.144 0.123 -0.06
4th grade teacher 0.136 0.193 -0.07 0.160 0.163 -0.08
3rd grade teacher 0.228 0.166 -0.36 0.183 0.145 -0.24
Fit statistics
R2 0.314 0.376 0.245 0.284
Adjusted R2 0.129 0.209 0.042 0.092
Restricted model (Optimal Minimum Distance)
Ratio, effect on G4 / effect on G3 0.14 1.17
SD of G5 teacher effects 0.126 0.018 0.088 0.103
Obijective function 2,136 2,174
95% critical value 1,684 1,684
p value <0.001 <0.001

Notes: N=25,974. Students who switched schools between 3rd and 5th grade, who are missing test scores in
3rd or 4th grade (or on the 3rd grade beginning-of-year tests), or who lack valid teacher assignments in any
grade 3-5 are excluded. Schools with only one included teacher per grade or where teacher indicators are
collinear across grades are also excluded. "Unrestricted model" reports estimates from a specification with
school indicators and indicators for classrooms in grades 3, 4, and 5. Restricted model reports optimal
minimum distance estimates obtained from the coefficients from the unrestricted models for 3rd and 4th grade
gains, excluding the largest class in each grade in each school. Restriction is that the 4th grade effects are a
scalar multiple of the 3rd grade effects. Weighting matrix is the inverse of the robust sampling variance-
covariance matrix for the unrestricted estimates, allowing for cross-grade covariances.



Table VI

Magnitude of Bias in VAM1 and VAM2 Relative to a Richer Specification that Controls for
All Past Observables

VAM1 VAM2
Math Reading Math Reading
@) 2 3 4)

Standard deviation of 5th grade teachers' estimated effects from traditional VAM

Unadjusted for sampling error 0.203  0.189 0.197 0.176

Adjusted for sampling error 0.162  0.127 0.162 0.121
SD of 5th grade teachers' estimated effects from rich specification (VAM4)

Unadjusted for sampling error 0.206  0.200 0.206  0.200

Adjusted for sampling error 0.172  0.148 0.172  0.148
SD of bias in traditional VAMs relative to the rich specification

Unadjusted for sampling error 0.118 0.130 0.097 0.106

Adjusted for sampling error 0.060 0.054 0.037 0.028

Notes: N=23,415. Sample is that used in Table V, less observations with missing 5th
grade scores and those in schools rendered unusable (i.e. only one valid classroom or
collinearity between 3rd, 4th, and 5th grade classroom indicators) by this exclusion.
"Rich" specification controls for classroom assignments in grades 3 and 4 and for scores
in math and reading in grades 2, 3, and 4. "Bias" is the difference between the
VAM1/VAM2 estimates and those from the rich specification. Unadjusted estimates
summarize the estimated coefficients. Adjustments for sampling error are described in
Appendix B.



Table VII
Simulations of the Effects of Student Selection and Heterogeneous Decay on Teacher Quality Estimates

Data generating process Simulation: Comparisons between true
effects and those indicated by VAM
SD of truth SD of bias (2) as % of Correlation Rank Reliability of top

(1) correlation  quintile ranking
) 2 (©) (4) 5) (6)

Panel A: Selection is on observables

VAM1 0.148 0.054 36% 0.93 0.93 0.79

VAM2 0.148 0.028 19% 0.98 0.98 0.90

VAM4 0.148 0 0% 1.00 1.00 1.00
Panel B: Selection is on history of two tests, one observed

VAM1 0.148 0.124 84% 0.77 0.75 0.62

VAM2 0.148 0.049 33% 0.95 0.94 0.82

VAM4 0.148 0.028 19% 0.98 0.98 0.89
Panel C: Selection is on history of three tests, one observed

VAM1 0.148 0.137 92% 0.74 0.73 0.60

VAM2 0.148 0.060 40% 0.93 0.92 0.78

VAM4 0.148 0.041 28% 0.96 0.96 0.85
Panel D: Selection is on true and observed achievement history

VAM1 0.148 0.166 112% 0.64 0.63 0.52

VAM2 0.148 0.089 60% 0.86 0.85 0.70

VAM4 0.148 0.078 53% 0.89 0.88 0.73
Panel E: Selection on unobservables is like selection on observables

VAM1 0.148 0.212 143% 0.57 0.56 0.49

VAM2 0.148 0.140 95% 0.73 0.71 0.59

VAM4 0.148 0.147 99% 0.71 0.70 0.58

Panel F: Selection conforms to VAM assumptions, but effects of interest are those on the following year's
score
VAM1 0.118 0.148 125% 0.42 0.40 0.38
VAM?2 0.110 0.147 133% 0.33 0.32 0.34

Notes: Estimates in Column (1) are taken from the rich specitication for reading In 1able VI (Panels A-k)
and from Columns (2) and (4) of Table VIII (Panel F). Column (2) is from Table VI, Columns (2) and (4) in
Panel A and is computed from the models reported in Table VIl in Panel F. In Panels B-E, estimates from
Table 10 of Rothstein (2008) are used, with an adjustment for the different test scale used here. See
Appendix for details. Columns (4)-(6) are computed by drawing 10,000 teachers from normal distributions
with the standard deviations described in Columns (1)-(2). Estimates of the correlation between teachers'
true effects and the bias in their estimated effects (-0.33 for VAM 1 and -0.43 for VAM2) are used in Panel
A. In Panels B-E, this correlation is constrained to zero. In Panel F, the estimated correlation is used
again; this is -0.38 for VAM1 and -0.43 for VAM2. "Reliability of top quintile" in Column (6) is the fraction of
teachers whose true effects are in the top quintile who are estimated to be in the top quintile by the
indicated VAM.



Table VIII
Persistence of Teacher Effects in VAMs with Lagged Teachers

VAM1 VAM?2

Math Reading Math Reading

€)) ) (©) (4)

Cumulative effect of 4th grade teachers over two years
Standard deviation of 4th grade teacher effects, adjusted

on 4th grade scores 0.184 0.150 0.188 0.140
on 5th grade scores 0.108 0.118 0.118 0.110
Average persistence of 4th grade teacher's
immediate effect one year later 0.269 0.325 0.320 0.262
Correlation(effect on 4th grade,
effect on 5th grade), adjusted 0.455 0.413 0.511 0.334

Cumulative effect of 3rd grade teachers over three years
Standard deviation of 3rd grade teacher effects, adjusted

on 3rd grade scores 0.218 0.172 0.209 0.167
on 4th grade scores 0.136 0.126 0.120 0.130
on 5th grade scores 0.185 0.199 0.129 0.147
Average persistence of 3rd grade teacher's
immediate effect two years later 0.335 0.394 0.277 0.394
Correlation(effect on 3rd grade,
effect on 5th grade), adjusted 0.395 0.341 0.450 0.447

Notes: N=23,415. Sample is identical to that used in Table VI. Effects of 4th grade teachers on
5th grade scores and of 3rd grade teachers on 4th and 5th grade scores are cumulative effects.
For VAML1, the specification for gains in grade g includes controls for teachers in grades 3
through g, and the cumulative effect of the grade h teacher on the grade g gain is the sum of the
effects in h, h+1, ..., g. For VAM2, the specification is augmented with controls for math and
reading scores in grade g-1. The calculation of cumulative effects is described in footnote 31.
"Average persistence" is the coefficient from a regression of effects on 5th grade scores on
effects on 4th (Panel A) or 3rd (Panel B) scores, and indicates the expected effect on 5th grade
scores for a teacher whose initial effect was +1. All standard deviations, correlations, and
persistence parameters are adjusted for the influence of sampling error, as described in
Appendix B.
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