
Appendix to:
A Plucking Model of Business Cycles

by Stéphane Dupraz, Emi Nakamura, and Jón Steinsson

A. Defining Expansions and Contractions

A.1. Defining Expansions and Contractions

Since our empirical analysis is based on the amplitude and speed of cyclical move-

ments in unemployment, we define business cycle peaks in troughs in such a way that

they line up exactly with peaks and troughs of the unemployment rate. This yields busi-

ness cycle dates that are very similar to but not identical to those identified by the NBER

Business Cycle Dating Committee (because the NBER Business Cycle Dating Committee

uses a wide variety of cyclical indicators beyond unemployment to date turning points).

We develop a simple algorithm that defines business cycle peak and trough dates for

the unemployment rate. The basic idea is to find local minima and maxima of the un-

employment rate. However, we ignore small “blips” or “wiggles” in the unemployment

rate and focus instead on delineating substantial swings in the unemployment rate in a

similar manner as the peaks and troughs identified by the NBER Business Cycle Dating

Committee.

Table A.1 presents the peak and trough dates we identify and compares them with the

peak and trough dates identified by the NBER.

A.2. An Algorithm for Defining Expansions and Contractions

Let ut denote the unemployment rate at time t. The algorithm begins by taking the first

month of our sample as a candidate for a business cycle peak, cp. If, in all the following

months until unemployment becomes X percentage points higher than ucp, unemploy-

ment is higher than ucp, we confirm that cp is a business cycle peak. If, instead, the un-

employment rate falls below ucp before it is confirmed as a peak, the month in which this

happens becomes the new candidate peak. Once we have identified a peak, we switch to

looking for a trough (in the analogous manner) and so on until we reach the end of the

sample. Formally, starting with t � 1 the algorithm is:
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1. Set cp � t and set t � t� 1 (i.e., move to the next time period).

2. If ut   ucp go back to step 1

3. If ucp ¤ ut   ucp �X set t � t� 1 and go back to step 2

4. If ut ¥ ucp �X add cp to the set of peaks

5. Set ct � t and set t � t� 1

6. If ut ¡ uct go back to step 5

7. If uct ¥ ut ¡ uct �X set t � t� 1 and go back to step 6

8. If ut ¤ uct �X add ct to the set of troughs, and go back to step 1

We set X � 1.5 percentage points. With this value, our algorithm generates the same

set of expansions and contractions as the NBER Business Cycle Dating Committee with

one exception: Our algorithm considers the 1979-1982 double-dip recession as a single

contraction as opposed to two contractions interrupted by a brief and small expansion

(unemployment decreased by 0.6 percentage points in 1980-1981). Values for X between

0.8 and 1.5 percentage points identify exactly the same cycles. Values of X larger than 1.5

drop the 1970-1973 expansion.

An advantage of our algorithm is that it does not impose a duration upon expansions

and contractions but only a size X , in contrast to other algorithms based on turning points

like the Bry and Boschan (1971) routine. Our algorithm can therefore also be used to

define expansions and contractions in our model simulations, even for models that do

not match the duration of expansions and contractions in the real-world data.

A.3. Peak and Trough Dates from 1948 to 2020

Table A.1 presents the peak and trough dates we identify. For comparison purposes,

we also present the peak and trough dates identified by the NBER. We identify the same

set of expansions and contractions as the NBER Business Cycle Dating Committee with

one exception: we consider the 1979-1982 double-dip recession as a single contraction as

opposed to two contractions interrupted by a brief and small expansion (unemployment

decreased by 0.6 percentage points in 1980-1981). The exact timing of the NBER peaks

and troughs do not line up exactly with ours for the reasons discussed above. However,

in most cases, our dates are quite similar to theirs. The NBER peaks tend to lag our peaks
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Table A.1: Business Cycle Peaks and Troughs
Unemployment NBER
Peak Trough Peak Trough

1 [1/1948] 10/1949 11/1948 10/1949
2 5/1953 9/1954 7/1953 5/1954
3 3/1957 7/1958 8/1957 4/1958
4 2/1960 5/1961 4/1960 2/1961
5 9/1968 12/1970 12/1969 11/1970
6 10/1973 5/1975 11/1973 3/1975
7a 5/1979 1/1980 7/1980
7b 11/1982 7/1981 11/1982
8 3/1989 6/1992 7/1990 3/1991
9 4/2000 6/2003 3/2001 11/2001
10 10/2006 10/2009 12/2007 6/2009
11 9/2019 2/2020

Note: Business cycle peaks and troughs defined solely based on the unemployment
rate and, for comparison, business cycle peaks and troughs as defined by the Busi-
ness Cycle Dating Committee of the National Bureau of Economic Research.

Table A.2: The Duration of Expansions and Contractions
Dates Length in Months

Peak Trough Expansion Contraction
1 [1/1948] 10/1949 21
2 5/1953 9/1954 43 16
3 3/1957 7/1958 30 16
4 2/1960 5/1961 19 15
5 9/1968 12/1970 88 27
6 10/1973 5/1975 34 19
7 5/1979 11/1982 48 42
8 3/1989 6/1992 76 39
9 4/2000 6/2003 94 38

10 10/2006 10/2009 40 36
11 9/2019 119

Mean 59.1 26.9

by a few months and the NBER troughs tend to precede our troughs by a few months.

This implies that our estimate of the average duration of contractions is about one year

longer than what results from the NBER’s dating procedure. We identify September 2019

as a peak as opposed to February 2020 because the unemployment rate first hit 3.5%

in September 2019. When several months are tied for the lowest unemployment rate at

the end of an expansion, our algorithm picks the first of these months as the peak (and

similarly for troughs). Table A.2 lists the duration of all expansions and contractions over

our sample period.
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B. Solution Method

B.1. Normalization of µ

Recall that the matching function is Cobb-Douglas. The vacancy-filling rate is there-

fore qt � µθ�η. Furthermore, the job finding rate is ft � θtqpθtq. Combining these equa-

tions allows us to express the vacancy-filling rate as a function of the job-finding rate:

qt � µ
1

1�η pftq
�η
1�η . (B.1)

We can now see that there is a one-to-one mapping between the cost of hiring a worker

Ct � c{qt and the job-finding rate ft:

Ct �
c

qt
�
�
cµ

�1
1�η

	
pftq

η
1�η . (B.2)

This mapping can be used to write the equilibrium conditions of the model in terms of

either the cost of hiring a worker or the job-finding rate, without reference to the other

(and without reference to labor market tightness). When the model is written in this

way (e.g., in terms of the cost of hiring a worker), the parameters c and µ only enter the

model though the composite term cµ
�1
1�η . This implies that we can normalize either c or

µ without loss of generality. We choose to normalize µ � 1. Intuitively, only the cost of

hiring a worker matters to a firm. It is immaterial to the firm whether this cost consists

of posting few vacancies that fill with a high probability but are expensive to post, or of

posting many vacancies that fill with a low probability but are inexpensive to post.

B.2. Solving for the Policy Functions

To solve for the policy function under Nash-bargaining, we follow the solution

method of Fujita and Ramey (2012) to solve for the functions JNashpA, xq and qpAq. The

state-space consists of the two exogenous states A and x. We discretize the AR(1) process

for At using the Rouwenhorst (1995) method with 11 grid points, and the AR(1) process

for xt using the Tauchen (1986) method with 201 grid points. Combining equations (10)

and (11), we can solve for the functions JNash and 1{q by iteration on the policy functions.

Specifically, given guesses on the functions J and 1{q (and therefore f ), we use these

guesses to calculate the expected terms on the RHS of equation (11) and update JNash.

We then update 1{q using equation (10). We iterate until convergence.
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Under DNWR, we first solve for the Nash wage as a function of the state pA, xq by

solving the model under Nash-bargaining. This gives the Nash wage under the assump-

tion that wages will be flexible at all future dates, including wages in new matches that

are relevant to determine the outside option of workers. Under DNWR, the value func-

tion J depends on the two exogenous states x and A, and the new endogenous state of the

lagged real wage w�1, JpA, x, w�1q. Under the assumption on the Nash-bargained wage,

J is independent of the state wnew
�1 , so that for numerical considerations, the state-space is

only three-dimensional.

The recursion on J is the same as (4), up to the new dependence of the value function

on the new state w�1:

JpA, x, w�1q � maxtJ cpA, x, w�1q, 0u, (B.3)

where J c is the value if the match is continued, which solves the recursion

J cpA, x, w�1q � xA� wpA, x, w�1q � βp1� δqE pJpA1, x1, wqq , (B.4)

where the real wage w is given by equation (13). Equations (B.3)-(B.4) allow to solve for

J by iteration. We again use 11 points on the A dimension, 201 on the x dimension, and

401 grid points on the new endogenous dimension w�1. When iterating on equation (B.4),

calculating the expected term on the RHS requires to evaluate the value function J at

values of the endogenous state w that are not on the grid. We rely on linear interpolation

to do so.

Once J is solved for, we can obtain 1{qpA,wnew
�1 q from J and the free-entry condition

(10) which now depends on the new state wnew
�1 ,

JpA, xhire, wnew
�1 q �

c

qpA,wnew
�1 q

. (B.5)

B.3. Calculating Separation

Because matches can be endogenously terminated, the destruction rate st depends on

the cross-sectional distribution of employment across matches’ states. Calculating the

destruction rate in simulations of the model therefore requires us to keep track of the dis-

tribution of employment across matches’states. Under Nash-bargaining, matches’ states
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reduce to match productivity xt. We follow the method in Fujita and Ramey (2012) to

keep track of the distribution of employment across xt and calculate the destruction rate,

only adapting it to any Markovian process for x so that it can accommodate our AR(1)

assumption (2) on xt.

Define ntpxq the number of employed workers at productivity x, and nt the vector of

ntpxq. (Note that our nt is the density of the distribution of employment, while Fujita-

Ramey’s et on p.75-77 is the CDF.) We therefore have:

ut � 1�
¸
x

ntpxq. (B.6)

Define n0
t pxq the number of workers employed at productivity x at the beginning of period

t, after shocks and exogenous separation have occurred, but before endogenous separa-

tion has occurred. Denote n0
t the vector of n0

t pxq. We have:

n0
t � p1� δqpT xq1nt�1 (B.7)

where T x is the transition matrix of the Markovian process of x. Define firedt the number

of workers fired at t. It solves:

firedt �
¸
x

n0
t pxq1Jtpxq�0. (B.8)

The job-destruction rate st is given by:

st � δ �
firedt
1� ut�1

. (B.9)

The new distribution of employment at t solves the recursion:

ntpxq � n0
t pxq1Jtpxq¡0 � ftpst � p1� stqut�1q1x�xhire . (B.10)

Under DNWR, calculating the destruction rate requires to keep track of the distri-

bution of employment along both match productivity x and wages w. We do so in the

following way. Let mt�1px
�, w�q � P pxt�1 � x�, wt�1

Π
¤ w�q be the number of matches at

t�1 with idiosyncratic productivity xt�1 � x� and a real wage less than Πw�. Considering

the number of real wages below Πw� instead of below w� is for convenience: This way

it gives the number of matches with real wages below w� at the beginning of period t,
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after inflation from t � 1 to t has eroded lagged real wages. Note that mt�1px
�,8q is the

number of firms with idiosyncratic productivity xt�1 � x� at t� 1, and
°

x� mt�1px
�,8q is

employment at t� 1.

Denote m0
t px

�, w�q � P pxt � x�, wt�1

Π
¤ w�q the number of matches with idiosyncratic

productivity xt � x� and inherited real wage less than w� at the beginning of period t,

after match-specific productivity shocks and exogenous separation shocks have hit but

before any wage-adjustment. It is given by

m0
t � p1� δqT 1

xmt�1 (B.11)

where Tx is again the transition matrix of the Markovian process of x.

We now keep track of how wage adjustments change the distribution of wages under

DNWR. Denote m1
t px

�, w�q the number of wages with xt � x� and inherited real wage

less than w� after wage adjustments. It is the same as m0
t , except that all wages below

wNash
t px�q are reset to wNash

t px�q, i.e.

m1
t px

�, w�q � 0 for all w� ¤ wNash
t px�q. (B.12)

We now calculate the number of endogenously terminated matches, and keep track of

how it affects the distribution of wages. Denote wthreshpx�q the threshold on wages above

which matches with productivity x� are terminated. It is defined as the lowest wage w

such that Jpx�, wq � 0. The number firedtpx
�q of matches with productivity x� that are

terminated is m1
t px

�,8q �m1
t px

�, wthreshpx�qq. Knowing the number of exogenously and

endogeneously separated matches we can calculate the separation rate as:

st �

°
x firedtpxq

Nt�1

� δ. (B.13)

Denote m2
t px

�, w�q the number of wages with xt � x� and inherited real wage less than

w� of wages after endogenous separation. It is the same as m1
t , except that it no longer

includes wages above wthreshpx�q, i.e.

m2
t px

�, w�q � m1
t px

�, wthreshpx�qq for all w� ¥ wthreshpx�q. (B.14)

We now keep track of how new hires affect the distribution of wages. Denote

m3
t px

�, w�q the number of wages with xt � x� and inherited real wage less than w� after
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hiring. It is the same as m2
t , except that it adds the number of new hires at productivity

xhire and hiring wage whire
t , i.e.

m3
t px

hire, w�q � m2
t px

hire, w�q � ftp1� p1� stqNt�1qfor allw� ¥ whire
t pxhireq. (B.15)

This is the distribution of effective real wage in period t. Employment at t is therefore

given by
°

x� m
3
t px

�,8q.

Finally, we keep track of the eroding effect of inflation and growth from t to t � 1 to

get mtpx
�, w�q and be able to start the whole process in period t� 1. We have that

mtpx
�, w�q � m3

t px
�,Π� w�q. (B.16)

We calculate it by linear interpolation.

C. Plucking Scatter Plots

Figure C.1 below illustrates our plucking regression results graphically. It presents

scatter plots for the regressions discussed in Table 3.
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(a) Fujita-Ramey Model under Flexible Wages (Nash Bargaining)
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(b) Fujita-Ramey Model under DNWR
Figure C.1: Plucking Scatter Plots

Note: The figure displays the scatter plots associated with the plucking regressions for the Fujita-
Ramey model under flexible wages (panel a) and the Fujita-Ramey model under DNWR (panel b).
The plots feature all the expansion/contraction pairs obtained by pooling together 500 samples of
866 months. OLS regression lines are plotted in each panel.

D. The Volatility of Aggregate Shocks and the Average Level of Unemployment

Figure D.2 plots the average level of the unemployment rate in our plucking model as

a function of the volatility of aggregate shocks. The model has the property that average

unemployment increases with the volatility of the aggregate shocks, from a steady-state

level of 3.1%. Average unemployment increases steeply with the volatility of shocks. A

previous version of the paper showed than with decreasing returns to labor instead of

constant returns to labor, the increase was not as strong because decreasing returns to

labor make firms able to withstand larger shocks under DNWR without being willing to

lay off all their workers, as explained in Appendix H.
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Figure D.2: Average Unemployment and the Volatility of Aggregate Shocks

Note: The figure gives the average rate of unemployment as a function on the standard deviation
of aggregate shocks in the DNWR model of section 3.

E. Results for Untruncated Cycles

Table E.3 reports the same simulation results as Table 3 when using all expansions and

contractions, including those of more than 6.5 percentage points.

F. Robustness to a Lower Value of δ

Table F.4 gives the same statistics as in Table 3 for the model under AR(1) with the

alternative calibration of δ � 1%. In this alternative calibration, all other parameters

are the same, except that we re-calibrate γ, σa and σx in order to still match an average

unemployment rate of 5.7%, a standard deviation of unemployment of 1.6pp, and a rate

of exit from employment of 2.0%. This gives γ � 0.62, σa � 2.0% and σx � 3.9% with
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Table E.3: Simulation Results with Untruncated Cycles: Plucking Property, Speed, and Duration
Data AR(1) AR(2) AR(2) + Job Ladder

Nash DNWR Nash DNWR Nash DNWR
Subsequent expansion 1.12 0.51 0.80 0.74 0.80 0.68 0.76
on contraction, β (0.41) (0.25) (0.27) (0.21) (0.26) (0.21)
Subsequent contraction -0.38 -0.08 -0.07 -0.04 -0.04 -0.02 -0.03
on expansion, β (0.39) (0.24) (0.20) (0.10) (0.22) (0.15)
Subsequent expansion 0.59 0.28 0.69 0.55 0.62 0.47 0.64
on contraction, R2 (0.29) (0.27) (0.28) (0.27) (0.26) (0.26)
Subsequent contraction 0.22 0.05 0.03 0.02 0.00 0.02 0.01
on expansion, R2 (0.13) (0.07) (0.06) (0.02) (0.07) (0.03)
Speed of expansions 0.87 1.61 2.77 0.83 2.50 0.65 1.33
(pp / year) (0.71) (0.82) (0.27) (0.42) (0.13) (0.33)
Speed of contractions 1.89 1.61 5.10 0.80 4.20 0.64 1.86
(pp / year) (0.87) (1.72) (0.29) (0.88) (0.13) (0.39)
Duration of expansions 59.1 37.5 28.4 90.4 39.6 99.6 63.5
(months) (11.7) (6.3) (15.6) (3.3) (15.8) (6.8)
Duration of contractions 26.9 38.0 18.7 91.6 24.7 99.1 42.4
(months) (11.9) (5.2) (16.0) (2.5) (15.9) (5.9)

Note: The table compares data from the model under AR(1) shocks, from the model under AR(2)
shocks, and from the model under AR(2) shocks and a job ladder, in each case both with Nash
bargaining and with downward nominal wage rigidity (DNWR). The first (third) row reports the
coefficient (R2) in an OLS regression of the size of an expansion (percentage point fall in unem-
ployment rate) on the size of the previous contraction (percentage point increase in unemployment
rate). The second (fourth) row report the coefficient (R2) in an analogous regression of the size of a
contraction on the size of the previous expansion. The next two rows report the average speed of
expansions and contractions, measured in percentage points of unemployment per year. The final
two rows report the average duration of expansions and contractions, measured in months. For the
version of the model without a job ladder, the reported point estimate is the median value of the
statistic over 5000 samples of 866 periods each (the length of our sample of real-world data). For
the model under AR(2) shocks and a job ladder, results are shown for 1000 samples of 5*866 periods
each, to avoid samples with no or few cycles of less than 6.5 percentage points. The standard error
reported in parentheses is the standard deviation of the estimates across the 5000 (or 1000) samples.

Nash bargaining, and γ � 0.41, σa � 1.6% and σx � 2.7% with DNWR. The results with

δ � 1.9% are added to the table for comparison. The calibration with δ � 1% generates if

anything more plucking than with δ � 1.9% under DNWR, and less plucking under Nash

bargaining.

G. Job Ladder

Recall Tx is the nx � nx transition matrix for the discretized process for idiosyncratic

productivity (2) in the baseline version of the model. We add M � 1 new states to cap-

ture the trial period of new hires. New hires start at the middle productivity, but for M
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Table F.4: Simulation Results: Robustness to δ � 1%

Data Fujita-Ramey Model, AR(1)
δ � 1% δ � 1.9%

DNWR Nash DNWR Nash
Subsequent expansion 1.12 0.69 0.30 0.64 0.35
on contraction, β (0.23) (0.44) (0.27) (0.43)

Subsequent contraction -0.38 -0.04 -0.03 -0.05 -0.04
on expansion, β (0.25) (0.48) (0.31) (0.44)

Subsequent expansion 0.59 0.49 0.14 0.42 0.16
on contraction, R2 (0.25) (0.24) (0.26) (0.24)

Subsequent contraction 0.22 0.03 0.08 0.04 0.07
on expansion, R2 (0.08) (0.18) (0.11) (0.17)

Speed of expansions 0.87 3.07 1.46 2.53 1.56
(pp / year) (0.76) (0.69) (0.73) (0.64)

Speed of contractions 1.89 5.39 1.45 4.56 1.56
(pp / year) (1.28) (0.82) (1.51) (0.78)

Duration of expansions 59.1 22.4 37.6 27.4 35.8
(months) (4.4) (12.5) (6.7) (12.1)

Duration of contractions 26.9 13.4 38.5 18.3 36.1
(months) (3.4) (12.7) (5.5) (12.1)

Note: The table gives the same results as Table 3 in the paper for the Fujita-Ramey model, both
under the calibration δ � 1.9% used in the paper, and for a lower calibration of δ � 1%. The first
(third) row reports the coefficient (R2) in an OLS regression of the size of an expansion (percentage
point fall in unemployment rate) on the size of the previous contraction (percentage point increase
in unemployment rate). The second (fourth) row report the coefficient (R2) in an analogous regres-
sion of the size of a contraction on the size of the previous expansion. The next two rows report
the average speed of expansion and contractions, measured in percentage points of unemployment
per year. The final two rows report the average duration of expansions and contractions, measured
in months. For the models, the reported point estimate is the median value of the statistic over
5000 samples of 866 periods each (the length of our sample of real-world data). Expansions and
contractions of more than 6.5 percentage points are excluded from the samples. The standard error
reported in parentheses is the standard deviation of the estimates across the 5000 samples.

periods face a probability d of seeing their productivity shrink to zero (the firm will then

endogenously choose to lay them off). During their trial periods, their productivity re-

mains constant at the middle productivity level at which they started when hired—this

allows to keep the number of states manageable. But once they have spent M periods at

the firm, their trial period is over and their productivity evolves according to the transi-

tion matrix Tx.

The corresponding pnx � S � 1q � pnx � S � 1q transition matrix T̃x is T̃x �
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rApM�1q�pM�1q, BpM�1q�nx ; 0nx�pM�1q, Txs, where the matrix A is

A �

�
��������

1 0 ... ... ... ... 0

d 0 p1� dq 0 ... ... 0

d 0 0 p1� dq 0 ... 0

... ... ... ... ... ... ...

d 0 ... ... 0 p1� dq 0

d 0 ... ... ... 0 0

�
��������
, (G.1)

and the matrix B is the matrix with zeros everywhere except in the middle column of the

last row where it is p1 � dq. State 1 has productivity 0, states 2 to pM � 1q have average

productivity (since we assume newly hired workers start at average productivity), and

new hires start in state 2.

H. Sensitivity to Large Shocks under Constant Returns to Labor

Under DNWR and constant returns to labor, large negative shocks lead firms to lay

off a large number of their workers instead of maintaining them at a frozen wage. In-

deed, under constant returns to labor, the firm’s flow value of labor is A � w, which is

independent of the number of employees working for the firm. If the firm faces a large

negative shock to A that is quite persistent (as shocks are when shocks follow an AR(2)

in particular) the firm will want to lay off not just a few workers but all its workers. The

feature is specific to constant returns to labor and disappears under decreasing returns to

labor. With decreasing returns, the marginal product of workers rises as the firm lays off

workers. As a result, the firm only lays off a portion of its workforce and keeps the other

at a frozen wage.

Decreasing returns to labor also allow to move away from the Hagedorn and

Manovskii (2008) calibration while keeping hiring pro-cyclical. Recall that in the standard

DMP model low values of the flow value of unemployment z imply that the firms’ value

function increases little with productivity, and hiring is therefore close to acyclical—the

Shimer (2005) unemployment volatility puzzle. With DNWR this problem can become

even worse, making hiring counter-cyclical. In this case higher productivity has two ef-

fects: it increases the current flow value to firms A � w, but it also increases wages,

increasing the probability that the DNWR constraint will bind in the future. For a low
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value of z, the first effect is small—the root of the Shimer puzzle—and the second effect

can dominate.

Decreasing returns bring a third effect into play. While higher productivity today

still increases wages and makes it more likely that the DNWR constraint will bind in

the future, the flow value of firms is now AF 1pNq � w. If the DNWR constraint will be

binding in the future, employment N will also be lower at that point, raising the marginal

productivity F 1pNq of workers. The job-finding rate is therefore easily procyclical under

decreasing returns to labor, even away from the Hagedorn Manovskii calibration.
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