DISCUSSION OF:

LARGE AND STATE-DEPENDENT EFFECTS OF QUASI-RANDOM MONETARY EXPERIMENTS by Jorda, Schularick, and Taylor

Jón Steinsson

Columbia

October 2016

What is the causal effect of monetary policy?

- Empirical challenge:
 - Monetary policy is endogenous
 - Central banks employ legions of economists to pour over every little detail of the data
- Most common existing approaches to identification:
 - Controlling for things (VARs, Romer-Romer 04)
 - High frequency identification

Trilemma instrument:

- Countries with fixed exchange rate and open capital accounts are forced to track base country interest rate movements
- Use base country interest rate movements as an instrument

$$\mathbf{y}_{i,t+h} - \mathbf{y}_{i,t-1} = \alpha_i^h + \Delta \mathbf{r}_{i,t} \gamma_h + \mathbf{x}_{i,t}^* \boldsymbol{\beta}_{i,t}^* + \eta_{i,t+h}$$

• Instrument for $\Delta r_{i,t}$ with:

$$(\Delta r^*_{b(i),t} - \widehat{\Delta r^*}_{b(i),t}) \times PEG_{i,t} \times PEG_{i,t-1} \times KOPEN_{i,t}$$

- Controls: contemporaneous + 2 lags of change in:
 - GDP, C, I, CPI
 - short-rate, long-rate
 - house prices, stock prices
 - credit to GDP, world GDP

(excluding dependent and independent variables, of course)

Annual data on 17 countries from 1870 to 2013 (mostly post-WWII)

MAIN RESULT

 Table 4: LP-OLS vs. LP-IV. Attenuation bias of real GDP per capita and CPI price responses to interest rates. Trilemma instrument. Matched samples

(a) Full sample	Output response		OLS=IV	Price response		OLS=IV
Year	LP-OLS (1)	LP-IV (2)	<i>p</i> -value (3)	LP-OLS (4)	LP-IV (5)	<i>p</i> -value (6)
$\overline{h=0}$	0.10 [*] (0.04)	-0.22* (0.13)	0.01	0.09 (0.05)	-0.22 (0.20)	0.11
h = 1	-0.16 (0.10)	-1.05 ^{***} (0.23)	0.00	0.22 ^{**} (0.10)	-0.70** (0.33)	0.01
h = 2	-0.19 (0.15)	-2.00 ^{***} (0.35)	0.00	0.11 (0.14)	-1.61*** (0.44)	0.00
h = 3	-0.21 (0.19)	-2.31*** (0.44)	0.00	-0.08 (0.22)	-2.91 ^{***} (0.70)	0.00
h = 4	-0.06 (0.22)	-2.97 ^{***} (0.63)	0.00	-0.17 (0.32)	-3.88*** (0.92)	0.00
KP weak IV $H_0: LATE = 0$		48.14 0.00			42.76 0.01	
Observations	667	667		667	667	

Responses at years 0 to 4 ($100 \times \log$ change from year 0 baseline).

(b) Post-WW2	(1)	(2)	(3)	(4)	(5)	(6)
h = 0	0.06* (0.03)	-0.03 (0.08)	0.31	0.07 (0.05)	0.19 (0.16)	0.45
h = 1	-0.13 (0.10)	-0.90*** (0.24)	0.00	0.18** (0.08)	0.10 (0.29)	0.78
h = 2	-0.20 (0.14)	-1.89*** (0.37)	0.00	0.09 (0.13)	-0.50 (0.37)	0.11
h = 3	-0.23 (0.17)	-2.03 ^{***} (0.42)	0.00	-0.13 (0.22)	-1.35*** (0.45)	0.01
h = 4	-0.15 (0.21)	-2.62*** (0.63)	0.00	-0.30 (0.33)	-1.96*** (0.57)	0.00
		37.03 0.00			33.86 0.01	
Observations	522	522		522	522	

- Relatively few pre-WWII observations
- Price response smaller in post-WWII sample
- Output response looks permanent?
- Important to look at path of short rate to be able to interpret response of output
- Large deviation from expectations hypothesis (long rate rises between year 0 and 1)

Exclusion restriction:

 Base country interest rate shock only affects home country output through home country interest rates

Main threat to identification: Correlated shocks

- Base country raises rates because of good news in that country
- Good news may be correlated across countries
- Makes sense to fix exchange rate to country you share shocks with

$$(\Delta r^*_{b(i),t} - \widehat{\Delta r^*}_{b(i),t}) \times PEG_{i,t} \times PEG_{i,t-1} \times KOPEN_{i,t}$$

• Instrument is "Taylor rule error"

(i.e., change not explained by observables)

 Unconvincing for same reason as VAR is unconvincing (monetary policy responds to many things than are not controlled for)

- Authors control for world GDP
- Why not include time fixed effects?
 (i.e., non-parametrically control for all aggregate variables)
- Would be better, but still not necessarily enough:
 - Countries may share regional and sectoral shocks
 - Not just world shocks

CORRELATED SHOCKS: DIRECTION OF BIAS

- Most shocks should cause upward bias
 - · Good news in base correlated with good news at home
 - Demand shocks, shocks to natural rate
- In this case, true effects even bigger than (already large) effects estimated by authors
- Exception: Cost push shocks

- Author's sample: country-year observations categorized as pegs
- If all pegs were idealized open capital account pegs, first stage $R^2 = 1$
- Difference between OLS and IV come from deviation from this ideal
- Authors are not using floats as a control group

- Include floats in sample and include time fixed effects
- New instrument: base interest rate interacted with float/peg dummies
- Idea for identification:
 - Suppose float vs. peg status is randomly assigned
 - Base country does not ↑ ∆r^{*}_{b(i),t} when pegs doing well relative to floats
 - $\uparrow \Delta r^*_{b(i),t}$ differentially increases rates for pegs versus floats
 - This is then exogenous variation in monetary policy
 - Look at how much more output falls for pegs versus floats
- Identification comes from comparing pegs to floats

POST-TREATMENT CONTROLS

- Authors include contemporaneous controls
- But contemporaneous variables may be affected by shock
- Controlling for some of the effect!
 (e.g., effect on y_{i,t} controlling for c_{i,t} and i_{i,t})
- Authors want to be close to VAR timing assumption
- Under this assumption r_{i,t} affects y_{i,t} but not vis-versa (strong assumption at annual frequency)
- Benefit: Can control for more stuff
- If not true, identification potentially messed up

- Authors worry a lot about LATE versus ATE
 - LATE: Effect of interest rates for pegs
 - ATE: Average effect of interest rates for all countries
- But not obvious to me why LATE \neq ATE
- Large effects presumably reflect some sort of price adjustment frictions
- Not obvious why pegs would be special in this regard
- Exchange rate channel may cause difference. But is this first order?

COMPARISON WITH ROMER-ROMER 04 INSTRUMENT

(a) RRCH IV	Output response				
Year	LP-OLS (1)	LP-IV (2)	(b) Trilemma IV	(1)	(2)
h = 0	0.11 (0.03)	0.39 ^{***} (0.16)	h = 0	0.04 (0.02)	0.00 (0.09)
h = 1	-0.25 (0.20)	-0.23 (0.23)	h = 1	-0.12 (0.13)	-0.85*** (0.22)
h = 2	-0.74 (0.14)	-0.57 (0.53)	h = 2	-0.16 (0.18)	-1.61*** (0.32)
h = 3	-1.19 [*] (0.10)	-0.69 (0.82)	h = 3	-0.15 (0.21)	-1.57 ^{***} (0.37)
h = 4	-0.97* (0.11)	0.14 (0.89)	h = 4	-0.08 (0.25)	-1.49 ^{***} (0.37)
	0.00	13.12 0.00		0.05	16.63 0.00
Observations	71	71	Observations	372	372

(RR instrument updated for US and UK by Cloyne-Hurtgen 14)

Steinsson	(Columbia)
-----------	------------

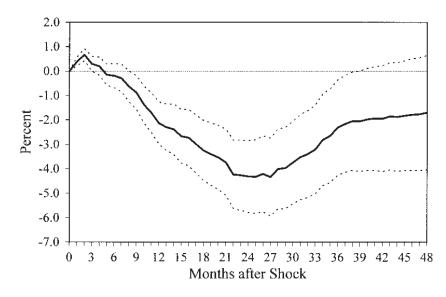


FIGURE 2. THE EFFECT OF MONETARY POLICY ON OUTPUT

Source: Romer-Romer 04

Steinsson (Columbia)

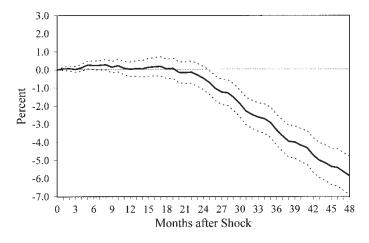
WHY SO DIFFERENT?

Results using RR instrument very different from RR results. Why?

- Different sample?
 - Includes UK
 - Updates sample period to the present
- Different data frequency (annual versus monthly)?
- Different specification?
 - Romer-Romer's specification is more like a VAR

$$\Delta y_t = a_0 + \sum_{k=1}^{11} a_k D_{kt} + \sum_{i=1}^{24} b_i \Delta y_{t-i} + \sum_{j=1}^{36} c_j S_{t-j} + e_t$$

 Coibion 12 shows that RR output response is sensitive to number of lagged dependent variables included


Prices

- Very nice contribution to empirical literature on monetary non-neutrality
- What would I do differently:
 - 1. Drop contemporaneous controls
 - 2. Add floats to sample and include time fixed effects
 - Instrument based on differential sensitivity of peg vs. float interest rates to base interest rates

Appendix

COMPARISON WITH ROMER-ROMER 04 INSTRUMENT

(a) RRCH IV	Price response				
Year	LP-OLS (4)	LP-IV (5)	(b) Trilemma IV	(4)	(5)
h = 0	0.12 (0.13)	0.43 [*] (0.23)	h = 0	0.07 (0.05)	0.16 (0.13)
h = 1	0.47 (0.13)	0.83** (0.33)	h = 1	0.18 (0.10)	0.04 (0.26)
h = 2	0.65 ^{**} (0.02)	0.79 (0.62)	h = 2	0.10 (0.14)	-0.69* (0.41)
h = 3	0.08 (0.39)	-0.59 (1.04)	h = 3	-0.08 (0.21)	-2.17 ^{***} (0.60)
h = 4	-0.51 (0.69)	-2.52* (1.42)	h = 4	-0.17 (0.34)	-3.49 ^{***} (0.81)
$\frac{\text{KP weak IV}}{H_0: LATE = 0}$	0.00	12.85 0.00		0.01	15.35 0.00
Observations	71	71	Observations	372	372

FIGURE 4. THE EFFECT OF MONETARY POLICY ON THE PRICE LEVEL

Source: Romer-Romer 04
Back