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Forecasts of professional forecasters are anomalous: they are biased,
and forecast errors are autocorrelated and predictable by forecast re-
visions. We propose that these anomalies arise because professional
forecasters do not know the model that generates the data. We show
that Bayesian agents learning about hard-to-learn features of the world
can generate all the prominent aggregate anomalies emphasized in
the literature. We show this for professional forecasts of nominal inter-
est rates and Congressional Budget Office forecasts of gross domestic
product growth. Our learning model for interest rates can explain ob-
served deviations from the expectations hypothesis of the term struc-
ture without relying on time variation in risk premia.
I. Introduction
For almost half a century, the assumption that people form rational ex-
pectations has dominated economic modeling in macroeconomics and
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learning about the long run 3335
finance. During this time, a substantial empirical literature has formu-
lated and evaluated tests of rational expectations. One finding from this
literature has been that even professional forecasters consistently fail
such tests. Professional forecasts seem to suffer from a long list of anom-
alies. For example, they are biased, forecast errors are autocorrelated,
and forecast revisions predict future forecast errors.
A related literature has tested the expectations hypothesis of the term

structure. If the expectations hypothesis holds, yields on long-term bonds
are the bondmarket’s forecast of future short rates (modulo a constant risk
premium). Empirical tests of the expectations hypothesis fail spectacularly
(e.g., Campbell and Shiller 1991). One reaction to this finding is that risk
premia in the bond market are time varying (Wachter 2006; Bansal and
Shaliastovich 2013; Vayanos and Vila 2021). An alternative view is that the
this finding reflects forecasting anomalies among bond traders (Froot
1989).1

The traditional reaction to forecasting anomalies in macroeconomics is
that they imply that professional forecasters are irrational, that is, that fore-
casters are not making efficient use of the information available to them
(Mincer and Zarnowitz 1969; Friedman 1980; Nordhaus 1987; Maddala
1991; Croushore 1998; Schuh 2001). Recent behavioral work develops this
perspective (e.g., Bordalo et al. 2020). An alternative reaction is that these
anomalies result from information frictions (Mankiw, Reis, and Wolfers
2003; Coibion and Gorodnichenko 2012, 2015). The most prominent
models of information frictions inmacroeconomics are sticky information
models (Mankiw and Reis 2002) and noisy information models (Sims
2003; Woodford 2003). Thesemodels seem eminently plausible for house-
holds and firms. Arguably, they are less well suited to explain the behavior
of professional forecasters (and bond traders). Professional forecasters
read the news every day and have no trouble observing the relevant data
precisely (i.e., without noise).
In this paper, we consider another explanation. Standard tests of rational

expectations impose the very strong assumption that agents know the
model that generates the variables that are being forecast (parameter values
and all). In reality, nobody knows the correctmodel of theworld. Since pro-
fessional forecasters do not know the correct model of the world, they use
incoming data to learn about how the world works. But such learning can
1 See also Bekaert, Hodrick, and Marshall (2001), Piazzesi, Salomao, and Schneider
(2015), Cieslak (2018), Xu (2019), and Nagel and Xu (2021).
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fundamentally change the dynamics of even perfectly rational Bayesian
forecasts. This idea has been recognized by researchers at least since Fried-
man (1979).2 Models in which learning has been shown to be important
include long-run risk models andmodels with disasters (Cogley and Sargent
2008; Croce, Lettau, and Ludvigson 2015; Bidder and Dew-Becker 2016;
Collin-Dufresne, Johannes, and Lochstoer 2016; Kozlowski, Veldkamp, and
Venkateswaran 2020).3

Realistic learning models are difficult to solve. As a consequence, early
work on learning used relatively simplemodels. But in suchmodels, Bayes-
ian learning occurs quickly, suggesting that rational learning cannot ex-
plain forecasting anomalies that persist over multiple decades. Structural
breaks have sometimes been invoked as a reason why learning might per-
sist over long periods of time, but such arguments have been informal.
Bayesian learning can, however, be extremely slow in richer, more real-

isticmodels (Johannes, Lochstoer, andMou2016). Consider, for example,
models withmultiple unobserved components, some stationary andothers
containing a unit root. A key property of such models is that the long-run
trajectory of a variable may move quite independently from the short-run
dynamics of that variable (if the short-run dynamics are dominated by the
stationary components). This means that the quarter-to-quarter dynamics
of the variablemay be quite uninformative about its longer-run properties.
Since information about low-frequency properties accumulates slowly, learn-
ing about the long run can be extremely slow. In suchmodels, several differ-
ent parameter combinations may yield a similar fit for the high-frequency
behavior of the series but may have very different implications about the
low-frequency behavior of the series. We show that in such cases it can take
many decades to learn the true parameters.
We develop two applications of these ideas, one for forecasting nomi-

nal interest rates and another for forecasting real gross domestic product
(GDP) growth. In each case, we endowBayesian forecasters with an unob-
served components model and initial beliefs about the parameters of this
model. Each period, these agents use real-time US data to update their
beliefs about the parameters and states of the model. They then forecast
the variable in question, and we assess whether the resulting forecasts are
anomalous.
Our main result is that we are able to match all the main aggregate fore-

casting anomalies emphasized in the prior literature for both interest rates
2 Other important papers that emphasize this idea include Caskey (1985), Lewis (1989a,
1989b), Barsky andDe Long (1993), Timmermann (1993), Brav andHeaton (2002), Lewellen
and Shanken (2002), Cogley and Sargent (2005), Guo andWachter (2019), Singleton (2021).

3 Bianchi, Ludvigson, and Ma (2022) analyze the performance of a machine-learning
algorithm for forecasting in a data-rich environment in which the true model is unknown.
Andolfatto, Hendry, and Moran (2008) point out the potential for small sample rejections
of rational expectations tests in an exercise that is conceptually similar to ours but without
attempting to fit the quantitative magnitude of the deviations from rational expectations.
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and real GDP when forecasters are endowed with reasonable initial beliefs.
In addition, we construct long-term yield data from our model-generated
forecasts of nominal interest rates, assuming that the expectations hypothe-
sis holds. We then run a battery of standard tests of the expectations hypoth-
esis on these data. The model-generated yield data fail the tests of the ex-
pectations hypothesis in exactly the same way as do real-world bond yields.
Notably, our sample period is roughly 40 years for the forecast data (60 years
for the term structure data), and we endow our Bayesian agents with data
back to the early post–WorldWar II period. Even though they learn for quite
a few decades, agents’ forecasts continue to display anomalies.
Since learning is slow inour unobserved componentsmodel, agents’ ini-

tial beliefs matter for a long time. An important question is whether these
findings rely on very tight (dogmatic) initial beliefs. This is not the case.
The initial beliefs we endow agents with are quite dispersed. In this sense,
we show thatwe canmatch the anomalous features of the forecast datawith
reasonable initial beliefs. Furthermore, the initial beliefs we endow agents
with accord well with historical experience prior to our sample period. For
example, our agents place small weight in 1951 on the possibility that the
nominal interest rate has a large random walk component. This is consis-
tentwith the fact that (outsideof war) theUnited States hadbeenona gold
(or silver) standard almost continuously from its founding until that point
in time and interest rates had therefore been quite stable. The large and
persistent rise and fall in nominal interest rates that occurred subsequently
was far outside of what had been experienced up to that point in history.4

Our findings demonstrate that many apparent anomalies can be ratio-
nalized by the same underlying phenomenon: initial beliefs that turn out
(ex post) not to be centered on the right location in the parameters space.
While the initial beliefs required for our explanation to work are quite dis-
persed, they are not flat. One might reasonably ask whether it is irrational
for agents to deviate fromflat initial beliefs. Interestingly, however, we show
that flat initial beliefs would not have led to appreciably smaller root mean
squared errors (RMSEs). This finding echoes themore general finding in
the forecasting literature that allowing for unrestricted priors in compli-
cated learning models often does not improve forecasting performance.
Bianchi, Ludvigson, and Ma (2022) show that including lagged forecast
revisions in a forecasting model actually worsens out-of-sample forecasting
performance, though the predictive content of this variable leads to fail-
ures of standard rational expectations tests.
A potential concern with our results is that perhaps we are able to

match the forecast anomalies we emphasize because we endow agents
with a misspecified model. To address this concern and understand bet-
ter what drives our results, we conduct a Monte Carlo simulation of our
4 See Fama (2006, 360–61) for a narrative description of these ideas.
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model for nominal interest rates. In this case, we know the true model
and thus know that the agents in our model are not learning using a mis-
specified model. We show that when initial beliefs are centered on parame-
ters that imply too little persistence in interest rates relative to the truth, our
model generates the kinds of anomalies we find in the data.5 In contrast, if
initial beliefs are centered on parameters that imply too much persistence,
our model generates anomalies in the opposite direction (e.g., negatively
autocorrelated forecast errors and overreaction rather than underreaction
in Coibion and Gorodnichenko [2015] regressions). If initial beliefs hap-
pen to be exactly centered on the true values in our Monte Carlo, no anom-
alies arise.
In the Monte Carlo simulations, we know what the truth is. When it

comes to the real world, there is no way of knowing what the truth is with-
out learning, and learning about the long run can be extremely slow. In
ourMonte Carlo simulation, a decade is a blink of an eye in terms of learn-
ing about key parameters of in our model. Even after agents have been
learning for 70 years, they are still very far from the truth and are inching
toward the truth extremely slowly. These results illustrate how rational ex-
pectations tests can be very misleading even when run over long periods
of time. They are also related to the fact that unit root tests have low power
in short samples (short often being many decades).
Whether anomalies arise from Bayesian learning about parameters,

however, depends crucially on the nature of the data. If the fluctuations
in a variable of interest are homoscedastic and not very persistent, infor-
mation about model parameters will accumulate quickly. The same is
true when a variable displays a regular pattern over and over again (such
as daily and annual cycles in the weather). In these cases, agents will
learn the value of model parameters relatively quickly and none of the
issues we emphasize will persist for very long.
Bordalo et al. (2020) document that while underreaction to news is a

pervasive phenomenon for consensus (i.e., mean) forecasts, the forecasts
of individual forecasters tend to overreact to news for a number of macro-
economic variables (although not for interest rates). They propose a
model with two features tomatch these facts: (1) noisy information to gen-
erate underreaction of consensus forecasts and (2)diagnostic expectations
to generate overreaction of individual forecasts. We view our model as an
alternative to the first feature in Bordalo et al. (2020): uncertainty about
thedata-generating process is (arguably) amoreplausible information fric-
tion than noisy information for professional forecasters. One could layer
diagnostic expectations on top of our model to match overreaction at
5 This result is similar in spirit to results in Gourinchas and Tornell (2004) about ex-
change rates.
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the individual level, just as Bordalo et al. (2020) combine diagnostic ex-
pectations with noisy information.
We show that for the anomalies we study, the behavior of individual fore-

casts is very similar to the consensus forecast.6 An important literature has
sought to understand the behavior of individual forecasts relative to the
mean forecast as well as forecast dispersion (e.g., Patton andTimmermann
2011; Andrade et al. 2016; Angeletos,Huo, andSastry 2020; Cao et al. 2021;
Crump et al. 2021; Singleton 2021; Broer and Kohlhas 2024). Patton and
Timmermann (2010) document that disagreement among forecasters is
largest about long-run outcomes and persists over time. They argue that
this points to the disagreement arising because of heterogeneity in priors
rather than differences in information sets. Analyzing this prediction is
beyond the scope of our current analysis (what we do is already very com-
putationally demanding.) However, we view this as an important topic for
future work.
Our work also relates to a rich literature on boundedly rational learning

in macroeconomics (e.g., Evans and Honkapohja 2001; Sargent 2001; Eusepi
and Preston 2011, 2018; Giacoletti, Laursen, and Singleton 2018; Molavi,
Tahbaz-Salehi, and Vedolin 2021). Kohlhas and Robertson (2022) show
that rational forecasters seeking to minimize mean squared error optimally
react cautiously to incoming signals and that this gives rise to forecasting
anomalies. Ben-David, Graham, and Harvey (2013) provide evidence for
Bayesian learning among firm chief financial officers.
The paper proceeds as follows. Section II describes our data. Sec-

tion III reviews forecasting anomalies for interest rates and real GDP data.
Section IV presents our model and results for nominal interest rates. Sec-
tion V presents our model and results for real GDP growth. Section VI
presents Monte Carlo simulation exercises aimed to shed light on why
our results turn out the way they do. Section VII concludes.
II. Data
The paper discusses two applications, one to interest rate forecasting
and the other to real GDP forecasting. This section describes the data we
use for these two applications in turn.
A. Interest Rate Data and Forecasts
The forecast data we use for the 3-month Treasury bill (T-bill) rate come
from the Survey of Professional Forecasters (SPF) conducted by the Federal
6 There is some difference for the underreaction anomaly. But quantitatively it is rela-
tively minor.
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Reserve Bank of Philadelphia. Our sample period for these forecasts is
1981:3 to 2019:4. The SPF is a quarterly survey sent out to a rotating panel
of forecasters. Our main analysis uses the mean forecast across forecast-
ers, but we also present results for individual forecasters. Figure 1 plots
the mean forecasts.
The survey is sent out near the end of the first month of each quarter.

The forecast therefore roughly coincides with the advance report of the na-
tional income and product accounts from the US Bureau of Economic
Analysis. Survey response deadlines are in the second to third week of
the second month of the same quarter. Survey respondents are asked to
provide nowcasts and one- to four-quarter-ahead forecasts of the quarterly
average 3-month T-bill secondarymarket rate. The timing of these forecasts
is as follows: the nowcast pertains to the quarterly average rate at the end of
the quarter when the survey is received, and the subsequent forecasts per-
tain to quarterly averages for each of the following four quarters.
Thedataweuse on the 3-monthT-bill secondarymarket rate are from the

Board of Governors of the Federal Reserve System.7 Our sample period for
this series is 1951:2 to 2019:4. Figure 2 plots the series. To be consistent with
the forecast data, we use quarterly averages of the daily interest rate.We also
use daily estimates of the zero coupon yield curve fromLiu andWu (2021).
Liu and Wu estimate the zero coupon yield curve for bonds of maturity 1
month to 30 years (360 months), dating back to June 1961. We convert
FIG. 1.—SPF forecasts of 3-month T-bill rate. The black line is the 3-month T-bill rate.
Each short gray line with five circles represents the SPF forecasts made in a particular quar-
ter about the then present quarter (first circle) and following four quarters (subsequent
four circles).
7 Specifically, we use the following series: https://fred.stlouisfed.org/series/TB3MS.

https://fred.stlouisfed.org/series/TB3MS
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these data to quarterly data by computing the average yield in a quar-
ter. Our sample period for these zero coupon bond yields is 1961:3 to
2019:4.
B. Real GDP Growth Data and Forecasts
The real GDP growth forecasts we analyze are from the Congressional
Budget Office (CBO). Our sample period for these forecasts is 1976 to
2019. The CBO releases its annual economic outlook at the beginning
of each year, where it provides projections for current and future real eco-
nomic growth. Since 1996, the CBOhasmade projections out to a horizon
of 11 years. Before that, they made projections out to a horizon of 6 years.
The CBO forecasts the annual average level of real output over each calen-
dar year. Growth rates are then computed as percentage changes in these
average levels across years. Up to and including their 1992 report, the CBO
forecasts real gross national product. Since then, they have forecast real
GDP. For expositional simplicity, we refer to these as real GDP forecasts
throughout the paper. Figure 3 plots the CBO forecasts. Salient features
of this figure include a series of large positive forecast errors in the
1990s (truth above the forecast) and a series of large negative forecast er-
rors in the aftermath of the Great Recession.
The data we use on actual real GDP growth are from the Real-TimeData

Set of the Federal Reserve Bank of Philadelphia. This source publishes
monthly vintages of real-time real output back to November 1965. Most
vintages contain data back to 1947:1. However, a few vintages are missing
FIG. 2.—3-month T-bill rate.
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data before 1959:3, which limits our sample period, as we discuss in greater
detail in section V.
III. Forecasting Anomalies
As we discuss in the introduction, the forecasts of professional forecast-
ers exhibit a number of anomalies—that is, patterns that previous re-
searchers have argued suggest deviations from forecast rationality. Here
we document a number of such anomalies for professional forecasts of
the 3-month nominal T-bill rate and real GDP growth. We also document
deviations from the expectations hypothesis of the term structure, which
may arise from forecast anomalies on the part of the bond market (but
may alternatively be due to time-varying risk premia). The facts we doc-
ument in this section will be key empirical targets we seek to match with
our models later in the paper.
The null hypotheses we consider below constitute tests of forecast ra-

tionality given two assumptions: (1) that forecasters aim to minimize the
mean squared error of their forecasts, implying that optimal forecasts are
equivalent to conditional expectations (Ftyt1h 5 Etyt1h), and (2) that fore-
casters know the true model of the world. For the 3-month T-bill, we focus
on forecast horizons of one to four quarters. For real GDP growth, how-
ever, we focus on forecast horizons of 1–5 years. These different forecasting
horizons reflect differences in the horizons at which the forecast anomalies
are most striking for the 3-month T-bill yield versus real GDP growth.
FIG. 3.—CBO forecasts of real GDP growth. The solid black line is the 2021:1 vintage of
real GDP growth from 1976 to 2019. The dashed black line is the initial release of GDP
growth at each point in time. Each short gray line with seven circles represents the initial
release of real GDP for the previous year (first circle) and the CBO forecasts made in a par-
ticular year about GDP growth in the following 6 years (subsequent six circles).
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A. Bias
A straightforward prediction of full-information rational expectations mod-
els is that forecasts should be unbiased at all horizons. Let yt be the vari-
able to be forecast, and let Ftyt1h denote the h-period-ahead forecast of
yt given time t information. Define the forecast error as et1hjt ; yt1h 2
Ftyt1h. The bias in forecasts can then be estimated using the following
regression:

et1hjt 5 a 1 ut1h, (1)

with a 5 0 indicating that forecasts are unbiased at a given horizon h.
Panel A of table 1 displays our estimates of a for the 3-month T-bill rate

and real output growth. Our estimates indicate that professional fore-
casts of the T-bill rate display negative bias—the truth being lower than
the forecast on average—at all horizons and the magnitude of this bias
increases with the horizon. At the four-quarter forecast horizon, SPF
forecasters overestimate the true T-bill rate by an average of 0.7 percent-
age points. These biases are statistically significant at the 1% level at all
horizons. In contrast, there is little evidence of statistically significant
bias in CBO forecasts of GDP growth at the horizons we study.
B. Autocorrelated Forecast Errors
Another prediction of full-information rational expectations models is
that forecast errors should be serially uncorrelated. To assess this predic-
tion, we consider the following regression of h-period-ahead forecast er-
rors on their own past value h periods earlier (i.e., we consider the cor-
relation of contiguous, nonoverlapping h-period forecasts):

et1hjt 5 a 1 betjt2h 1 ut1h: (2)

In a full-information setting, forecast rationality implies that a 5 0 and
b 5 0, that is, there should be no bias and forecast errors should not be
predictable by known information (the time t forecast error).
Panel B of table 1 reports our estimates of b from equation (2). SPF fore-

casts of the T-bill display substantial positive autocorrelation. The one-
quarter forecast has an autocorrelation of 0.30. This falls to 0.24 at three
quarters. These estimates are statistically significantly different from zero,
especially at horizon 2. CBO forecasts of GDP growth also display positive
autocorrelation. But in this case the autocorrelation is smaller and not sta-
tistically significantly different from zero.
C. Mincer-Zarnowitz Regressions
A classic test of forecast rationality proposed by Mincer and Zarnowitz
(1969) investigates the intuitive prediction that the truth should on



3344 journal of political economy
averagemove one-for-one with a rational forecast: when the forecast rises
by 1%, on average, the realized value should also rise by 1%. This predic-
tion can be analyzed using the regression

yt1h 5 a 1 bFtyt1h 1 ut1h: (3)

In a full-information setting, forecast rationality implies that a 5 0 and
b 5 1, that is, there should be no bias and realized values should move
one-for-one with forecasts.
Panel C of table 1 reports our estimates of b from (3). In this case, it is

the GDP growth forecasts that display substantial deviations from the
null of forecast rationality. While the estimate of b for the 1-year-ahead
TABLE 1
Forecast Anomalies

Forecast Horizon

1 2 3 4 5

A. Bias

T-bill 2.18*** 2.34*** 2.52*** 2.70*** . . .
(.05) (.09) (.14) (.19)

GDP growth .27 2.27 2.54 2.62 2.52
(.25) (.35) (.50) (.53) (.49)

B. Autocorrelation

T-bill .30* .27** .24* .13 . . .
(.14) (.12) (.12) (.13)

GDP growth .22 .16 .11 .08 .08
(.12) (.14) (.13) (.18) (.10)

C. Mincer-Zarnowitz

T-bill .97* .94** .90** .86** . . .
(.02) (.02) (.04) (.05)

GDP growth .94 .60 .03** 2.42*** 2.43***
(.10) (.38) (.27) (.18) (.29)

D. Coibion-Gorodnichenko

T-bill .23* .34* .62*** . . . . . .
(.12) (.16) (.16)

GDP growth .08 .00 .50 21.63** 21.46**
(.08) (.28) (.58) (.36) (.40)
Note.—The forecast horizons for the T-bill are quarters, while the forecast horizons for
the GDP growth are years. Standard errors are in parentheses. Asterisks represent signifi-
cance relative to the following hypotheses: a 5 0 for bias, b 5 0 for autocorrelation, b 5 1
for Mincer-Zarnowitz, and b 5 0 for Coibion-Gorodnichenko. p-values are computed us-
ing Newey-West standard errors with lag length selected as L 5 ⌈ 1:3 � T 1=2 ⌉ and fixed
b critical values, as proposed in Lazarus et al. (2018). This corresponds to a bandwidth of
17 for the T-bill regressions and nine for the GDP growth regressions.
* p < :10.
** p < :05.
*** p < :01.
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forecast is close to 1, it falls sharply at longer horizons. For the 3-year-
ahead forecast, we estimate a b close to zero. In other words, actual
GDP growth is no more likely to be high when it was forecast to be high
3 years earlier than when it was forecast to be low 3 years earlier. For the
4- and 5-year-ahead forecast, we estimate negative values (high fore-
casted growth predicts low growth on average). These three estimates
are strongly statistically significantly different from 1. In contrast, our es-
timates of b for the T-bill forecasts are close to 1. They are somewhat be-
low 1, and the difference is statistically significant. But the deviation
from the null of 1 is much less stark than in the case of GDP forecasts.
D. Coibion-Gorodnichenko Test
Another property of rational forecasts under full information is that they
should not underreact or overreact to new information. Coibion and
Gorodnichenko (2015) propose the following regression to assess this:

et1hjt 5 a 1 bðFtyt1h 2 Ft21yt1hÞ 1 ut1h:

Forecast rationality in a full-information setting implies that a 5 0 and
b 5 0. Ftyt1h 2 Ft21yt1h is known at time t, and forecast errors should
not be predictable by known information. If b > 0, the forecasts are said
to suffer from underreaction. In this case, an increase in the forecast pre-
dicts a situation where the new forecast is still too low on average, that is,
did not increase enough. If b < 0, the forecasts are said to suffer from
overreaction.
Panel D of table 1 reports our estimates of b from (3). In this case, we

see opposite anomalies for the two applications we consider. For the T-
bill forecasts, we see evidence of underreaction: we estimate positive val-
ues for b rising from 0.22 at the one-quarter horizon to 0.64 at the three-
quarter horizon. For GDP growth forecasts, however, we estimate neither
over- nor underreaction at short horizons. At the 4- and 5-year horizons,
however, we estimate negative values of b, indicating overreaction.
E. Individual Forecasts
The T-bill results presented in table 1 are for themean forecast among SPF
forecasters. Table A.1 (tables A.1–G.4 are available online) presents analo-
gous results for individual forecasters. Following Bordalo et al. (2020), we
present results where the forecasts of individual SPF forecasters are pooled
as well as the median estimate from forecaster-by-forecaster regressions.8
8 We exclude forecasts that are more than five interquartile ranges away from the me-
dian and forecasters with fewer than 10 forecasts. These are the same sample restrictions
that Bordalo et al. (2020) employ.
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For the bias, autocorrelation, and Mincer-Zarnowitz regressions, the re-
sults are very similar for individual forecasters as they are for the mean
SPF forecast (which we refer to as the consensus forecast in table A.1).
For the Coibion-Gorodnichenko regressions, the anomalies we document
are smaller at the individual level than at the aggregate level (but of the
same sign). This last fact has been documented by Bordalo et al. (2020).
Given thehighdegreeof similarity between the anomalies at the consensus
and individual level, we focus on consensus forecasts in the rest of the
paper.
F. Failures of the Expectations Hypothesis
The expectations hypothesis of the term structure implies that the yield
on an n-period bond should equal the average expected value of the yield
on a 1-period bond over the lifetime of the n-period bond, up to a con-
stant risk premium. This should hold regardless of the process followed
by the short rate. Following Campbell and Shiller (1991) and others, we
can test this implication with the following regression:

1

n o
n21

i50

yð1Þt1i 2 yð1Þt 5 a 1 bðyðnÞt 2 yð1Þt Þ 1 ut , (4)

where yðnÞt denotes the yield of an n-period bond at time t. The expecta-
tions hypothesis implies that when the yield spread between short-term
and long-term bonds (yðnÞt 2 yð1Þt ) is high, short-term bond yields will rise
in the future (the dependent variable will be large). Specifically, the expec-
tations hypothesis implies thatb 5 1. Early papers estimating equation (4)
include Fama (1984) and Fama and Bliss (1987).
The first row in table 2 presents our estimates of b in equation (4) for

bonds of maturity of two to 40 quarters. Consistent with a large earlier
literature, we find that the null hypothesis of b 5 1 is resoundingly re-
jected at short horizons. At short horizons, our estimates of b are close
to zero. As the horizon grows, our estimate of b rises closer to 1 but re-
mains below 1 for all horizons we consider.
Another implication of the expectations hypothesis of the term struc-

ture is that at times when the yield spread is unusually high, the yield on
long bondswill rise.One intuition for this is that returnsmust be equalized
(modulo a constant) for short-term and long-term bonds. If the yield
spread is high, then the long-bond yield needs to rise to reduce the return
on the long bond so that it can be equal to that of the short bond. Another
intuition is that the high yield spread implies that the short yield will rise
over the life of the long bond. As time passes, the relatively low current
short rate will then drop out of the sum of future short rates that deter-
mines the long yield (according to the expectations hypothesis). As this
happens, the sum increases and so the long yield should increase.
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We can test this implication of the expectations hypothesis with the
following regression:

yðn21Þ
t11 2 yðnÞt 5 a 1 b

1

n 2 1

� �
ðyðnÞt 2 yð1Þt Þ 1 ut : (5)

It is straightforward to show that the expectations hypothesis implies b 5
1. Early papers estimating equation (5) include Shiller (1979), Shiller,
Campbell, and Schoenholtz (1983), and Campbell and Shiller (1991).
The second row of table 2 presents our estimates of b in equation (5).

Consistent with earlier research, we find large deviations from the null of
b 5 1 implied by the expectations hypothesis. We estimate values for b
around 21 at short horizons and even larger negative values at longer
horizons. This means that when the yield spread is large, the long rate
has tended to fall rather than rise, as the expectation hypothesis implies
that it should. The conventional interpretation of this result is that it im-
plies large predictable excess returns on the long bond when the yield
spread is high.
The previous literature has identified a number of potential economet-

ric issues associated with these tests of the expectations hypothesis. One
issue is that in regression (5), the long-term yield appears in the depen-
dent variable with a negative sign and in the regressor with a positive sign.
As a consequence, measurement error in the long yield will bias the esti-
mated coefficient downward and may even result in a negative estimate.
Campbell and Shiller (1991) use instrumental variable techniques to as-
sess whethermeasurement error is the cause of the negative estimates but
find that the negative coefficients are quite robust. A second issue is small
sample bias. This issue was emphasized for regressions (4) and (5) by
TABLE 2
Failures of Expectations Hypothesis

Long-Horizon n

2 3 4 8 12 20 40

Future short
rates 2.01*** .11*** .18*** .39** .57 .74 .71

(.23) (.23) (.23) (.23) (.26) (.23) (.20)
Change in
long rate 21.02*** 2.91*** 21.03*** 21.29*** 21.61*** 22.04*** 22.75***

(.45) (.59) (.62) (.59) (.57) (.55) (.87)
Note.—The sample period is from 1961:3 to 2019:4. “Future short rates” reports esti-
mates of b from regression (4). “Change in long rate” reports estimates of b from regres-
sion (5). Standard errors are in parentheses. Asterisks represent significance relative to the
hypothesis that b 5 1. p-values are computed using Newey-West standard errors with lag
length selected as L 5 ⌈ 1:3 � T 1=2 ⌉ and fixed b critical values, as proposed in Lazarus
et al. (2018). This corresponds to a bandwidth of 19.
** p < :05.
*** p < :01.
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Bekaert, Hodrick, and Marshall (1997), who show that for these regres-
sions, taking account of small sample bias strengthens the evidence against
the null of b 5 1. We conduct Monte Carlo analysis in section VI based
on our model from section IV. This analysis does find evidence of some
small sample biases. But the quantitative magnitude of these biases is
small.
IV. Learning about Nominal Interest Rates
Traditional tests of forecast rationality evaluate the joint hypothesis that
agents form conditional expectations rationally and that they know the
true model that generates the data. Our goal is to assess whether we can
explain the forecast anomalies documented in section III by relaxing the
assumption that forecasters know the true model while maintaining the
assumption of Bayesian updating. To this end, we consider agents who
update their beliefs about how the world works using Bayesian learning
and then form real-time Bayesian forecasts.
Our first application is to learning about the 3-month T-bill rate (short

rate). We begin by presenting themodel we assume the agents use to learn
about and forecast the short rate. We then describe the details of how they
learn and forecast. Finally, we compare the resulting forecasts with the SPF
forecasts and longer-term yields.
A. An Unobserved Components Model for the Nominal
Short Rate
Following Kozicki and Tinsley (2001), we propose a “shifting end point”
model for the short rate.9 Specifically, the model we assume agents use
to learn about and forecast the short rate is

yt 5 mt 1 xt , (6)

mt 5 mt21 1
ffiffiffi
g

p
jht , ht ∼ N ð0, 1Þ, (7)

xt 5 rxt21 1
ffiffiffiffiffiffiffiffiffiffiffiffi
1 2 g

p
jqt , qt ∼ N ð0, 1Þ: (8)

Here, the short rate yt is modeled as the sum of two unobserved com-
ponents: a permanent random walk component mt and a transitory
AR(1) component xt. The transitory component xt is assumed to have
mean zero and persistence r. Shocks to mt and xt are independent, nor-
mally distributed. The total variance of these two innovations to yt con-
ditional on time t 2 1 information is j2. The share of the variance of
9 See also van Dijk et al. (2014), Cieslak and Povala (2015), Bauer and Rudebusch
(2020), Crump et al. (2021), and Bianchi, Lettau, and Ludvigson (2022).
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these innovations that is attributable to shocks to the permanent compo-
nent mt is assumed to be g, with the complementary share 1 2 g attribut-
able to the transitory component xt. We refer to this as the unobserved
components model.
To gain intuition about the model, consider the h-period forecast of the

short rate, assuming that the unobserved components at time t andparam-
eters of the model are known:

Etyt1h 5 mt 1 rhxt : (9)

This shows that mt corresponds to the long-run forecast of the short rate
(as h→∞), while xt captures short-run deviations of the short rate from
this long-run forecast. The expectations hypothesis implies that the yield
on an n-period zero coupon bond is

yðnÞt 5 cðnÞ 1
1

n o
n21

h50

Etyt1h 5 cðnÞ 1 mt 1
1

n o
n21

h50

rhxt , (10)

where c(n) denotes the constant risk premium on n-period bonds. Using
language from the term structure literature, we can say that mt represents
a level factor for bond yields, while the slope and curvature of the term
structure are governed by xt.10

Our model for the short rate abstracts from stochastic volatility. We
have extensively analyzed a version of the model with stochastic volatility
(log j2 following a random walk). This version of the model yields similar
results to the baseline model, but the stochastic volatility adds substantial
computational complexity.
B. Bayesian Learning and Forecasting
about the Nominal Short Rate
We assume that agents do not know the value of the unobserved compo-
nents (states) mt and xt. We furthermore assume that they do not know
the value of the parameters r, g, and j. We endow them with initial be-
liefs about these unknown states and parameters and data on the short
rate. We assume that they use Bayes’s law to update their beliefs about
the states and parameters over time and then in each period construct
forecasts of future short rates on the basis of their then current beliefs.
More specifically, we start the agents off with initial beliefs in 1951:2. The
agents then use data on the short rate from 1951:2 onward to update
10 Nominal interest rates are nonstationary because inflation is nonstationary: over our
sample period, nominal interest rates and inflation are cointegrated. That is, we fail to re-
ject cointegration using the tests of Engle and Granger (1987) and Johansen (1991).
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their beliefs. Starting in 1961:3, they perform online forecasting of the
short rate. In other words, each quarter they forecast the short rate on
the basis of their beliefs at that point in time.
The world did not begin in 1951:2. So, why do we not use data going

further back in time? The reason for this is that the monetary policy re-
gime in the United States was fundamentally different before 1951:2. In
March 1951, the US Treasury and the Federal Reserve reached an agree-
ment—commonly referred to as the Treasury-Fed Accord—to separate
government debt management andmonetary policy (Romero 2013). Be-
tween 1942 and the accord, the Federal Reserve abdicated its monetary
independence by committing to fix the short rate at a low value to aid
the financing of World War II and manage the massive government debt
left after World War II. Before 1942, the United States had for the most
part been on a gold (or silver) standard. Rather than model these funda-
mentally different monetary regimes explicitly, we start our analysis at
the time of the Treasury-Fed Accord and simply endow agents with initial
beliefs at that date (which presumably reflect information gleamed from
the prior history).
We use a Gibbs sampling algorithm (augmented with random walk

Metropolis-Hastings steps when needed) to sample from the posterior
distribution of the model parameters and the latent states at each time
period t. We describe this algorithm inmore detail in appendix B (apps. A–
J are available online). Armed with an estimate of agent’s belief distri-
bution for the unknown parameters and states in each time period t, we
use our unobserved components model to construct Bayesian forecasts
of the future evolution of the short rate—that is, we calculate the poste-
rior predictive distribution of future short rates given beliefs at time t.
We describe the algorithm we use to do this in appendix C. We do this
for each quarter starting in 1961:3, which is the first quarter for which
we have zero coupon yield curve data.
An advantage of the fact that agents in our model are Bayesian is that it

does not matter how we write our model. For example, our unobserved
components model has an autoregressive integrated moving average
(ARIMA) representation. The Bayesian agents in our model see through
the superficial difference between the unobserved components and
ARIMA representation of our model. Whether we write the model one
way or the other therefore does not matter for our results (something
that is not true in the case of boundedly rational learning).
We assume that agents make their forecasts on the final day of each

quarter. This implies that they have access to the average level of the
short rate in that quarter and their nowcast is the true realized interest
rate for the quarter. This is an approximation: in reality, the SPF forecast-
ers have information only up to the second to third week of the second
month of the quarter, as we discuss above.
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The short rate was constrained by the zero lower bound toward the end
of our sample period. We define the period when the target federal funds
rate was at or below 25 basis points as the zero lower bound period. This
corresponds to 2009:1 to 2015:4 in our sample period.We view this as a pe-
riod when the desired short rate is censored (but for simplicity follows the
same process as before). Our approximation to Bayesian learning for this
period is to assume that agents do not update their beliefs about the pa-
rameters (r, g, and j) but that they continue to filter the hidden states
(mt and xt) using the parameter estimates from 2008:4. Full learning then
resumes in 2016:1. This shortcut allows us to avoid substantial additional
complications, which we believe are unlikely to materially affect our re-
sults.11 Our results are very similar if we end the sample in 2008:4.
C. Initial Beliefs about the Nominal Short Rate
If learning is fast, beliefs converge quickly to the truth and initial beliefs
quickly cease tomatter. If learning is slow, beliefs will not converge quickly
to the truth and initial beliefs will continue to influence later beliefs
nontrivially for a long time—as long as it takes for beliefs to converge to
the truth. In our setting, learning about the parameters r, g, and j is slow,
while learning about the states mt and xt is reasonably fast. Our choice of
initial beliefs about mt and xt therefore does not matter for our results as
long as they are reasonable. (Recall that there is a 10-year burn-in period
from 1951:2 to 1961:3.) We assume that initial beliefs about mt in 1951:2
are N ðy1951:12, 1Þ and initial beliefs about xt in 1951:2 are N(0, 1). These ini-
tial conditions are assumed tohave a correlation of21 because of the form
of the observation equation (6).
For r, g, and j, we specify initial beliefs in 1951:2 of the following

form:

r ∼ N ðmr, j
2
rÞ, g ∼ Bðag, bgÞ, j2 ∼ IGðaj2 , bj2Þ,

where B denotes a beta distribution and IG denotes an inverse gamma
distribution. As we discuss above, these initial beliefs encode professional
forecaster’s understanding of how the world works as of 1951:2, on the ba-
sis of prior history. We search over the space of initial beliefs specified
above for the initial beliefs that can best rationalize the forecast anomalies
we document in section III. If we can find a belief (or perhaps a set of be-
liefs) that can rationalize the forecast anomalies, then we ask whether any
of these beliefs can be viewed as a reasonable initial belief for professional
11 A fuller treatment would explicitly allow for censoring of the desired short rate. This
would require us to shift to nonlinear sampling methods and would thus increase run
times by an order of magnitude. Intuitively, however, the information learned about r,
g, and j during this period would likely be limited since the desired short rate is censored.
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forecasters to have in 1951:2. If so, we conclude that the forecast anomalies
we have documented can be explained by Bayesian learning and are there-
fore not necessarily evidence of forecaster irrationality.12

To keep our analysis manageable, we fix the initial beliefs for j by set-
ting aj2 5 1:25 and bj2 5 0:5625. This belief distribution is plotted in the
bottom panel of figure 4.13 This leaves four parameters: mr, j2

r, ag, bg. We
search over the space of these parameters to find beliefs that match the
forecast anomalies as well as possible. Specifically, for each point in this
space, we construct forecasts as described above and estimate the fore-
casting regressions discussed in section III. We then minimize an un-
weighted average of the square of the difference between the regression
coefficients from the regressions based on model-generated forecasts
and the regression coefficients we estimated in section III based on real-
world data. To focus on the subspace of reasonable initial beliefs, we con-
strain themeanof the prior for r, mr, to be larger than0.5. AppendixDpro-
vides more detail.
FIG. 4.—Marginal initial beliefs distributions: T-bill rate model. Each panel plots the ini-
tial beliefs held in 1951:2 by agents in our T-bill rate model for each of the three model
parameters: r, g, and j2.
12 In app. E, we present an alternative set of results where—rather than targeting the
anomalies we document in sec. III—we directly target the time series of consensus T-bill
forecasts from the SPF at horizons 1–4 and also the 5- and 10-year zero coupon nominal
yields from the Liu and Wu (2021) data. This yields very similar results to our baseline re-
sults report below. The main difference is that the initial belief we estimate for r is concen-
trated on smaller values and the initial belief for g has a somewhat smaller standard devi-
ation. As a result, the interest rate forecasts have slightly more slope. The fit to the
anomalies and deviations from the expectations hypothesis is quite similar.

13 This belief distribution has a mode of 0.25. The standard deviation of the distribution
is undefined for values of aj2 ≤ 2. Our choice of aj2 5 1:25 is thus a very dispersed initial
belief.
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The top andmiddle panels of figure 4 plot the initial belief distributions
for r and g that minimize the objective function discussed above. The be-
lief distribution for r is concentrated on moderately large values. It is cen-
tered at 0.76 andhas a standarddeviationof 0.07.With a r 5 0:76, thehalf-
life of innovations to xt is roughly 8 months. The belief distribution for g is
concentrated on relatively small values. It has a mean of 0.09 and a stan-
dard deviation of 0.08. This implies that forecasters believed in 1951:2 that
most of the variation in the short rate was due to transitory fluctuations of
moderate persistence (i.e., an xt with a r around 0.76) rather than perma-
nent fluctuations (mt).
Are the initial belief distributions plotted in figure 4 reasonable? We

argue they are for two reasons. First, they are quite dispersed, that is, they
put substantial mass on a wide range of parameter combinations, a suf-
ficiently wide range that we think they constitute plausible beliefs fore-
casters might have had in 1951:2. Second, the belief that g was relatively
small is arguably consistent with the history of interest rates prior to
1951:2. Outside of war, the United States had been on a gold (or silver)
standard almost continuously from its founding, and the United King-
dom had been on a gold (or bimetallic) standard for hundreds of years
before that. Over this long time span, risk-free interest rates had been
quite stable at low frequencies, with most variation being rather tran-
sient (because of seasonal cycles and financial crises).14

This can be seen clearly in figure 5, which plots the yield onUK consoles
from 1727 to 2016.15 The UK console rate is arguably the best proxy of a
long-term risk-free rate prior to the twentieth century. The figure shows
that this rate fluctuated very little prior to the start of our sample period
(marked by the vertical line in the figure), never rising above 6%. Even ex-
treme events, such as the Napoleanic Wars and World War I—both cases
when the United Kingdom suspended convertibility to gold—did not
cause large swings in long-term rates. In other words, throughout this pe-
riod, investors believed that any sizable short-term fluctuations in interest
rates would be short-lived.16

The beliefs we estimate for forecasters in 1951:2 lineupwell with this his-
tory in that they put a substantial amount of weight on the notion thatmost
fluctuations in interest rates were relatively transient. Figure 5 shows that
the long upward march of interest rates in the 1960s, 1970s, and early
1980s and subsequent downwardmarch since thenwas completely without
14 Mankiw and Miron (1986) show that violations of the expectations hypothesis of the
term structure were smaller before the founding of the Federal Reserve, when there was
sizable seasonality in interest rates (which was presumably relatively easy to learn).

15 Data on secondary market yields on UK consoles are first available in 1727.
16 Consistent with this, Payne et al. (2022) show that long-run inflation expectations in

the United States were anchored during much of the nineteenth century (even during the
Civil War greenback devaluation period).
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parallel in history. As Homer and Sylla (2005, 1) put it in their A History of
Interest Rates, “A long view, provided by this history, shows that recent peak
yields were far above the highest prime long-term rates reported in the
United States since 1800, in England since 1700, or in Holland since
1600. In other words, since modern capital markets came into existence,
there have never been such high long-term rates.” It seems unlikely that
forecasters in 1951:2 would put much weight on this unprecedented
multidecade run-up and fall in interest rates occurring.
D. Model’s Fit to the Data
Figure 6 offers a visual depiction of the fit of the model’s forecasts to the
data. The top panel plots SPF forecasts of the short rate (the same data
that are plotted in fig. 1). The bottom panel plots the forecasts generated
by ourmodel with the initial beliefs discussed above. Ourmodel captures
the fact that SPF forecasters tend to predict that the short rate will mean
revert slowly toward a normal value that is shifting over time, that is, some-
thing close to the average value of the short rate over the past business
cycle. For example, in the easing cycle of 1985–87, SPF forecasters consis-
tently expect the short rate to rise. This leads them to be wrong in their
forecast in the same direction over and over again. The same is true for
agents in our model. This pattern repeats in later easing cycles, such as
1991–93 and 2001–3. When rates are rising, SPF forecasters expect them
to risemore slowly than they actually do. This occurs in 1988–89, 1994, and
1999–2000 and leads to highly autocorrelated forecast errors. Our model
matches this pattern.
FIG. 5.—UK console rate. The figure plots the yield on UK consoles from 1727 to 2016.
The vertical dashed line is 1951, the year our sample starts.
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More recently, the increasing use of forward guidance has led SPF fore-
casts to diverge from what our model predict on occasion. A prominent
example of this is the period 2012–15, when the Fed explicitly stated that
they would keep the short rate at 0.25% for several years. Ourmodel does
not incorporate this forward guidance and therefore fails to capture its
effect on SPF forecasts. Something similar occurs in 2004–7 and 2018,
when the Fed used forward guidance to inform the market about the
speed of tightening.
Table 3 presents results for the forecast anomaly regressions we ana-

lyze in section III for our model-generated data (“UC model”) and com-
pares these with analogous results for the real-world data (“SPF”). Despite
our model having very few parameters, we are able to match almost all the
anomalies we have emphasized. For all four types of regressions and at all
horizons, our model matches the magnitude and statistical significance of
the real-world estimates quite closely. Specifically, our model generates a
negative bias that increases in size with the horizon, as in the data; autocor-
relation in forecast errors of about 0.35 at horizons 1–3 and much less at
horizon 4, as in the data; Mincer-Zarnowitz coefficients slightly below 1
and decreasing with the horizon, as in the data; and underreaction that
grows with the horizon, as in the data.
Table 4 presents results for the expectations hypothesis regressions we

discuss in section III based on model-generated data and compares these
results with those based on real-world data. Again, our model matches the
FIG. 6.—Forecasted T-bill rate: data versus model. The solid black line is the 3-month
T-bill rate. Each short gray line with five circles represents forecasts made in a particular
quarter about the then present quarter (first circle) and following four quarters (subse-
quent four circles). In the top panel, these forecasts are SPF forecasts. In the bottom panel,
these forecasts are mean forecasts generated from the unobserved components model es-
timated in real time.
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real-world anomalies both qualitatively and quantitatively. For the future
short rate regressions in panel A, we estimate b coefficients close to zero
at short horizons, as in the data. The estimates then rise for longer-term
bonds as they do for the data. For the change in long rate regressions in
panel B, we estimate b coefficients that are negative at all horizons and
increasingly so as the horizon increases. Quantitatively, our estimates are
close to21 at short horizons and decrease to22.5 at long horizons. These
patterns are quite consistent with those in the real-world data.
Table 4 shows that ourmodel provides an explanation for why the long

rate has tended to fall when the yield spread is large rather then rise as
full-information rational expectations models predict. In our model, this
arises from learning. When the yield spread is large, agents in our model
TABLE 3
T-Bill Rate Forecast Anomalies: Model versus Data

Forecast Horizon

1 2 3 4

A. Bias

SPF 2.18*** 2.34*** 2.52*** 2.70***
(.05) (.09) (.14) (.19)

UC model 2.15** 2.27** 2.40** 2.51**
(.06) (.11) (.16) (.21)

B. Autocorrelation

SPF .30* .27** .24* .13
(.14) (.12) (.12) (.13)

UC model .36* .39** .35** .23*
(.17) (.14) (.11) (.12)

C. Mincer-Zarnowitz

SPF .97* .94** .90** .86**
(.02) (.02) (.04) (.05)

UC model .96* .93** .88** .84***
(.02) (.03) (.04) (.05)

D. Coibion-Gorodnichenko

SPF .23* .34* .62*** . . .
(.12) (.16) (.16)

UC model .39* .56 .89* . . .
(.18) (.37) (.42)
Note.—The forecast horizons are quarters. Standard errors are in parentheses. Asterisks
represent significance relative to the following hypotheses: a 5 0 for bias, b 5 0 for autocor-
relation, b 5 1 for Mincer-Zarnowitz, and b 5 0 for Coibion-Gorodnichenko. p-values are
computed using Newey-West standard errors with lag length selected as L 5 ⌈ 1:3 � T 1=2 ⌉
andfixed b critical values, as proposed inLazarus et al. (2018). This corresponds to abandwidth
of 17.
* p < :10.
** p < :05.
*** p < :01.
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tend to revise their estimate of the long-run level of the short rate (mt)
downward by enough to offset the forces embedded in full-information
rational expectations models.
E. Parameter and State Estimates
Figure 7 plots the evolution of the mean of the posterior distributions of
r, g, and j along with 90% credible intervals between 1961:3 and 2019:4.
Relative to the initial beliefs presented in figure 4, agents’ estimates of r
rise noticeably. The mean estimate of r is around 0.8 early in the sample
as compared with about 0.76 for the initial beliefs (in 1951:2). It then grad-
ually rises further over the sample and is around 0.9 toward the end of the
sample. Agents also revise their beliefs aboutgupward relative to the initial
beliefs. Themean estimate of g hovers between 0.1 and 0.2 for most of the
sample. In both cases, agents are revising their beliefs in the direction of
believing that interest rate fluctuations are more persistent. The mean es-
timate of j is around 0.4 early in the sample. It rises sharply during the
Volcker disinflation and gradually decreases after the early 1980s.
Figure 8 plots the mean estimate of mt over the course of the sample.

The solid black line is the mean of the real-time filtering distribution,
that is, the belief distribution about mt conditional on data up to time
t, while the solid gray line is the mean of the ex post smoothing distribu-
tions, that is, the belief distribution about mt conditional on data up to
TABLE 4
Failures of Expectations Hypothesis: Model versus Data

Long-Horizon n

2 3 4 8 12 20 40

A. Future Short Rates

Data 2.01*** .11*** .18*** .39** .57 .74 .71
(.23) (.23) (.23) (.23) (.26) (.23) (.20)

UC model 2.11*** .08** .17** .56 .81 .93 .99
(.32) (.32) (.33) (.38) (.37) (.31) (.36)

B. Change in Long Rate

Data 21.02*** 2.91*** 21.03*** 21.29*** 21.61*** 22.04*** 22.75***
(.45) (.59) (.62) (.59) (.57) (.55) (.87)

UC model 21.21*** 21.25*** 21.28*** 21.40*** 21.54*** 21.84*** 22.55**
(.63) (.64) (.65) (.70) (.76) (.88) (1.52)
Note.—The sample period is from 1961:3 to 2019:4. Panel A reports estimates of b from re-
gression (4). Panel B reports estimates of b from regression (5). Standard errors are in paren-
theses. Asterisks represent significance relative to the hypothesis that b 5 1. p-values are com-
puted using Newey-West standard errors with lag length selected as L 5 ⌈ 1:3 � T 1=2 ⌉ and
fixed b critical values, as proposed in Lazarus et al. (2018). This corresponds to a bandwidth
of 19.
** p < :05.
*** p < :01.
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2019:4. The dashed black lines plot 90% credible intervals for the real-
time filtering distribution.
It is interesting to compare the real-timefiltering distribution and the ex

post smoothing distribution infigure 8. The real-timefiltering distribution
is consistently below the ex post smoothing distribution from the begin-
ning of our sample until the early 1980s and then consistently above from
the early 1980s until very late in our sample. This reflects the fact that in
real time the agents in our model underestimate the persistence of the
run-up of interest rates in the 1960s and 1970s and again underestimate
the persistence of the fall in interest rates after the early 1980s. Ex post,
agents revise their view of history and conclude that both the run-up
and fall in interest rates were more persistent than they believed at the
time. This helps explain the persistent downward drift of long rates in
the 1980s at a time when the yield spread was high.
F. Allowing for a Break in 1990
Much recent work on the term structure of interest rates restricts atten-
tion to data after 1990 because of a break in the behavior of the term
structure around 1990. A possible reason for such a break is that bond
FIG. 7.—Parameter estimates: T-bill rate model. Each panel plots the evolution of beliefs
about one of the three unobserved components model parameters: r, g, and j. The solid
black line is the mean, and the dashed black lines are the 5th and 95th percentiles of the
posterior distribution for the parameter in question. Recall that we update beliefs about
these parameters only every fourth quarter.
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market traders at some point became convinced that the change in mon-
etary policy implemented by Paul Volcker and carried on by Alan Green-
span—which focused monetary policy on maintaining low and stable in-
flation—was likely to be permanent.
In our baseline model, we do not allow forecasters to learn about the

process that the short rate follows from any other source than past data
on the short rate itself. In reality, it is likely that forecasters’ views are to
some extent shaped by other sources of information. In particular, it
seems likely that the relentless rhetorical focus of Federal Reserve offi-
cials in the 1980s on their commitment to keep inflation low going for-
ward may have affected the views of bond market traders and forecasters
about the future evolution of short-term interest rates.
In our model, this amounts to forecasters and the bond market be-

coming convinced that g was likely to be smaller going forward than in
the past. To capture this, we now consider a case where we allow for a
break in g in 1990. Specifically, we redo our baseline short rate analysis
exactly as before except that we allow the agents in the model to reset
their beliefs about g in 1990. We assume that the new belief distribution
of agents about g in 1990 is g ∼ Bðag,2, bg,2Þ, and we search over the val-
ues of ag,2 and bg,2 as well as the hyperparameters in the baseline case to
best match the forecast anomalies.
FIG. 8.—State estimates: T-bill rate model. The figure plots the evolution of beliefs
about the permanent component mt. The solid black line is the posterior mean of the real-
time filtering distributions, the dashed black lines are the 5th and 95th percentiles of
the posterior real-time filtering distributions, and the gray line is the posterior mean of
the ex post smoothing distributions.
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We find that beliefs about g do indeed shift down in 1990: the mean of
the distribution of g shifts from 0.19 to 0.11. In addition, the belief dis-
tribution becomes much more concentrated on low values. The stan-
dard deviation of the belief distribution falls from 0.09 to 0.03. The fit
of the model to the forecast anomalies and expectations hypothesis re-
gressions we focus on above improves somewhat but is fairly similar to
the baseline case. However, the model with this break allows us to match
several additional features of the term structure quite well. (The full re-
sults for this case are presented in app. G.)
Figure 9 plots the yield spread between a 10-year zero coupon bond and

the 3-month T-bill rate in the data and in themodel.We see that themodel
is able tomatch quite well themany ups and downs of the yield spread over
this 50-year period. The main way in which the model-implied spread dif-
fers from the spread in the data is that it is slightly less volatile.
Cochrane and Piazzesi (2005) present evenmore spectacular evidence

of return predictability than earlier work by Fama and Bliss (1987),
Campbell and Shiller (1991), and others. They show that a single factor
predicts 1-year excess returns on 2–5-year maturity bonds with an R 2 in
excess of 0.4. We estimate a return predictability factor using the proce-
dure of Cochrane and Piazzesi on data from our model with the break in
1990. Our model can match the high R 2 for 1-year excess returns on 2–5-
year zero coupon bonds observed in the data: the R2 for these predictive
regressions on data from our model are between 0.46 and 0.50.
FIG. 9.—Yield spread in data and model. The figure plots the spread between the yield
on a 10-year zero coupon bond and the 3-month T-bill rate for the data and the model.
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We find it quite plausible that r, g, and j have in fact undergone a num-
ber of structural breaks over our sample period and will do so again in the
future. A likely benefit of incorporating further parameter breaks into our
model would be to further perpetuate learning. In ourmodel, agents even-
tually learn the parameters and the anomalies disappear, although this
takes many, many decades. In a model where the parameters undergo oc-
casional breaks, learning would continue for much longer, potentially
many centuries.
G. Alternative Initial Beliefs
In appendix F, we present results for two alternative assumptions about
the initial beliefs of agents in our model. The first of these is a case where
agents have much more dispersed initial beliefs about both r and g. The
second case is one where agents have “look-ahead” initial beliefs, that is,
their initial beliefs are set to approximate the beliefs agents have at the
end of our sample in our baseline analysis. In both of these cases, agents
produce forecasts that are closer to the forecasts from a random walk
model (i.e., no change) than in our baseline case. This is particularly
the case when agents start with very dispersed initial beliefs. In both cases,
this leads to a moderate deterioration of the fit to the forecasting anom-
alies and a much more dramatic deterioration of the fit to the expecta-
tions hypothesis statistics and the yield spread.
We also consider whether more dispersed initial beliefs yield better

forecasts in the sense of lower RMSEs. More dispersed initial beliefs yield
ever so slightly smaller RMSEs at short horizons but slightly larger RMSEs
at longer horizons. Averaging over horizons, the two cases are virtually
identical in terms of RMSEs. Both cases yield RMSEs that are about 3%
smaller than the SPF forecasts.
V. Learning about the Real GDP Growth
Our second application is to learning about real GDP growth. As in sec-
tion IV, we begin by presenting the model we assume agents use to learn
about and forecast GDP growth. We then describe the details of how they
learn and forecast. Finally, we compare the resulting forecasts with the
CBO forecasts we discussed in section III.
A. An Unobserved Components Model for GDP
A key issue for GDP forecasting has to do with the extent to which fluc-
tuations in GDP are trend stationary versus difference stationary. The
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model we assume agents use to learn about and forecast real GDP allows
for both trend stationary and difference stationary shocks:

yt 5 zt 1 xt , (11)

Δzt 5 m 1
ffiffiffi
g

p
jut , ut ∼ N ð0, 1Þ, (12)

xt 5 r1xt21 1 r2xt22 1
ffiffiffiffiffiffiffiffiffiffiffiffi
1 2 g

p
jvt , vt ∼ N ð0, 1Þ, (13)

where yt denotes quarterly log real GDP, zt is a difference stationary com-
ponent, and xt is a trend stationary component xt. Thedifference stationary
component zt is assumed to follow a random walk with drift m. The trend
stationary component xt is assumed to follow a mean zero AR(2) process
with autoregressive coefficients r1 and r2. The conditional standard devia-
tion of yt is denoted j. The share of innovations to yt that hit the difference
stationary component zt is g, with the complementary share 1 2 g hitting
the trend stationary component xt. The parameter g therefore governs
howbig the randomwalk component ofGDP is (Cochrane 1988).We refer
to this model as an unobserved components model. This model is slightly
more complicated than our model for interest rates. It has two extra pa-
rameters: m to allow for a trend and r2 to allow for hump-shaped dynamics.
B. Bayesian Learning and Forecasting about GDP
As in the interest rate application discussed in section IV, we assume that
agents in the model do not know the value of the unobserved components
(states) zt and xt or parameters m, r1, r2, j, and g. We start the agents off with
an initial belief distribution about these unknown states and parameters in
1959:3. This is the first date for which we have a full set of real-time GDP
vintages with which to do our analysis. The agents then observe (real-time)
data onGDP andupdate their beliefs about the states and parameters using
Bayes’s law. Belowwe plot results starting in 1976:1. This corresponds to the
first period for which CBO forecasts are available.
We assume that agents have access to the first release of fourth-quarter

GDP for the prior year (the advance release for that quarter from the Bu-
reau of Labor Statistics) when they forecast. This is meant to approximate
the information set the CBOhas access to when it forecasts GDP each year.
The CBO’s forecasts (contained in its economic outlook report) are typi-
cally released in January or February of each year. While this is usually be-
fore the advance release of fourth-quarterGDP for the previous year,much
of the underlying data that are used to construct the advance release have
been made public at this point. This implies that the fourth-quarter ad-
vance release can be predicted fairly accurately.We therefore think that en-
dowing our model agents with the fourth-quarter advance release is the
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best way to approximate the information set of the CBO at the time it con-
structs its annual GDP forecast.
The parameters of the model and latent state estimates are updated

every four quarters to line up with the timing of when the CBO con-
structs forecasts. We describe the algorithm we use to update agent’s be-
liefs in appendix H. Armed with estimates of agent’s beliefs, we use our
unobserved components model to construct forecasts of GDP growth.
We describe the algorithm we use to do this in appendix I.
C. Initial Beliefs about GDP
As in the interest rate application in section IV, learning about the param-
eters in our model for GDP is slow, and agents’ initial beliefs about the
parameters matters. In contrast, learning about the states zt and xt is rea-
sonably fast, implying that initial beliefs about these states do not affect
our results. (In this case, there is a roughly 15-year burn-in period from
1959:3 to 1976.) We assume that agents’ initial beliefs about zt and xt in
1959:3 are zt ∼ N ðy1959:3, 0:012Þ and xt ∼ N ð0, 0:012Þ.
We specify initial beliefs for the parameters in 1959:3 of the following

form:

r1 1 r2 ∼ N ðmr, j
2
rÞIðr1, r2Þ, r2 ∼ N ðmr2

, j2
r2
ÞIðr1, r2Þ,

g ∼ Bðag, bgÞ, m ∼ N ðmm, j
2
mÞ, j ∼ IGðaj, bjÞ,

where I(r1, r2) is an indicator function that is 1 if the xt process is station-
ary and 0 otherwise. For more detail, see appendix J.
We fix mm 5 0:01 and jm 5 0:01, corresponding to an initial belief for av-

erage annual long-run growth of 4%.We fix aj 5 7:0625 and bj 5 0:0014,
corresponding to a mean initial belief for j2 of 0.0152 and standard devia-
tion of 0.01. That leaves six parameters to estimate to fit the forecast anom-
alies presented in section II, which we denote v 5 ðmr, jr, mr2

, jr2
, ag, bgÞ0.

We do this in a similar fashion to what we do in the interest rate application
in section IV. Appendix J provides details.17

The resulting initial beliefs are plotted in figure 10. We view these as rea-
sonable initial beliefs in that they are quite dispersed. For example, the ini-
tial belief distribution on r1 1 r2 puts substantial weight on values between
0.7 and 1. This range spans cases were the transitory component xt has a
17 We place some bounds on the values of parameters that can be chosen in this estima-
tion. Namely, we restrict the standard deviation of the initial beliefs on r1 1 r2, r2, and g to
be greater than or equal to 0.05. For the initial belief distribution for g, we additionally put
an upper bound on the standard deviation of 0.15 and restrict the mode of the distribution
to be less than 0.6. The latter restriction imposes that agents believe that at least 40% of the
variation in output comes from trend stationary fluctuations. These restrictions are useful
to guarantee dispersed initial beliefs and to generate initial beliefs where a significant frac-
tion of output fluctuations are trend stationary.
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modest half-life of less than a year and cases where it is very persistent. Like-
wise, the initial belief for g is centered close to 0.5 and has high variance.
The initial belief for r2 embeds a belief that the transitory component of
GDP is hump shaped. But again, this distribution has substantial variance.
D. Model’s Fit to the Data
Figure 11 offers a visual depiction of the fit of the forecasts that our
model generates to the data. The top panel plots CBO forecasts of real
GDP growth (the same data that are plotted in fig. 3). The bottom panel
plots the forecasts generated by our model with the initial beliefs
discussed above. The model is able to match the broad characteristics
of CBO forecast errors. For example, the model matches the large fore-
cast errors the CBO made in the early 2010s when it forecast that the
economy would grow unusually fast after the Great Recession but growth
turned out to bemoremodest. Also, the model generates persistent fore-
cast errors in the late 1990s when growth was high for several years but
the CBO persistently forecast lower growth.
Table 5 presents results for the forecast anomaly regressions we ana-

lyze in section III for our model-generated data (“UC model”) and com-
pares these with analogous results for the real-world data (“CBO”). Our
model is able to match the anomalies in the CBO forecasts quite well.
The most spectacular anomaly in the case of the CBO forecasts is for the
Mincer-Zarnowitz regressions in panel C. These start off close to 1 at the
1-year horizon but fall to zero at the 3-year horizon and to roughly 20.4
FIG. 10.—Marginal initial beliefs distributions: real GDP growth model. Each panel
plots the initial beliefs held in 1959:3 by agents in our model for the following five param-
eter combinations: r1 1 r2, r2, g, m, and j2.
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at the 4- and 5-year horizons. Ourmodel is able tomatch this pattern quite
well. The model also yields positively autocorrelated forecast errors, over-
reaction at long horizons in the Coibion-Gorodnichenko regression,
and negative bias. For almost all of the anomaly statistics, the model esti-
mate is not statistically significantly different from the data estimate,
though the exact numerical fit is not as impressive as in our interest rate
application.
E. Parameter Estimates
Figure 12 plots the evolution of the mean of the posterior distributions
of the five parameters of our model for GDP along with 90% credible in-
tervals over the period 1976 and 2019. Perhaps the most striking feature
of figure 12 is how little beliefs about the parameters change over time.
We do see that j trends downward by a modest amount, likely reflecting
the Great Moderation. Also, r2 trends modestly upward. But r1, g, and m

change very little. This lack of change reflects a combination of at least
two things. First, it may be that some of the parameters are close to their
true values. Second, for those parameters that are further away from
their true values, little information can be gleaned from the data about
their true values resulting in posterior beliefs being little changed even
over a 40-year period. This is perhaps not surprising given how difficult it
FIG. 11.—Forecast whisker plots: real economic output growth. The solid black line is
the most recent vintage of GDP growth estimates. The dashed black line is the initial re-
lease of GDP growth for each period. Each short gray line with seven circles represents
forecasts made in a particular year about that year (first circle) and the following 6 years
(subsequent six circles). In the top panel, these forecasts are CBO forecasts. In the bottom
panel, these forecasts are mean forecasts generated from the unobserved components
model estimated in real time.
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is to distinguish between difference stationary time series and persistent
but trend stationary time series.
VI. Why Does It Work?
To understand better why it is that our Bayesian learning model can
match the forecast anomalies that we document in section III, we now
simulate data from the model we use in section IV and assess how learn-
ing occurs in this model. Relative to the analysis earlier in the paper, in
this section, we know the true data-generating process. We can therefore
assess how long it takes agents to learn the truth and how initial beliefs
that differ in various ways from the truth affect results from the forecast-
ing regressions we consider in section III.
TABLE 5
Real GDP Forecast Anomalies: Model versus Data

Forecast Horizon

1 2 3 4 5

A. Bias

CBO .27 2.27 2.54 2.62 2.52
(.25) (.35) (.50) (.53) (.49)

UC model 2.65 21.65** 21.36** 2.85 2.66
(.32) (.45) (.45) (.42) (.40)

B. Autocorrelation

CBO .22 .16 .11 .08 .08
(.12) (.14) (.13) (.18) (.10)

UC model .39* .31 .23* .06 2.05
(.17) (.16) (.10) (.10) (.05)

C. Mincer-Zarnowitz

CBO .94 .60 .03** 2.42*** 2.43***
(.10) (.38) (.27) (.18) (.29)

UC model .84 .35** .34* 2.38*** 2.98**
(.11) (.17) (.31) (.19) (.53)

D. Coibion-Gorodnichenko

CBO .08 .00 .50 21.63** 21.46**
(.08) (.28) (.58) (.36) (.40)

UC model .06 2.76 2.11 2.78 21.22**
(.09) (.44) (.26) (.39) (.38)
Note.—The forecast horizons are years. Standard errors are in parentheses. Asterisks
represent significance relative to the following hypotheses: a 5 0 for bias, b 5 0 for auto-
correlation, b 5 1 for Mincer-Zarnowitz, and b 5 0 for Coibion-Gorodnichenko. p-values
are computed using Newey-West standard errors with lag length selected as L 5 ⌈1:3�T 1=2⌉
and fixed b critical values, as proposed in Lazarus et al. (2018). This corresponds to a band-
width of 9.
* p < :10.
** p < :05.
*** p < :01.
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Recall that the model we use for the short rate in section IV is

yt 5 mt 1 xt , (14)

mt 5 mt21 1
ffiffiffi
g

p
jht , ht ∼ N ð0, 1Þ, (15)

xt 5 rxt21 1
ffiffiffiffiffiffiffiffiffiffiffiffi
1 2 g

p
jqt , qt ∼ N ð0, 1Þ: (16)

We present results for three cases, which we refer to as a case of unbi-
ased initial beliefs, downward-biased initial beliefs, and upward-biased
initial beliefs. Figure 13 plots the true parameter values (gray lines)
and initial belief distributions (black lines) for these three cases. A more
detailed description follows:

• Unbiased initial beliefs.—In this case, we set the true parameters to
values r 5 0:95, g 5 0:3, and j 5 0:5. These values are close to the
mean of the belief distribution we estimate from the real-world data
in the second half of our sample.We assume that agents in themodel
have an initial belief distribution with the property that the mode of
the belief distribution for each parameter is equal to the truth:

r ∼ N ð0:95, 0:01Þ, g ∼ Bð9:052, 19:788Þ, j2 ∼ IGð1:25, 0:5625Þ:
• Downward-biased initial beliefs.—In this case, we again set the true pa-
rameters to values r 5 0:95, g 5 0:3, and j 5 0:5. However, we
assume that agents in the model have an initial belief distribution
FIG. 12.—Parameter estimates: real economic output growth. Each panel plots the evo-
lution of beliefs about one of the five unobserved components model parameters: r1, r2, g,
m, and j. The solid line is the mean, and the dashed lines are the 5th and 95th percentiles
of the posterior distribution for the parameter in question. Recall that we update beliefs
about these parameters only every fourth quarter.
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with the property that the modes of the belief distributions for r

and g are smaller than the truth:

r ∼ N ð0:4, 0:01Þ, g ∼ Bð2:34, 26:5Þ, j2 ∼ IGð1:25, 0:5625Þ:
• Upward-biased initial beliefs.—In this case, we set the true parameters to
values r 5 0:1, g 5 0:01, and j 5 0:5.We then assume that agents in
themodel have an initial belief distributionwith the property that the
modes of the belief distributions for r and g are larger than the truth:

r ∼ N ð0:95, 0:01Þ, g ∼ Bð9:052, 19:788Þ, j2 ∼ IGð1:25, 0:5625Þ:
The reason why we choose different true values for this case is that
the true value of rused in the other two cases is sufficiently large that
it is difficult to illustrate the effects of beliefs that are upward biased
relative to this truth.

For each of these three sets of assumptions, we simulate 500 samples
of the same length as the short rate data we use in section IV, that is, 275 pe-
riods corresponding to the sample period from 1951:2 to 2019:4. For
each of these simulated data series, we then perform the same exercise
as we did in section IV. Given their initial beliefs, the agents in the model
learn about the parameters of the model using the short rate series and
FIG. 13.—Truth and initial beliefs for three simulations. The figure plots the truth (gray
line) and initial belief distribution (black line) for r (left), g (middle), and j (right) for the
three cases we consider. The top row is the unbiased initial beliefs case, the middle row is
the downward-biased initial beliefs case, and the bottom row is the upward-biased initial
beliefs case.
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Bayes’s law. They then construct Bayesian forecasts. The length of the sam-
ple period for the Bayesian forecasts is the same as for the real-world data.
We then run the same forecast rationality and expectations hypothesis tests
on the resulting data as we did on the real-world data in section IV.
Tables 6 and 7 present the results from this analysis. Table 6 presents

results on autocorrelation of forecast errors, the Mincer-Zarnowitz test,
and Coibion-Gorodnichenko tests of over- and underreaction, while ta-
ble 7 presents results on the two tests of the expectations hypothesis we
consider in section III. In each case, we report three statistics. The first is
the mean estimated coefficient across the 500 simulations, the second is
the standard deviation of the estimated effects across simulations (in pa-
rentheses), and the third is the fraction of simulations that give a smaller
estimate than the estimate based on real-world data.
Themain finding from this analysis is that the downward-biased initial be-

liefs simulation roughly matches all of the anomalies we document in real-
world data. This simulation yields positively autocorrelated forecast errors,
underreaction in the Coibion-Gorodnichenko regression, values below 1
in the future short rate regression, and negative values for the change in
long rate regressions. In virtually all cases, thedownward-biased initial beliefs
simulation is quantitatively consistent with our real-world estimates of the
anomalies in the sense that the real-world estimate is well within the 95%
central probabilitymass of the distribution of estimates from the simulation.
In sharp contrast, the upward-biased initial belief simulation yields anom-

alies with the opposite sign fromwhat we see in the real-world data. This sim-
ulation yields negatively autocorrelated forecast errors, overreaction in the
Coibion-Gorodnichenko regression, and values above 1 in both the future
short rate regression and the change in long rate regression. In addition
to this, the upward-biased initial beliefs simulation also yields a very different
pattern from the real-world data for the Mincer-Zarnowitz regression, while
the downward-biased initial beliefs simulation matches the real-world data
for this regression as well.
Finally, the unbiased initial beliefs simulation yields results that are in

most cases consistent with full-information rational expectations on aver-
age. It yields virtually no autocorrelationof forecast errors and a coefficient
very close to zero in the Coibion-Gorodnichenko regressions (i.e., neither
underreaction nor overreaction). For the expectations hypothesis regres-
sions, it yields coefficients that are on average slightly larger than 1 at lon-
ger horizons. But the value 1 is not far from the middle of the distribution
of coefficients across simulations.
From these results, we conclude that beliefs in society about interest

rates in 1951 that underestimated the extent to which fluctuations in interest
rates would be persistent relative to what turned out to be the case pro-
vide an explanation for the forecast anomalies and failures of the expec-
tations hypothesis that we discuss in section III. As we discuss earlier in the
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paper, such beliefs seem reasonable given the prior history of interest rate
movements.Outside of war, theUnited States had been on a gold or silver
standard and a run-up and run-down of interest rates such as was experi-
ences from the 1960s to the 2000s had never before happened.
TABLE 6
Forecast Anomalies in Simulated Data

Initial Beliefs

Forecast Horizon

1 2 3 4

A. Autocorrelation

Unbiased:
Mean estimate .01 .00 2.00 2.01
SD across simulations (.08) (.09) (.11) (.13)
Fraction of simulations 1.00 1.00 .99 .84

Downward biased:
Mean estimate .16 .19 .19 .18
SD across simulations (.09) (.10) (.12) (.14)
Fraction of simulations .93 .78 .61 .33

Upward biased:
Mean estimate 2.34 2.32 2.28 2.26
SD across simulations (.06) (.07) (.08) (.08)
Fraction of simulations 1.00 1.00 1.00 1.00

B. Mincer-Zarnowitz

Unbiased:
Mean estimate .96 .92 .88 .83
SD across simulations (.03) (.05) (.08) (.11)
Fraction of simulations .58 .62 .57 .53

Downward biased:
Mean estimate .98 .95 .90 .85
SD across simulations (.03) (.05) (.08) (.11)
Fraction of simulations .27 .40 .45 .47

Upward biased:
Mean estimate .37 .33 .34 .35
SD across simulations (.17) (.22) (.25) (.27)
Fraction of simulations 1.00 1.00 1.00 .99

C. Coibion-Gorodnichenko

Unbiased:
Mean estimate .01 .01 .01 . . .
SD across simulations (.09) (.12) (.15)
Fraction of simulations .99 .99 1.00

Downward biased:
Mean estimate .18 .32 .41 . . .
SD across simulations (.11) (.19) (.25)
Fraction of simulations .66 .55 .79

Upward biased:
Mean estimate 2.52 2.55 2.53 . . .
SD across simulations (.10) (.13) (.17)
Fraction of simulations 1.00 1.00 1.00
Note.—For each case, the table shows the mean estimate across simulations, the stan-
dard deviation across simulations, and the fraction of simulations that give a smaller esti-
mate than the real-world data.
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It is instructive to consider the speed of learning about the key param-
eters r and g in the simulations with downward-biased initial beliefs. Fig-
ure 14 plots the evolution of beliefs about these parameters over time in
the simulations. The gray line denotes the true value of the parameters.
The solid black line plots the evolution of the mean point estimate of the
parameters across simulations from 1951:2 to 2019:4. In 1951, the point
estimates of both r and g are substantially below the truth. Over time,
both estimates rise, but this happens very slowly, and both continue to
be substantially below the truth at the end of the sample—when agents
have been learning about these parameters for almost 70 years.
Figure 14 shows that it takes substantially longer than 70 years for the

agents in ourmodel to learn the true values of the parameters r andg. One
reason for this is that increases in r and g both increase the persistence of
TABLE 7
Failures of Expectations Hypothesis in Simulated Data

Initial Beliefs

Long-Horizon n

2 3 4 8 12 20 40

A. Future Short Rates

Unbiased:
Mean estimate .95 1.01 1.05 1.19 1.31 1.51 2.06
SD across simulations (.64) (.63) (.66) (.72) (.76) (.82) (1.03)
Fraction of simulations .07 .07 .08 .12 .16 .16 .08

Downward biased:
Mean estimate .17 .20 .23 .33 .42 .57 .97
SD across simulations (.19) (.21) (.22) (.29) (.33) (.40) (.56)
Fraction of simulations .17 .30 .38 .57 .65 .66 .29

Upward biased:
Mean estimate 2.46 2.14 1.97 1.71 1.64 1.59 1.50
SD across simulations (.21) (.16) (.14) (.09) (.07) (.06) (.05)
Fraction of simulations .00 .00 .00 .00 .00 .00 .00

B. Change in Long Rate

Unbiased:
Mean estimate .90 .93 .95 1.01 1.08 1.20 2.08
SD across simulations (1.27) (1.32) (1.36) (1.50) (1.63) (1.92) (3.00)
Fraction of simulations .07 .08 .07 .06 .05 .03 .03

Downward biased:
Mean estimate 2.66 2.69 2.74 21.03 21.39 22.04 23.62
SD across simulations (.38) (.40) (.42) (.52) (.64) (.91) (1.84)
Fraction of simulations .17 .28 .24 .32 .34 .51 .66

Upward biased:
Mean estimate 3.91 4.13 4.38 5.59 6.90 9.56 13.77
SD across simulations (.42) (.42) (.42) (.51) (.62) (.86) (1.62)
Fraction of simulations .00 .00 .00 .00 .00 .00 .00
Note.—For each case, the table gives the mean estimate across simulations, the standard
deviation across simulations, and the fraction of simulations that give a smaller estimate
than the real-world data.
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fluctuations in the short rate. When agents revise upward their beliefs
about the persistence of the short rate, they face the problem of whether
the higher persistence is due to amore persistent xt process (i.e., a higher
r) or to a more volatile mt process (i.e., higher g). This is an example of
what Johannes, Lochstoer, andMou (2016) refer to as confounded learn-
ing, which they argue slows down learning. Figure 15 compares the speed
of learning about r in the downward-biased case with a case that is the
same as the downward-biased case except that g is set (very close) to zero
and agents have a very tight initial belief distribution around the true value
of g—that is, we turn off variation in mt and learning about g. In this case,
learning about r is much quicker.
Figure 15 shows that confounded learning (i.e., having two unob-

served persistent components) slows down learning in our setting. But
even when variation in mt and learning about g has been shut down,
learning about r still takes quite a few decades. This illustrates that learn-
ing about the persistence of highly persistent time series processes is
quite slow. Unit root tests have low power for similar reasons.
An important point to emphasize is that the agents in the model can-

not exploit past forecast anomalies to improve their forecasts. Agents are
already optimally incorporating new information to update their beliefs
through Bayes’s rule. At every point in time, the agents in the model ex-
pect that their future forecasts will be free of anomalies. In our simple
model, this will eventually be true once their beliefs have converged to
FIG. 14.—Parameter learning with downward-biased initial beliefs. The figure plots the
evolution of beliefs about r (A) and g (B) over time when agents start off with downward-
biased initial beliefs. The gray line is the truth. The solid black line is the evolution over
time of the mean point estimate across simulation. Recall that the point estimate in a par-
ticular simulation is the mean of the belief distribution of the parameter in question in that
simulation. The dashed black lines plot the evolution of the 90% and 10% quantiles of the
distribution of point estimates across simulations.
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the true parameters. In the short run, each new data point on average
moves their beliefs a little bit closer to those true parameters. This pro-
cess is slowed down by the fact that each data point contains relatively
little information about the long-run dynamics of the short rate.
VII. Conclusion
In this paper, we provide a new interpretation of well-known forecast
anomalies of professional forecasters. We stress that tests of forecast ra-
tionality are joint tests of rationality and the notion that forecasters know
the true model of the world. We relax the assumption that forecasters
know the true model of the world and show that the anomalies can be
FIG. 15.—Learning about persistence with different values for g. The figure plots the
evolution of beliefs about r for the downward-biased case (solid black line) and for a case
that is the same as the downward-biased case except that g is set (very close) to zero and
agents have very tight initial beliefs around the true value of g (dashed black line). The
gray line is the truth.
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explained via Bayesian learning of unobserved components models.
Since the anomalies in question persist for decades, it is important that
learning is slow in our setting. We show that learning is indeed extremely
slow in the type of unobserved components model we consider. This im-
plies that forecasters with reasonable initial beliefs that turn out not to
be centered on the truth result in forecast anomalies of the kind we ob-
serve in the data that persist for decades. We also perform a simulation
exercise in which we know the true value of the parameters. We show in
this exercise that reasonably dispersed initial beliefs can yield extremely
persistent forecast anomalies. In this simulation exercise, we know that
agents are using a correctly specified model to learn and yet learning
is extremely slow. Forecast anomalies can thus arise in part for the same
reason that it is hard for econometricians to distinguish certain classes of
models/parameters even with decades of data, for example, it is hard to
reject a unit root in many macroeconomic settings.
Data Availability
Data and code to replicate all results in this paper are available in Far-
mer, Nakamura, and Steinsson (2024) in the Harvard Dataverse,
https://doi.org/10.7910/DVN/JQDGJN.
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