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A Individual Forecaster Anomalies

Table A.1: Individual Forecast Anomalies

Forecast Horizon

1 2 3 4

Panel A: Bias
Consensus Forecast -0.18*** -0.34*** -0.52*** -0.70***

(0.05) (0.09) (0.14) (0.19)

Pooled Individual -0.19*** -0.34*** -0.50*** -0.68***
(0.01) (0.02) (0.03) (0.04)

Median Individual -0.20 -0.34 -0.47 -0.62

Panel B: Autocorrelation
Consensus Forecast 0.30* 0.27** 0.24* 0.13

(0.14) (0.12) (0.12) (0.13)

Pooled individual 0.34*** 0.34*** 0.30*** 0.16***
(0.04) (0.026) (0.024) (0.025)

Median individual 0.39 0.37 0.26 0.09

Panel C: Mincer-Zarnowitz
Consensus Forecast 0.97* 0.94** 0.90** 0.86**

(0.02) (0.02) (0.04) (0.05)

Pooled individual 0.95*** 0.92*** 0.88*** 0.83***
(0.006) (0.008) (0.009) (0.012)

Median Individual 0.90 0.82 0.75 0.64

Panel D: Coibion-Gorodnichenko
Consensus Forecast 0.23* 0.34* 0.62***

(0.12) (0.16) (0.16)

Pooled individual 0.05 0.18*** 0.29***
(0.030) (0.031) (0.034)

Median Individual 0.13 0.19 0.28

Note: The “Consensus Forecast” results are for regressions using the mean SPF forecast across forecasters –
same as in Table 1. The “Pooled Individual” results are for regressions where the individual forecasts in the
SPF are pooled together in single regression. For the “Median Individual” results we run separate regressions
for each forecaster in the SPF and report the median across forecasters. The forecast horizons are quarters.
Stars represent significance relative to the following hypotheses: α = 0 for bias, β = 0 for autocorrelation,
β = 1 for Mincer-Zarnowitz, β = 0 for Coibion-Gorodnichenko. Standard errors are reported in parentheses.
P-values are computed using Newey-West Standard Errors. *p < 0.1, **p < 0.05, ***p < 0.01.
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B Bayesian Updating about Parameters and States for Interest Rates

In this appendix, we describe in more detail the Gibbs Sampling algorithm we use to sample

from the joint posterior of the model parameters and latent states in the UC model for the short

rate. Define the vector of the parameters and latent states of the model through date t as θ ≡

(ρ, γ, σ,µ1:t,x1:t)
′. Let p(θ) denote the joint prior over the parameter vector θ. Let L(y1:t|θ) denote

the likelihood function of the data through time t, given a set of parameters θ. Our goal is to

sample from the posterior of the parameters given the data, p(θ|y1:t), where we know

p(θ|y1:t) ∝ L(y1:t|θ)p(θ)

We assume functional forms for the initial beliefs as follows

ρ ∼ N(µρ, σ
2
ρ)

γ ∼ B(αγ , βγ)

σ2 ∼ IG(ασ2 , βσ2)

The initial beliefs for the states are given by

µ1951Q2 ∼ N(y1951Q2, 1)

x1951Q2 ∼ N(0, 1)

where y1952Q2 denotes the 3-month Treasury bill rate in 1952Q2.

We start with an initial guess of the parameters θ(0) =
(
ρ(0), γ(0), σ(0),µ

(0)
1:t ,x

(0)
1:t

)′
. Given a

draw of the parameters θ(b), we draw θ(b+1) as follows:

1. Draw ρ(b+1)|γ(b), σ(b),µ
(b)
1:t ,x

(b)
1:t ,y1:t. Given the other parameters, beliefs about ρ can be up-

dated from the autoregression

x
(b)
t = ρx

(b)
t−1 +

√
1− γ(b)σ(b)ωt
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Define

σ̃2
ρ ≡

σ−2
ρ +

∑t
s=2

(
x

(b)
s−1

)2

(
1− γ(b)

) (
σ(b)

)2

−1

µ̃ρ ≡ σ̃2
ρ

[
µρ
σ2
ρ

+

∑t
s=2 x

(b)
s−1x

(b)
s(

1− γ(b)
) (
σ(b)

)2
]

The posterior of ρ is N(µ̃ρ, σ̃
2
ρ) and thus we draw ρ(b+1) ∼ N(µ̃ρ, σ̃

2
ρ).

2. Draw γ(b+1)|ρ(b+1), σ(b),µ
(b)
1:t ,x

(b)
1:t ,y1:t. There is no closed form expression for the posterior

of γ. We therefore draw it using a random walk Metropolis-Hastings step. Specifically, we

draw a proposal γ̃(b+1) ∼ N(γ(b), σ2
γ,prop) where σ2

γ,prop is a proposal variance chosen such

that this step has between a 25 and 40% acceptance rate over the burn-in period. We then set

γ(b+1) = γ̃(b+1) with probability αb+1, where

αb+1 ≡
L
(
y1:t|ρ(b+1), γ̃(b+1), σ(b),µ

(b)
1:t ,x

(b)
1:t

)
pγ
(
γ̃(b+1)

)
L
(
y1:t|ρ(b+1), γ(b), σ(b),µ

(b)
1:t ,x

(b)
1:t

)
pγ
(
γ(b)
)

Otherwise we set γ(b+1) = γ(b).

3. Draw σ(b+1)|ρ(b+1), γ(b+1),µ
(b)
1:t ,x

(b)
1:t ,y1:t. Given the other parameters, beliefs about σ can be

updated from the two equations

µ
(b)
t = µ

(b)
t−1 +

√
γ(b+1)σηt

x
(b)
t = ρ(b+1)x

(b)
t−1 +

√
1− γ(b+1)σωt

Since ηt and ωt are independent, these regression equations can be treated as two indepen-

dent sources of information for σ2. It is as if beliefs about σ2 are first updated using informa-

tion about {ηs}ts=2 where σηs = µs−µs−1√
γ and then updated using information about {ωs}ts=2

where σωs = xs−ρxs−1√
1−γ . These are each samples of t − 1 observations which can be used to
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learn about σ2 using standard conjugate prior updating. Define

α̃σ2 ≡ ασ2 + (t− 1)

β̃σ2 ≡ βσ2 +

∑t
s=2

(
µ

(b)
s − µ(b)

s−1

)2

2γ(b+1)
+

∑t
s=2

(
x

(b)
s − ρ(b+1)x

(b)
s−1

)2

2
(
1− γ(b+1)

)
The posterior of σ2 is IG(α̃σ2 , β̃σ2) and thus we draw

(
σ(b)

)2 ∼ IG(α̃σ2 , β̃σ2).

4. Draw µ
(b+1)
1:t ,x

(b+1)
1:t |ρ(b+1), γ(b+1), σ(b+1),y1:t. This can be done using the standard Kalman

filter and simulation smoother.

This algorithm is repeated to produce B draws from the posterior distribution of the parame-

ters and states at each time t.

C Bayesian Forecasting of Interest Rates

The algorithm described in Appendix B yields B samples of the posterior of the states and pa-

rameters of our UC model at each point in time t. We index these samples by b as follows{
ρ(b), γ(b), σ(b),µ

(b)
1:t ,x

(b)
1:t

}B
b=1

. Draws b for which ρ(b) > 1 are not used for forecasting as they imply

explosive dynamics in interest rates. We then use the following algorithm to produce a real-time

forecast distribution for the yield curve at time t:

1. For each b = 1, . . . , B

(a) Simulate a path of shocks
{
η

(b)
t+h, ω

(b)
t+h

}H
h=1

from the standard Normal distribution.

(b) Starting from h = 1, construct a simulated path of the states overH subsequent periods

using equations (7)-(8):

µ
(b)
t+h = µ

(b)
t+h−1|t +

√
γ(b)σ(b)η

(b)
t+h

x
(b)
t+h = ρ(b)x

(b)
t+h−1|t +

√
1− γ(b)σ(b)ω

(b)
t+h

(c) Use the simulated states to construct the forecast distribution of the short rate{
y

(b)
t+h|t

}H
h=1

where

y
(b)
t+h|t = µ

(b)
t+h|t + x

(b)
t+h|t
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2. The forecast of yt+h given time t information is computed as

Ftyt+h =
1

B

B∑
b=1

y
(b)
t+h|t

The implied yield of a bonds of maturity n is given by

y
(n)
t = c(n) +

1

n

n−1∑
h=0

Ftyt+h

We estimate the constant c(n) as the average level of the corresponding n-period bond yield in the

data since it is not identified from the expectations hypothesis alone. Note that this estimate of the

constant does not affect the results of the expectations hypothesis regression tests we run since it

only affects the level of the n-period yield.

At the end of the estimation we are left with a sequence of model-implied 1 to H-quarter

ahead forecasts {Ftyt+h}Hh=1 and model-implied yields
{
y

(h)
t

}H
h=1

for every quarter t from 1961Q3

to 2019Q4.

D Search over Initial Beliefs for Nominal Short Rate

Let θ = (αρ, βρ, αγ , βγ)′. Let α = {αh}Hh=1 and β = {βh}Hh=1 denote vectors of estimated coef-

ficients from the forecasting anomaly regressions for different horizons up through a maximum

horizon ofH using the SPF and yield curve data. Let α̂ = {α̂h}Hh=1 and β̂ =
{
β̂h

}H
h=1

denote those

same quantities estimated on the model implied forecasts and yields for a particular value of θ.

Define the moment function as

m̂(θ) =



αbias − α̂bias

βar − β̂ar

βmz − β̂mz

βcg − β̂cg

βsr − β̂sr

βlr − β̂lr


(17)

The parameters are then estimated via the simulated method of moments (SMM) with an iden-
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tity weighting matrix

θ̂ = argmaxθ ‖m̂(θ)‖2 = argmaxθm̂(θ)′m̂(θ)

Every evaluation of the moment function m̂(θ) requires us to sample from the posterior of

the UC model sequentially. Since this step is very computationally costly, we only re-estimate the

model every 4 quarters rather than every quarter, and use a burn-in sample of 50,000 draws and

keep the subsequent 25,000 draws rather than 75,000 for each of those quantities in our empirical

specification. The global minimum is found using MATLAB’s “particleswarm” optimization rou-

tine, subject to the constraint that the mean of ρ is larger than 0.5. As described in appendix D, the

forecaster is assumed to discard posterior draws of ρ greater than 1 when computing forecasts.

E Matching Forecasts and Yields Directly

Here, we report results for the T-Bill application where instead of targeting the regression statistics

reported in section 3, we directly target the time series of consensus T-Bill forecasts from the SPF

at horizons 1 to 4, and also the 5 and 10-year zero coupon nominal yields from the Liu and Wu

(2020) data.
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Figure E.1: Marginal Initial Beliefs Distributions: T-bill Rate Model
Note: Each panel plots the initial beliefs held in 1951Q2 by agents in our T-bill rate model for each of the three
model parameters: ρ, γ, and σ2 respectively.
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Figure E.2: Forecasted T-bill Rate: Data vs. Model
Note: The black solid line is the 3-month T-bill rate. Each short gray line with five circles represents forecasts made in a
particular quarter about the then present quarter (first circle) and following four quarters (subsequent four circles). In
the top panel, these forecasts are SPF forecasts. In the bottom panel, these forecasts are mean forecasts generated from
the UC model estimated in real-time.
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Figure E.3: Forecasted T-bill Rate: Direct targeting vs. baseline
Note: The black solid line is the 3-month T-bill rate. Each short gray line with five circles represents forecasts made in a
particular quarter about the then present quarter (first circle) and following four quarters (subsequent four circles). All
forecasts are mean forecasts generated from the UC model estimated in real-time. In the top panel, these forecasts come
from the priors estimated by directly targeting the SPF forecasts and the 5 and 10-year nominal zero-coupon yields.
The bottom panel plots the results for our baseline estimation.
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Table E.1: T-Bill Rate Forecast Anomalies: Model vs. Data

Forecast Horizon

1 2 3 4

Panel A: Bias

SPF
-0.18*** -0.34*** -0.52*** -0.70***
(0.06) (0.11) (0.16) (0.20)

UC Model
-0.22*** -0.40*** -0.57*** -0.72***
(0.06) (0.12) (0.17) (0.21)

Panel B: Autocorrelation

SPF
0.30* 0.27** 0.24** 0.13
(0.15) (0.11) (0.11) (0.12)

UC Model
0.44** 0.44** 0.41*** 0.31**
(0.16) (0.15) (0.11) (0.10)

Panel C: Mincer-Zarnowitz

SPF
0.97 0.94* 0.90** 0.86**

(0.02) (0.04) (0.05) (0.06)

UC Model
0.97* 0.94* 0.90** 0.86**
(0.02) (0.03) (0.04) (0.05)

Panel D: Coibion-Gorodnichenko

SPF
0.23* 0.34** 0.62***

–
(0.13) (0.15) (0.18)

UC Model
0.53** 0.83* 1.28**

–
(0.18) (0.42) (0.51)

Note: The forecast horizons are quarters. Standard errors are reported in parentheses. Stars represent sig-
nificance relative to the following hypotheses: α = 0 for bias, β = 0 for autocorrelation, β = 1 for Mincer-
Zarnowitz, β = 0 for Coibion-Gorodnichenko. P-values are computed using Newey-West standard errors
with lag length selected as L = d1.3 × T 1/2e and fixed-b critical values, as proposed in Lazarus et al. (2018).
This corresponds to a bandwidth of 17. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table E.2: Failures of the Expectations Hypothesis: Model vs. Data

Long Horizon n

2 3 4 8 12 20 40

Panel A: Future Short Rates

Data
-0.01*** 0.11*** 0.18*** 0.39** 0.57 0.74 0.71
(0.22) (0.22) (0.21) (0.25) (0.27) (0.23) (0.22)

UC Model
-0.01*** 0.09*** 0.12*** 0.33** 0.51** 0.63* 0.71
(0.14) (0.15) (0.16) (0.21) (0.22) (0.19) (0.23)

Panel B: Change in Long Rate

Data
-1.02*** -0.91*** -1.03*** -1.29*** -1.61*** -2.04*** -2.75***
(0.43) (0.54) (0.57) (0.61) (0.65) (0.67) (0.86)

UC Model
-1.02*** -1.01*** -1.02*** -1.10*** -1.25*** -1.61*** -2.52***
(0.29) (0.29) (0.29) (0.30) (0.32) (0.36) (0.61)

Note: The sample period is from 1961Q3 to 2019Q4. The top panel reports estimates of β from regression
(4). The bottom panel reports estimates of β from regression (5). In both cases, the horizon n is listed at
the top of the table. Standard errors are reported in parentheses. Stars represent significance relative to the
hypothesis that β = 1. P-values are computed using Newey-West standard errors with lag length selected
as L = d1.3 × T 1/2e and fixed-b critical values, as proposed in Lazarus et al. (2018). This corresponds to a
bandwidth of 19. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Figure E.4: Parameter Estimates: T-bill Rate Model
Note: Each panel plots the evolution of beliefs about one of the three UC model parameters: ρ, γ, and σ. The black
solid line is the mean and the dotted black lines are the 5th and 95th percentiles of the posterior distribution for the
parameter in question. Recall that we only update beliefs about these parameters every fourth quarter.
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Figure E.5: State Estimates: T-bill Rate Model
Note: This figure plots the evolution of beliefs about the permanent component µt. The black solid line is the posterior
mean of the real-time filtering distributions, the dotted black lines are the 5th and 95th percentiles of the posterior
real-time filtering distributions, and the solid gray line is the posterior mean of the ex-post smoothing distributions.
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Figure E.6: Yield Spread in the Data and the Model
Note: The figure plots the spread between the yield on a 10-year zero coupon bond and the 3-month Treasury bill rate
for the data and the model.
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F Alternative Initial Beliefs

F.1 Very Loose Initial Beliefs

Here we consider initial beliefs ρ ∼ N(0.5, 0.1) and γ ∼ B(1.01, 1.01), which is close to uniform

but not quite, since we need a little mass away from the boundaries for the model to be identified.
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Figure F.1: Marginal Initial Beliefs Distributions: Loose Initial Beliefs Model
Note: Each panel plots the initial beliefs held in 1951Q2 by agents in our T-bill rate model for each of the three
model parameters: ρ, γ, and σ2 respectively.
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Figure F.2: Forecasted T-bill Rate: Loose Initial Beliefs Model
Note: The black solid line is the 3-month T-bill rate. Each short gray line with five circles represents forecasts made in a
particular quarter about the then present quarter (first circle) and following four quarters (subsequent four circles). In
the top panel, these forecasts are SPF forecasts. In the bottom panel, these forecasts are mean forecasts generated from
the UC model estimated in real-time.
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Figure F.3: Parameter Estimates: Loose Initial Beliefs Model
Note: Each panel plots the evolution of beliefs about one of the three UC model parameters: ρ, γ, and σ. The black
solid line is the mean and the dotted black lines are the 5th and 95th percentiles of the posterior distribution for the
parameter in question. Recall that we only update beliefs about these parameters every fourth quarter.
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Table F.1: T-Bill Rate Forecast Anomalies: Loose Initial Beliefs Model

Forecast Horizon

1 2 3 4

Panel A: Bias

SPF
-0.18*** -0.34*** -0.52*** -0.70***
(0.06) (0.11) (0.16) (0.20)

UC Model
-0.10 -0.18 -0.27 -0.35
(0.06) (0.11) (0.17) (0.22)

Panel B: Autocorrelation

SPF
0.30* 0.27** 0.24** 0.13
(0.15) (0.11) (0.11) (0.12)

UC Model
0.35* 0.39** 0.32** 0.18
(0.15) (0.12) (0.11) (0.12)

Panel C: Mincer-Zarnowitz

SPF
0.97 0.94* 0.90** 0.86**

(0.02) (0.04) (0.05) (0.06)

UC Model
0.95** 0.91** 0.85*** 0.79***
(0.02) (0.03) (0.04) (0.05)

Panel D: Coibion-Gorodnichenko

SPF
0.23* 0.34** 0.62***

–
(0.13) (0.15) (0.18)

UC Model
0.36** 0.51 0.80**

–
(0.16) (0.30) (0.32)

Note: The forecast horizons are quarters. Standard errors are reported in parentheses. Stars represent sig-
nificance relative to the following hypotheses: α = 0 for bias, β = 0 for autocorrelation, β = 1 for Mincer-
Zarnowitz, β = 0 for Coibion-Gorodnichenko. P-values are computed using Newey-West standard errors
with lag length selected as L = d1.3 × T 1/2e and fixed-b critical values, as proposed in Lazarus et al. (2018).
This corresponds to a bandwidth of 17. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table F.2: Failures of the Expectations Hypothesis: Loose Initial Beliefs Model

Long Horizon n

2 3 4 8 12 20 40

Panel A: Future Short Rates

Data
-0.01*** 0.11*** 0.18*** 0.39** 0.57 0.74 0.71
(0.22) (0.22) (0.21) (0.25) (0.27) (0.23) (0.22)

UC Model
-1.97*** -1.18** -0.80* 1.03 2.35 3.19 3.53
(0.84) (0.90) (0.94) (1.25) (1.39) (1.24) (1.41)

Panel B: Change in Long Rate

Data
-1.02*** -0.91*** -1.03*** -1.29*** -1.61*** -2.04*** -2.75***
(0.43) (0.54) (0.57) (0.61) (0.65) (0.67) (0.86)

UC Model
-4.95*** -5.45*** -5.88*** -7.35*** -8.55*** -10.85*** -16.71*
(1.68) (1.78) (1.89) (2.35) (2.81) (3.71) (8.02)

Note: The sample period is from 1961Q3 to 2019Q4. The top panel reports estimates of β from regression
(4). The bottom panel reports estimates of β from regression (5). In both cases, the horizon n is listed at
the top of the table. Standard errors are reported in parentheses. Stars represent significance relative to the
hypothesis that β = 1. P-values are computed using Newey-West standard errors with lag length selected
as L = d1.3 × T 1/2e and fixed-b critical values, as proposed in Lazarus et al. (2018). This corresponds to a
bandwidth of 19. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Figure F.4: State Estimates: Loose Initial Beliefs Model
Note: This figure plots the evolution of beliefs about the permanent component µt. The black solid line is the posterior
mean of the real-time filtering distributions, the dotted black lines are the 5th and 95th percentiles of the posterior
real-time filtering distributions, and the solid gray line is the posterior mean of the ex-post smoothing distributions.
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Figure F.5: Yield Spread: Loose Initial Beliefs Model
Note: The figure plots the spread between the yield on a 10-year zero coupon bond and the 3-month Treasury bill rate
for the data and the model.
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F.2 Look-Ahead Initial Beliefs

Next we consider initial beliefs ρ ∼ N(0.910, 0.00184) and γ ∼ B(3.13, 11.04) which corresponds

to a mode of 0.175 and a standard deviation of 0.107. These approximate the beliefs of agents in

our model at the end of our sample in our baseline case.
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Figure F.6: Marginal Initial Beliefs Distributions: Look-Ahead Model
Note: Each panel plots the initial beliefs held in 1951Q2 by agents in our T-bill rate model for each of the three
model parameters: ρ, γ, and σ2 respectively.
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Figure F.7: Forecasted T-bill Rate: Look-Ahead Model
Note: The black solid line is the 3-month T-bill rate. Each short gray line with five circles represents forecasts made in a
particular quarter about the then present quarter (first circle) and following four quarters (subsequent four circles). In
the top panel, these forecasts are SPF forecasts. In the bottom panel, these forecasts are mean forecasts generated from
the UC model estimated in real-time.
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Figure F.8: Parameter Estimates: Look-Ahead Model
Note: Each panel plots the evolution of beliefs about one of the three UC model parameters: ρ, γ, and σ. The black
solid line is the mean and the dotted black lines are the 5th and 95th percentiles of the posterior distribution for the
parameter in question. Recall that we only update beliefs about these parameters every fourth quarter.
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Table F.3: T-Bill Rate Forecast Anomalies: Look-Ahead Model

Forecast Horizon

1 2 3 4

Panel A: Bias

SPF
-0.18*** -0.34*** -0.52*** -0.70***
(0.06) (0.11) (0.16) (0.20)

UC Model
-0.13** -0.23* -0.33* -0.43*
(0.06) (0.10) (0.15) (0.20)

Panel B: Autocorrelation

SPF
0.30* 0.27** 0.24** 0.13
(0.15) (0.11) (0.11) (0.12)

UC Model
0.33* 0.36** 0.31** 0.18
(0.17) (0.14) (0.12) (0.13)

Panel C: Mincer-Zarnowitz

SPF
0.97 0.94* 0.90** 0.86**

(0.02) (0.04) (0.05) (0.06)

UC Model
0.96* 0.93** 0.88** 0.83***
(0.02) (0.03) (0.04) (0.05)

Panel D: Coibion-Gorodnichenko

SPF
0.23* 0.34** 0.62***

–
(0.13) (0.15) (0.18)

UC Model
0.34* 0.45 0.74*

–
(0.18) (0.34) (0.38)

Note: The forecast horizons are quarters. Standard errors are reported in parentheses. Stars represent sig-
nificance relative to the following hypotheses: α = 0 for bias, β = 0 for autocorrelation, β = 1 for Mincer-
Zarnowitz, β = 0 for Coibion-Gorodnichenko. P-values are computed using Newey-West standard errors
with lag length selected as L = d1.3 × T 1/2e and fixed-b critical values, as proposed in Lazarus et al. (2018).
This corresponds to a bandwidth of 17. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table F.4: Failures of the Expectations Hypothesis: Look-Ahead Model

Long Horizon n

2 3 4 8 12 20 40

Panel A: Future Short Rates

Data
-0.01*** 0.11*** 0.18*** 0.39** 0.57 0.74 0.71
(0.22) (0.22) (0.21) (0.25) (0.27) (0.23) (0.22)

UC Model
0.06 0.33 0.47 0.98 1.24 1.25 1.13

(0.62) (0.63) (0.63) (0.63) (0.56) (0.45) (0.48)
Panel B: Change in Long Rate

Data
-1.02*** -0.91*** -1.03*** -1.29*** -1.61*** -2.04*** -2.75***
(0.43) (0.54) (0.57) (0.61) (0.65) (0.67) (0.86)

UC Model
-0.89 -0.90 -0.91 -0.93 -0.97 -1.06 -1.09
(1.24) (1.25) (1.26) (1.33) (1.41) (1.56) (2.38)

Note: The sample period is from 1961Q3 to 2019Q4. The top panel reports estimates of β from regression
(4). The bottom panel reports estimates of β from regression (5). In both cases, the horizon n is listed at
the top of the table. Standard errors are reported in parentheses. Stars represent significance relative to the
hypothesis that β = 1. P-values are computed using Newey-West standard errors with lag length selected
as L = d1.3 × T 1/2e and fixed-b critical values, as proposed in Lazarus et al. (2018). This corresponds to a
bandwidth of 19. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Figure F.9: State Estimates: Look-Ahead Model
Note: This figure plots the evolution of beliefs about the permanent component µt. The black solid line is the posterior
mean of the real-time filtering distributions, the dotted black lines are the 5th and 95th percentiles of the posterior
real-time filtering distributions, and the solid gray line is the posterior mean of the ex-post smoothing distributions.
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Figure F.10: Yield Spread: Look-Ahead Model
Note: The figure plots the spread between the yield on a 10-year zero coupon bond and the 3-month Treasury bill rate
for the data and the model.
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F.3 RMSE with Dispersed Initial Beliefs

Table F.5 reports results on the root-mean-squared error (RMSE) of the forecasts from our model

relative to the RMSE of SFP forecasters. We do this for our baseline initial beliefs – ρ ∼

N(0.6, 0.122) and γ ∼ B(2.3, 19.7) – and for a case with more highly dispersed initial beliefs –

ρ ∼ N(0.6, 0.312) and γ ∼ B(1.13, 2.9). The first four columns of Table F.5 report the ratio of the

RMSE from our model relative to the RMSE of SFP forecasters for forecast horizons of one through

four quarters. The last column reports the average ratio across the four horizons.

Overall, we conclude that a model with more dispersed initial beliefs generates forecasts of

very similar quality as measured by RMSE. Using more highly dispersed initial beliefs leads to

very slightly better forecasts from a RMSE perspective at short horizons, but slightly worse fore-

casts at longer horizons. Averaging across horizons, the difference is close to zero. Notice also that

the forecasts from our model are slightly ‘better’ than the SPF forecasts for both initial beliefs: the

ratios reported in the table are all smaller than 1.

Table F.5: Root-Mean-Squared Errors: Ratio of Model to SPF

Forecast Horizon

1 2 3 4 Mean

Baseline 0.96 0.98 0.97 0.96 0.97
Highly Dispersed 0.94 0.97 0.96 0.97 0.97

Note: The table reports the ratio of the root-mean-squared error (RMSE) of forecasts from our model for in-
terest rates with different initial beliefs to the RMSE of SPF forecasts. The baseline initial beliefs for ρ are
N(0.6, 0.122). The initial beliefs in the ‘highly dispersed’ case are N(0.6, 0.312). The baseline initial beliefs for
γ are B(2.3, 19.7). The initial beliefs in the ‘highly dispersed’ case are B(1.13, 2.9). The ‘Mean’ column reports
the average ratio across the four horizons.
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G Interest Rate Results with a Break in 1990

Here we present results for a case where we allow for a break in beliefs about γ in 1990. We redo

our baseline short-rate analysis exactly as before except that we allow the agents in the model

to “reset” their beliefs about γ in 1990. We assume that the new belief distribution of agents

about γ in 1990 is γ ∼ B(αγ,2, βγ,2) and we search over the values of αγ,2 and βγ,2 as well as the

hyperparameters in the baseline case to best match the forecast anomalies.
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Figure G.1: Marginal Prior Distributions: 1990 Break Model
Note: These four panels plot the initial beliefs we estimate for the four parameters of the model. The panels
labelled ρ, γ1, and σ give the initial beliefs for ρ, γ, and σ, respectively, in 1951Q2. The panel labelled γ2 give
the belief distribution for γ in 1990Q1.

Results analogous to those presented for our baseline model in the main body are presented

in Figures G.1-G.4 and Tables G.1-G.2. We estimate a substantial decrease in the mean of the

distribution of beliefs about γ (from 0.19 to 0.11) and a sharp downward shift in the standard

deviation (from 0.09 to 0.03) in 1990, leading to lower posterior mean estimates in the latter part of

the sample as one would expect. Other results are quite similar to in our baseline case. The extra

parameters allow up to improve the fit of the model to the data modestly.
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Table G.1: T-Bill Rate Forecast Anomalies: 1990 Break Model

Forecast Horizon

1 2 3 4

Panel A: Bias

SPF
-0.18*** -0.34*** -0.52*** -0.70***
(0.05) (0.09) (0.14) (0.19)

UC Model
-0.18** -0.32** -0.47** -0.60**
(0.06) (0.11) (0.16) (0.21)

Panel B: Autocorrelation

SPF
0.30* 0.27** 0.24* 0.13
(0.14) (0.12) (0.12) (0.13)

UC Model
0.38* 0.41** 0.37** 0.25*
(0.17) (0.14) (0.11) (0.12)

Panel C: Mincer-Zarnowitz

SPF
0.97* 0.94** 0.90** 0.86**
(0.02) (0.02) (0.04) (0.05)

UC Model
0.96* 0.93** 0.89** 0.84**
(0.02) (0.03) (0.04) (0.05)

Panel D: Coibion-Gorodnichenko

SPF
0.23* 0.34* 0.62***

–
(0.12) (0.16) (0.16)

UC Model
0.41* 0.59 0.94*

–
(0.19) (0.39) (0.45)

Note: The forecast horizons are quarters. Standard errors are reported in parentheses. Stars represent sig-
nificance relative to the following hypotheses: α = 0 for bias, β = 0 for autocorrelation, β = 1 for Mincer-
Zarnowitz, β = 0 for Coibion-Gorodnichenko. P-values are computed using Newey-West standard errors
with lag length selected as L = d1.3 × T 1/2e and fixed-b critical values. This corresponds to a bandwidth of
17. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table G.2: Failures of the Expectations Hypothesis: 1990 Break Model

Long Horizon n

2 3 4 8 12 20 40

Panel A: Future Short Rates

Data
-0.01*** 0.11*** 0.18*** 0.39** 0.57 0.74 0.71
(0.23) (0.23) (0.23) (0.23) (0.26) (0.23) (0.20)

UC Model
-0.07*** 0.09*** 0.15*** 0.48 0.72 0.84 0.92
(0.25) (0.26) (0.27) (0.33) (0.33) (0.28) (0.33)

Panel B: Change in Long Rate

Data
-1.02*** -0.91*** -1.03*** -1.29*** -1.61*** -2.04*** -2.75***
(0.45) (0.59) (0.62) (0.59) (0.57) (0.55) (0.87)

UC Model
-1.14*** -1.17*** -1.19*** -1.31*** -1.45*** -1.79*** -2.61**
(0.50) (0.51) (0.52) (0.55) (0.59) (0.68) (1.24)

Note: The sample period is from 1961Q3 to 2019Q4. The top panel reports estimates of β from regression
(4). The bottom panel reports estimates of β from regression (5). In both cases, the horizon n is listed at
the top of the table. Standard errors are reported in parentheses. Stars represent significance relative to the
hypothesis that β = 1. P-values are computed using Newey-West standard errors with lag length selected as
L = d1.3× T 1/2e and fixed-b critical values. This corresponds to a bandwidth of 19. * p < 0.1, ** p < 0.05, ***
p < 0.01.
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Figure G.2: Forecasted T-bill Rate: 1990 Break Model
Note: The black solid line is the 3-month T-bill rate. Each short gray line with five circles represents forecasts made in a
particular quarter about the then present quarter (first circle) and following four quarters (subsequent four circles). In
the top panel, these forecasts are SPF forecasts. In the bottom panel, these forecasts are mean forecasts generated from
the UC model estimated in real-time.
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Figure G.3: Parameter Estimates: 1990 Break Model
Note: Each panel plots the evolution of beliefs about one of the three UC model parameters: ρ, γ, and σ. The black
solid line is the mean and the dotted black lines are the 5th and 95th percentiles of the posterior distribution for the
parameter in question. Recall that we only update beliefs about these parameters every fourth quarter.
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Figure G.4: State Estimates: 1990 Break Model
Note: Each panel corresponds to one of the two UC hidden state variables: µt and xt respectively. The black solid line
is the posterior mean of the real-time filtering distributions, the dotted black lines are the 5th and 95th percentiles of
the posterior real-time filtering distributions, and the solid gray line is the posterior mean of the ex-post smoothing
distributions for the corresponding parameter.

27



G.1 Cochrane-Piazzesi Regressions

Cochrane and Piazzesi (2005) show that a single factor predicts one-year excess returns on one- to

five-year maturity bonds with an R2 above 0.4. Here we show that our learning model can match

this return predictability. Following Cochrane and Piazzesi (2005), we consider the period length

to be measured in years in this section – i.e., n and t are measured in years in this section while

it is measured in quarters elsewhere in the paper. Let p(n)
t denote the log price of an n-year zero

coupon bond at time t. The relationship between the log yield and log price of an n-year zero

coupon bond is y(n)
t = −p(n)

t /n. The forward rate at time t for a loan between time t + n − 1 and

time t+ n is

f
(n−1→n)
t ≡ p(n)

t − p
(n−1)
t .

We refer to this as the n-year forward rate. (It might alternatively be referred to as the n-year-

ahead, one-year forward rate.) The log holding period return of buying an n-year bond at time t

and selling it as an n− 1-year bond at time t+ 1 is given by

r
(n)
t+1 ≡ p

(n−1)
t+1 − p(n)

t .

Denote the log excess return on the bond as

rx
(n)
t+1 ≡ r

(n)
t+1 − y

(1)
t .

Cochrane and Piazzesi (2005) run two sets of return predictability regressions. First, they run

a set of unrestricted regressions:

rx
(n)
t+1 = β

(n)
0 + β

(n)
1 y

(1)
t + β

(n)
2 f

(1→2)
t + . . .+ β

(n)
5 f

(4→5)
t + ε

(n)
t+1 (18)

for n = 2, . . . , 5. These regressions yield a similar pattern of coefficients across the four maturi-

ties. This motivates considering the notion that a single factor may forecast excess returns at all

horizons as follows:

rx
(n)
t+1 = bn

(
γ0 + γ1y

(1)
t + γ2f

(1→2)
t + . . .+ γ5f

(4→5)
t

)
+ ε

(n)
t+1

for n = 2, . . . , 5. Cochrane and Piazzesi normalize the loadings bn so they have an average value
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Table G.3: Restricted Regression Results for γn

Data

const. y(1) f (1→2) f (2→3) f (3→4) f (4→5) R
2

-0.19 -0.93 -1.25 1.41 1.45 -0.71 0.38
(0.39) (0.45) (0.85) (0.82) (1.00) (0.73)

Model

const. y(1) f (1→2) f (2→3) f (3→4) f (4→5) R
2

-2.67 -21.13 82.60 -112.64 53.76 -2.54 0.48
(1.82) (7.31) (34.02) (51.08) (37.28) (17.71)

of 1:
1

4

5∑
n=2

bn = 1

and estimate the bn and γn coefficients in two stages. First, they estimate the γn coefficients from

1

4

5∑
n=2

rx
(n)
t+1 = γ0 + γ1y

(1)
t + γ2f

(1→2)
t + . . .+ γ5f

(4→5)
t + εt+1. (19)

Then they estimate the bn coefficients from

rx
(n)
t+1 = bn

(
γ̂0 + γ̂1y

(1)
t + γ̂2f

(1→2)
t + . . .+ γ̂5f

(4→5)
t

)
+ ε

(n)
t+1, (20)

where γ̂n are the fitted values from regression (19). We refer to these as the restricted regressions.

We perform this analysis on our quarterly zero-coupon bond data from Liu and Wu (2020)

for the sample period 1961Q3-2019Q4. (Cochrane and Piazzesi (2005) use monthly data for the

sample period 1964-2003.) We also perform this analysis on the bond yields implied by our model

(allowing for a break in γ in 1990). Before running the regressions for the model-implied data, the

sample mean of our model-implied yields is made the same as the sample mean of the yields in

the real-world data over our sample period.

Tables G.3 and G.4 report the coefficients [γ1, ... γ5] and [b2, ... b5] from the restricted regressions

(equations (19) and (20)) respectively, along with the adjusted R2 for these regressions. We can

match the high R2 for one-year excess returns on 2- to 5-year zero coupon bonds in data from our

model: the R2 for these predictive regressions on data from our model are between 0.46 and 0.50.

This finding of high predictability is quite robust across the different variants of our model we
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Table G.4: Restricted Regression Results for bn

Data

n bn SE R
2

2 0.58 (0.07) 0.35
3 0.93 (0.08) 0.41
4 1.18 (0.09) 0.40
5 1.31 (0.10) 0.37

Model

n bn SE R
2

2 0.60 (0.05) 0.47
3 0.91 (0.07) 0.50
4 1.16 (0.08) 0.50
5 1.33 (0.10) 0.49

have considered. The shape of the factor that predicts returns is much more sensitive to model

specification, due to the high correlations between yields at various maturities generated by our

model.

H Bayesian Updating about Parameters and States for GDP

Here we describe the initial beliefs and sampling algorithm for our GDP application. We assume

that the initial belief of the CBO about the mean of the difference stationary component µ is Nor-

mal,

µ ∼ N(µµ, σ
2
µ).

We assume that the CBO has independent Normal initial beliefs about the sum of the autoregres-

sive parameters ρ1 + ρ2 and for the second autoregressive parameter ρ2. We truncate these initial

belief distributions in such a way as to put zero weight on parameter combinations that result in

the xt component being non-stationary. We can write these initial belief distributions as

ρ1 + ρ2 ∼ N(µρ, σ
2
ρ)I(ρ1, ρ2),

ρ2 ∼ N(µρ2 , σ
2
ρ2)I(ρ1, ρ2).

where I(ρ1, ρ2) is an indicator variable which is 1 for (ρ1, ρ2) combinations that result xt being

stationary and 0 otherwise.
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This implies a joint initial belief distribution for ρ1, ρ2 the moments of which are

µρ1 = µρ − µρ2 ,

σ2
ρ = σ2

ρ1 + σ2
ρ2 + 2σρ1,ρ2 ,

σρ,ρ2 = σρ1,ρ2 + σ2
ρ2 = 0,

σρ1,ρ2 = −σ2
ρ2 ,

σ2
ρ1 = σ2

ρ + σ2
ρ2 .

In other words,  ρ1

ρ2

 ∼ N

 µρ − µρ2

µρ2

 ,
 σ2

ρ + σ2
ρ2 −σ2

ρ2

−σ2
ρ2 σ2

ρ2


 I(ρ1, ρ2).

We assume that the CBOs initial belief distribution about the the variance share γ of shocks to

the trend component is a Beta distribution,

γ ∼ B(αγ , βγ).

We assume that the CBOs initial belief distribution about the conditional variance σ2 is an Inverse

Gamma distribution,

σ2 ∼ IG(ασ2 , βσ2).

Lastly, we assume that agents’ initial beliefs about zt and xt in 1959Q3 are zt ∼ N(y1959Q3, 0.012)

and xt ∼ N(0, 0.012).

We start with an initial guess of the unknown parameters

θ(0) =
(
µ(0), ρ

(0)
1 , ρ

(0)
2 , γ(0), σ(0), z

(0)
1:t ,x

(0)
1:t

)′
.

Given a draw of the parameters θ(b), we draw θ(b+1) as follows:

1. Draw µ(b+1)|ρ(b)
1 , ρ

(b)
2 , γ(b), σ(b), z

(b)
1:t ,x

(b)
1:t ,y1:t. Given the other parameters, beliefs about µ can

be updated from the equation for zt:

∆z
(b)
t = µ+

√
γ(b)σ(b)ut.
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Define

σ̃2
µ ≡

[
σ−2
µ +

t− 1

γ(b)
(
σ(b)

)2
]−1

,

µ̃µ ≡ σ̃2
µ

[
µµ
σ2
µ

+

∑t
s=2 ∆z

(b)
s−1

γ(b)
(
σ(b)

)2
]
.

The posterior of µ is N(µ̃µ, σ̃
2
µ) and thus we draw µ(b+1) ∼ N(µ̃µ, σ̃

2
µ).

2. Draw ρ
(b+1)
1 , ρ

(b+1)
2 |µ(b+1), γ(b), σ(b), z

(b)
1:t ,x

(b)
1:t ,y1:t. Given the other parameters, beliefs about

ρ1, ρ2 can be updated from the equation for xt:

x
(b)
t = ρ1x

(b)
t−1 + ρ2x

(b)
t−2 +

√
(1− γ(b))σ(b)vt.

Define

Σ̃ρ ≡

[
Σ−1
ρ +

∑t
s=3[x

(b)
s−1, x

(b)
s−2]′[x

(b)
s−1, x

(b)
s−2]

(1− γ(b))
(
σ(b)

)2
]−1

,

µ̃ρ ≡ Σ̃ρ

[
Σ−1
ρ µρ +

∑t
s=3[x

(b)
s−1, x

(b)
s−2]′x

(b)
s

(1− γ(b))
(
σ(b)

)2
]
.

The posterior of (ρ1, ρ2)′ is N(µ̃ρ, Σ̃ρ) and thus we draw (ρ
(b+1)
1 , ρ

(b+1)
2 )′ ∼ N(µ̃ρ, Σ̃ρ).

3. Draw γ(b+1)|µ(b+1), ρ
(b+1)
1 , ρ

(b+1)
2 , σ(b), z

(b)
1:t ,x

(b)
1:t ,y1:t. There is no closed form expression for

the posterior of γ. We therefore draw it using a random walk Metropolis-Hastings step.

Specifically, we draw a proposal γ̃(b+1) ∼ N(γ(b), σ2
γ,prop) where σ2

γ,prop is a proposal variance

chosen such that this step has between a 25 and 40% acceptance rate over the burn-in period.

We then set γ(b+1) = γ̃(b+1) with probability αb+1, where

αb+1 ≡
L
(
y1:t|µ(b+1), ρ

(b+1)
1 , ρ

(b+1)
2 , γ̃(b+1), σ(b), z

(b)
1:t ,x

(b)
1:t

)
pγ
(
γ̃(b+1)

)
L
(
y1:t|µ(b+1), ρ

(b+1)
1 , ρ

(b+1)
2 , γ̃(b+1), σ(b), z

(b)
1:t ,x

(b)
1:t

)
pγ
(
γ(b)
) .

Otherwise we set γ(b+1) = γ(b).

4. Draw σ(b+1)|µ(b+1), ρ
(b+1)
1 , ρ

(b+1)
2 , γ(b+1), z

(b)
1:t ,x

(b)
1:t ,y1:t. Given the other parameters, beliefs
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about σ can be updated from the two equations

∆z
(b)
t = µ(b+1) +

√
γ(b+1)σut.

x
(b)
t = ρ

(b+1)
1 x

(b)
t−1 + ρ

(b+1)
2 x

(b)
t−2 +

√
1− γ(b+1)σvt.

Since ut and vt are independent, these regression equations can be treated as two indepen-

dent sources of information for σ2. It is as if beliefs about σ2 are first updated using informa-

tion about {us}ts=2 where σus = ∆zs−µ√
γ and then updated using information about {vs}ts=3

where σvs = xs−ρ1xs−1−ρ2xs−2√
1−γ . These are samples of t− 1 and t− 2 observations respectively

which can be used to learn about σ2 using standard conjugate prior updating. Define

α̃σ2 ≡ ασ2 + (2t− 3)/2,

β̃σ2 ≡ βσ2 +

∑t
s=2

(
∆z

(b)
s − µ(b+1)

)2

2γ(b+1)
+

∑t
s=3

(
x

(b)
s − ρ(b+1)

1 x
(b)
s−1 − ρ

(b+1)
2 x

(b)
s−2

)2

2
(
1− γ(b+1)

) .

The posterior of σ2 is IG(α̃σ2 , β̃σ2) and thus we draw
(
σ(b)

)2 ∼ IG(α̃σ2 , β̃σ2).

5. Draw z
(b+1)
1:t ,x

(b+1)
1:t |µ(b+1), ρ

(b+1)
1 , ρ

(b+1)
2 , γ(b+1), σ(b+1),y1:t. This can be done using the stan-

dard Kalman filter and simulation smoother.

I Bayesian Forecasting of GDP

The algorithm described in Appendix H yields B samples of the posterior of the states and pa-

rameters of our UC model for GDP at each point in time t. We index these samples by b as follows{
ρ

(b)
1 , ρ

(b)
2 , γ(b), µ(b), σ(b), z

(b)
t|t , x

(b)
t|t , x

(b)
t−1|t

}B
b=1

. We then use the following algorithm to produce a

real-time forecast distribution for the GDP at time t:

1. For each b = 1, . . . , B

(a) Simulate a path of shocks
{
u

(b)
t+h, v

(b)
t+h

}H
h=1

from the standard Normal distribution.

(b) Starting from h = 1, construct a simulated path of the states overH subsequent periods
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using equations

z
(b)
t+h|t = µ(b) +

√
γ(b)σ(b)u

(b)
t+h,

x
(b)
t+h|t = ρ

(b)
1 x

(b)
t+h−1|t + ρ

(b)
2 x

(b)
t+h−2|t +

√
1− γ(b)σ(b)v

(b)
t+h.

(c) Use the simulated states to construct
{
y

(b)
t+h|t

}H
h=1

where

y
(b)
t+h|t = z

(b)
t+h|t + x

(b)
t+h|t.

2. The forecast of yt+h given time t information is computed as

Ftyt+h =
1

B

B∑
b=1

y
(b)
t+h|t.

At the end of the estimation we are left with a sequence of model-implied 1 to H-quarter ahead

forecasts {Ftyt+h}Hh=1 for every year t from 1976Q4 to 2019Q4.

We must perform a few additional steps to transform our forecasts to ones that are comparable

to those produced by the CBO. The CBO publishes forecasts of growth in the average annual level

of real output. We define the average annual level of real output over the year preceding quarter

t as

Ȳt ≡
1

4

t∑
s=t−3

exp(ys).

As an example, in the CBO’s economic outlook published in 1990, its 1-year ahead forecast of GDP

growth is

100×
(
Ȳ1990Q4

Ȳ1989Q4
− 1

)
.

Thus to convert the model’s forecasts of quarterly log real GDP to average annual h-year ahead

level forecasts, we apply the following transformation to the simulated forecast distribution

FtȲt+h ≡
1

B

B∑
b=1

[
1

4

t+4h∑
s=t+4h−3

exp
(
Fty

(b)
s|t

)]
.

The associated forecasts of growth in average annual levels between year t + h − 1 and t + h for

h = 1, . . . ,H are

100×
(

FtȲt+h
FtȲt+h−1

− 1

)
.
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We denote θ = (µρ, σρ, µρ2 , σρ2 , αγ , βγ)′. Let α = {αh}Hh=1 and β = {βh}Hh=1 denote vectors of

estimated coefficients from the forecasting anomaly regressions for different horizons up through

a maximum horizon of H using the CBO data. Let α̂ = {α̂h}Hh=1 and β̂ =
{
β̂h

}H
h=1

denote those

same quantities estimated on the model implied forecasts and yields. Additionally, denote the t−

statistics associated with these coefficients as {tα, tβ} = {tα,h, tβ,h}Hh=1 for the data and
{
tα̂, tβ̂

}
={

tα̂,h, tβ̂,h

}H
h=1

for the model. Define the moment function as

m̂(θ) =



αbias − α̂bias

tα,bias − tα̂,bias

βar − β̂ar

tβ,ar − tβ̂,ar
βmz − β̂mz

tβ,mz − tβ̂,mz
βcg − β̂cg

tβ,cg − tβ̂,cg



(21)

The parameters are then estimated via SMM with the following objective function

θ̂ = argmaxθm̂(θ)′W m̂(θ)

where the elements of the objective function associated with the Mincer-Zarnowitz and Coibion-

Gorodnichenko coefficients are given 3 times the weight of all other elements inW . We also place

bounds on the estimated parameters as described in footnote 17 in the main text. The estimated

initial belief distributions are plotted in Figure 10.

Every evaluation of the moment function m̂(θ) requires us to sample from the posterior of

the UC model sequentially. Since this step is very computationally costly, we only re-estimate the

model every 4 quarters rather than every quarter, and use a burn-in sample of 15,000 draws and

keep the subsequent 15,000 draws rather than 50,000 for each of those quantities in our empiri-

cal specification. The global minimum is found using MATLAB’s “particleswarm” optimization

routine.
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