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Growth-Rate and Uncertainty Shocks in Consumption: 
Cross-Country Evidence†

By Emi Nakamura, Dmitriy Sergeyev, and Jón Steinsson*

We provide new estimates of the importance of growth-rate shocks and 
uncertainty shocks for developed countries. The shocks we estimate 
are large and correspond to well-known macroeconomic episodes 
such as the Great Moderation and the productivity slowdown. We com-
pare our results to earlier estimates of “long-run risks” and assess 
the implications for asset pricing. Our estimates yield greater return 
predictability and a more volatile price-dividend ratio. In addition, 
we can explain a substantial fraction of cross-country variation in the 
equity premium. An advantage of our approach, based on macroeco-
nomic data alone, is that the parameter estimates cannot be viewed as 
backward engineered to fit asset pricing data. We provide intuition for 
our results using the recently developed framework of shock-exposure 
and shock-price elasticities. (JEL E21, E32, E44, G12, G35)

The last 120 years have seen huge and very persistent variation in macroeconomic 
volatility. The period prior to World War I (WWI) was a golden era of low vola-

tility. The outbreak of WWI ushered in a 35-year period of much higher volatility with 
one crisis following another—WWI, German hyperinflation, the Great Depression, 
World War II (WWII), to name a few. The late 1950s and 1960s were a period of 
renewed tranquility. But the 1970s and early 1980s again saw a large increase in 
volatility associated with the rise of the Organization of the Petroleum Exporting 
Countries (OPEC), the breakdown of Bretton Woods, the Iranian Revolution, and the 
crackdown on inflation initiated by Paul Volcker. Then came the Great Moderation 
period, which lasted until the onset of the Great Recession in 2008. As of this writing, 
a lively debate rages on whether the next decade will be one of high volatility or will 
return to the low levels of volatility of the Great Moderation period.

These 120 years have also seen large and persistent swings in average growth 
rates. Growth was persistently high in the 1920s and persistently low in the early 
1930s. It shot up to very high levels for roughly a quarter of a century after the end 
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of WWII before falling substantially and in a sustained way in the 1970s and early 
1980s. Growth was high again in the 1990s, but has been persistently low over the 
past decade, particularly after the onset of the Great Recession.

Many asset pricing models abstract from these phenomena. However, Bansal and 
Yaron (2004) show that even a modest amount of persistent variation in growth 
and volatility—which they refer to as “long-run risks”— can play a fundamentally 
important role in explaining key features of asset prices such as the high equity pre-
mium, high volatility of equity returns, and predictability of equity returns. Bansal 
and Yaron (2004) examine US data, but a basic challenge in providing empirical 
evidence for the long-run risks model is that key parameters of the model are hard to 
estimate using 80 years of consumption data from a single country.

This challenge has led authors in the asset pricing literature to focus on calibra-
tions of the long-run risks model designed to match asset pricing data (Bansal and 
Yaron 2004—henceforth, BY—; Bansal, Kiku, and Yaron 2012—henceforth, BKY) 
and to estimate the model using a combination of macroeconomic and asset pricing 
data (Bansal, Kiku, and Yaron 2007; Constantinides and Ghosh 2011). A concern 
with this approach is that the asset pricing data may be driven by other factors such 
as habits, rare disasters, or heterogeneous agents.1 But estimation of long-run risks is 
typically done in models without these potential alternative explanations. Hence, the 
estimation algorithm may be “forced” to generate large estimates of long-run risks to 
match the asset price data even if these parameters are not justified by the macroeco-
nomic data. In a recent survey, Ludvigson (2013) argues that the quantitative mag-
nitude of long-run risks in macroeconomic data is smaller than standard calibrations 
assume and unlikely to be large enough to explain the predictability of asset returns.2

In this paper, we quantify the importance of growth-rate and volatility shocks 
using recently assembled data on aggregate consumption for a panel of 16 developed 
countries over a period of roughly 120 years. By using a dataset that is more than an 
order of magnitude larger than is typical in the literature, we are able to estimate key 
parameters much more accurately. An important advantage of our approach is that 
our estimates are based purely on macroeconomic data. We therefore avoid the con-
cern that our estimates of long-run risks are engineered to fit the asset pricing data, 
as opposed to being a fundamental feature of the macroeconomic data. We estimate 
a richer model than BY and BKY. Our model allows for world and idiosyncratic 
components of growth-rate shocks and volatility shocks. It also allows for disasters 
and for correlation between the growth-rate shocks and volatility shocks.

We find strong evidence of long-run risks: we estimate substantial, persistent 
shocks to growth rates and volatility. Our model captures well-known macroeco-
nomic phenomena such as the Great Depression, the “long and large” fall in volatility 
over the post-WWII period (Blanchard and Simon 2001), the Great Moderation, the 
post-WWII economic miracle in Europe (referred to as the “Wirtschaftswunder” in 
Germany, the “Trente Glorieuses” in France, and the “Miracolo Italiano” in Italy), the 

1 See Campbell and Cochrane (1999), Barro (2006), and Constantinides and Duffie (1996) for influential asset 
pricing models based on these features. 

2 Ludvigson (2013) calibrates a model based on the estimates of Bidder and Smith (2015) who estimate a 
simplified version of the long-run risks model that abstracts from growth-rate shocks. She notes that estimates of a 
fully-fledged long-run risks model are needed to fully assess the model. 
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productivity slowdown in the 1970s, as well as the world recessions of 1979–1982, 
1990, and 2007–2009. Contrary to common belief, our data show clearly that the 
post-WWII economic miracle in Europe cannot be explained simply as reconstruc-
tion after WWII since most of the unusually high growth occurs after the countries in 
question have surpassed their prewar, trend-adjusted level of income (see Figure 1).

The growth-rate shocks and volatility shocks we estimate are substantially neg-
atively correlated. The 1960s were both a period of high growth and low volatility, 
while in the 1970s growth fell and volatility rose. More recently, during the reces-
sions of 1979–1982, 1990, and 2007–2009, growth fell and our estimates of vola-
tility shot up. This negative correlation amplifies the asset pricing implications of 
long-run risks since it concentrates bad news in certain periods.

We find that it is crucial to distinguish between “world” and country-specific shocks 
to growth rates. We estimate a highly persistent process for world growth rates, with 
a half-life of 13 years. Allowing for a world growth-rate component turns out to be 
crucial in identifying these persistent growth-rate shocks, since the country-specific 
growth-rate shocks are far less persistent. One might be concerned that these 
highly persistent components of growth rates would generate counterfactually high 
autocorrelations of consumption growth. This is not the case. Our model yields a 
near-zero autocorrelation of consumption growth at short-to-medium horizons due  
to the role of transitory shocks to the level of consumption, including disasters.

We analyze the asset pricing implications of our estimated consumption process 
in a representative agent model with Epstein-Zin-Weil preferences (Epstein and Zin 
1989, Weil 1990). Our model generates an equity risk premium in line with the data 
for a coefficient of relative risk aversion (CRRA) of nine. One way to interpret this 
result is simply as a convenient metric for the amount of risk we estimate. Viewed 

Figure 1. Log per Capita Consumption in France
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this way, our estimates yield somewhat more long-run risks than the standard cali-
brations of BY and BKY.

We highlight three main asset pricing results. First, the countries that are sub-
ject to more long-run risks according to our estimates, and therefore have higher 
model-implied equity premia, tend to be those countries that have, in fact, seen 
higher equity premia in the data over our sample period. The correlation of the 
equity premium in the data and the equity premium in our model across our 16 
countries is 0.59. Hence, we explain a substantial fraction of the cross-country vari-
ation in the equity premium using variation in exposure to long-run risk.

Second, our model generates substantially more predictability of excess returns 
on equity than standard calibrations of the long-run risks model. This lines up well 
with the data, in which excess returns on equity appear to be substantially predict-
able at long horizons.3 This result addresses Ludvigson’s (2013) concern, noted 
above, that a version of the long-run risks model estimated using macroeconomic 
data alone would generate even less predictability than the conventional calibrations. 
The difference arises both from the negative correlation of growth-rate shocks and 
volatility shocks in our model, and the greater volatility of the growth-rate shocks in 
our long-run risk process.

On the other hand, our asset pricing model implies substantially more predictabil-
ity of consumption growth by price-dividend ratios than exists in the data. In a sense, 
our findings thus deepen the predictability dilemma for the long-run risks model 
suggested by Beeler and Campbell (2012): the long-run risks model helps explain 
the return predictability we see in the data, but with a mechanism that implies that 
consumption growth should be predictable, which we do not see in the data.4

Third, our model generates large and persistent swings in the price-dividend ratio, 
substantially larger than in standard calibrations of the long-run risks model. This 
arises because of the high volatility of long-run risk shocks in our model. While BY 
focused on vanishingly small growth-rate shocks—too small to ever identify in the 
macroeconomic data—we estimate substantially larger growth-rate shocks. These 
larger growth-rate shocks, in turn, generate substantially more return volatility. As a 
consequence, our model is able to fit the volatility of returns endogenously through 
the high volatility of long-run risks. In contrast, conventional calibrations require 
the addition of a volatile exogenous dividend process to fit the volatility of excess 
returns.

We provide intuition for our results using the framework of shock-exposure and 
shock-price elasticities developed by Borovička, Hansen, and Scheinkman (2014). 
These elasticities help us understand how sensitive dividends and returns at dif-
ferent horizons are to the different shocks that drive consumption growth in our 
model. The shock-price elasticities constructed using this methodology underscore 
the importance of the world long-run risk shocks in our model. The persistent world 

3 The long-term predictability of stock returns has been documented by Campbell and Shiller (1988), Fama and 
French (1988), Hodrick (1992), Cochrane (2008), and Van Binsbergen and Koijen (2010), among others. 

4 The confidence intervals on the model’s predictions are large, so we cannot formally reject our model given 
standard significance levels. But a Bayesian would certainly update in the direction of the model being inconsistent 
with the data regarding consumption predictability. 
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growth-rate shocks are associated with much larger shock-price elasticities than 
their idiosyncratic counterparts.

The asset pricing exercise we conduct uses a representative agent model that 
abstracts from disasters, heterogeneity, and habits. However, our estimates in no 
way rule out the importance of these other phenomena in explaining the behavior 
of asset prices. Our model matches the equity premium when the CRRA is set to 
nine. While this is comparable to the parameters typically used in the long-run risks 
model, it is high relative to the values typically estimated in the microeconomics 
literature (Barsky et al. 1997; Chetty 2006; and Paravisini, Rappoport, and Ravina 
2016). Thus, our estimates leave ample “room” for additional factors to play an 
important role in explaining stock prices.

Our paper is related to a large body of work in macroeconomics that studies long-run 
properties of output growth (Nelson and Plosser 1982, Campbell and Mankiw 1989, 
Cochrane 1988, Cogley 1990, and Aguiar and Gopinath 2007) and variation in the 
volatility of output growth (McConnell and Perez-Quiros 2000, Stock and Watson 
2002, Bloom 2009, Ursúa 2011, Bloom et al. 2012, Fernández-Villaverde et al. 2011, 
and Basu and Bundick 2012). Our paper builds heavily on the large and growing 
literature on long-run risks as a framework for asset pricing pioneered by Kandel and 
Stambaugh (1990) and BY. Important papers in this literature include Bansal and 
Shaliastovich (2013); Bansal, Dittmar, and Lundblad (2005); Hansen, Heaton, and 
Li (2008); Bonomo et al. (2011); Malloy, Moskowitz, and Vissing-JØrgensen (2009); 
Croce, Lettau, and Ludvigson (2015); and Colacito and Croce (2011). See BKY for 
a more comprehensive review of this literature. We consider a simple representative 
agent asset pricing framework with known parameter values, taking the consump-
tion process as given. Several theoretical papers extend on this framework, studying 
the production-based microfoundations for long-run risks (e.g., Kaltenbrunner and 
Lochstoer 2010, Kung and Schmid 2015), the asset pricing implications of parameter 
learning (e.g., Collin-Dufresne, Johannes, and Lochstoer forthcoming), deviations 
from the representative agent framework (e.g., Garleanu and Panageas 2015), and 
frameworks where utility depends on more than just consumption (e.g., Uhlig 2007).

The paper proceeds as follows. Section I discusses the data we use. Section II pres-
ents the empirical model. Section III discusses our estimation strategy. Section IV 
presents our empirical estimates. Section V studies the asset pricing implications of 
our model. Section VI presents intuition for our results on the equity premium based 
on the shock price and exposure elasticities developed by Borovička et al. (2011). 
Section VII concludes.

I.  Data

We estimate our model using a long-term dataset on annual per capita consumer 
expenditures recently constructed by Robert Barro and Jose Ursúa, and described 
in detail in Barro and Ursúa (2008a).5 Our sample includes 16 countries: Australia, 

5 One limitation of the Barro-Ursúa dataset is that it does not allow us to distinguish between expenditures on 
nondurables and services versus durables. Unfortunately, separate data on durable and nondurable consumption are 
not available for most of the countries and time periods we study. For the United States, nondurables and services 
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Belgium, Canada, Denmark, Finland, France, Germany, Italy, the Netherlands, 
Norway, Portugal, Spain, Sweden, Switzerland, the United Kingdom, and the 
United States.6 Our consumption data is an unbalanced panel with data for each 
country starting between 1890 and 1914 and ending in 2009. Figure 1 plots our data 
series for France. We have drawn a trend line through the pre-WWII period and 
extended this line to the present. The figure strongly suggests that France has expe-
rienced very persistent swings in growth over the last 120 years. In analyzing the 
asset pricing implications of our model, we also make use of long-term data on the 
total nominal returns on stocks and the dividend-price ratio on stocks from Global 
Financial Data (GFD 2011) as well as data on the total real returns on stocks and 
bills and inflation rates from Barro and Ursúa (2009). Table A1 gives the sample 
period we have for each variable for each country.

II.  An Empirical Model of Growth-Rate Shocks and Uncertainty Shocks

We model the “permanent component” of per capita consumption in country ​i​ at 
time ​t + 1​ —denoted ​​​c ̃ ​​i, t+1​​​ —in the following way:

(1)	​ Δ ​​c ̃ ​​i, t+1​​  = ​ μ​i​​ + ​x​i, t​​ + ​ξ​i​​ ​x​W, t​​ + ​η​i, t+1​​ + ​ξ​i​​ ​η​W, t+1​​ ,

	​ x​i, t+1​​  =  ρ ​x​i, t​​ + ​ϵ​i, t+1​​ ,

	 ​x​W, t+1​​  = ​ ρ​W​​ ​x​W, t​​ + ​ϵ​W, t+1​​ .​

The dynamics of permanent consumption growth are governed by two types of 
shocks: “random-walk” shocks that have a one-time effect on permanent con-
sumption growth and “growth-rate” shocks that have a persistent effect on perma-
nent consumption growth. For each type of shock, we allow for a country-specific 
shock and a shock that is common across all countries (a “world” shock). The four 
shocks that affect permanent consumption growth are therefore: a country-specific 
random-walk shock (​​η​i, t+1​​​), a world random-walk shock (​​η​W, t+1​​​), a country-specific 
growth-rate shock (​​ϵ​i, t+1​​​), and a world growth-rate shock (​​ϵ​W, t+1​​​). The persistence 
of the effects of the growth-rate shocks on permanent consumption growth is gov-
erned by AR(1) processes (​​x​i, t+1​​​ and ​​x​W, t+1​​​). We allow the different countries in our 
sample to differ in the their sensitivity to the world processes. The differing sensitiv-
ity is governed by the parameter ​​ξ​i​​​ .

are about 70 percent as volatile as total consumer expenditures over the time period when both series are available. 
One way of adjusting our results would therefore be to scale down the volatility of the shocks we estimate by 0.7. 
Whether this adjustment is appropriate depends on the extent to which nondurables and services are less volatile 
at the longer horizons over which our long-run risks shocks are most important. For example, if durables and 
nondurables are co-integrated, the adjustment is likely to be smaller. The adjustment is also likely to be smaller for 
earlier points in our sample, when the role of durables in total consumer expenditures was much smaller. 

6 We exclude countries in Southeast Asia and Latin America from our sample. Including these countries raises 
our estimates of the importance of long-run risks. In this sense, our estimates are conservative. 
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The volatility of the shocks affecting permanent consumption growth is time 
varying and governed by two AR(1) processes—one that is country specific and 
another that is common across all countries:

(2)	​ ​σ​ i, t+1​ 2 ​   = ​ σ​ i​ 2​ + γ​(​σ​ i, t​ 2 ​ − ​σ​ i​ 2​)​ + ​ω​i, t+1​​ , ​

(3)	​ ​σ​ W, t+1​ 2 ​   = ​ σ​ W​ 2 ​ + γ​(​σ​ W, t​ 2 ​  − ​σ​ W​ 2 ​)​ + ​ω​W, t+1​​ .​

We refer to the innovations to these processes— ​​ω​i, t+1​​​ and ​​ω​W, t+1​​​ —as uncertainty 
shocks.7

We assume that when world uncertainty rises this affects the volatility of all 
shocks to permanent consumption. The country-specific component of stochas-
tic volatility ​​σ​ i, t+1​ 2 ​ ​ , however, only affects the country-specific shocks. More spe-
cifically, for the growth-rate shocks, we assume that ​​var​t​​ (​ϵ​W, t+1​​)  = ​ σ​ W, t​ 2 ​ ​ , while  
​​var​t​​ (​ϵ​i, t+1​​)  = ​ σ​ i, t​ 2 ​ + ​σ​ W, t​ 2 ​ ​ . Variation in ​​σ​ i, t​ 2 ​​ should, therefore, be interpreted as devi-
ations in the uncertainty faced by a particular country from that faced by coun-
tries on average. In line with this interpretation, we allow ​​σ​ i, t​ 2 ​​ to be negative as 
long as ​​σ​ i, t​ 2 ​ + ​σ​ W, t​ 2 ​ ​ is positive. For the random-walk shocks, we assume that  
​​var​t​​ (​η​W, t+1​​)  = ​ χ​ W​ 2 ​ ​σ​ W, t​ 2 ​ ​ and ​​var​t​​ (​η​i, t+1​​)  = ​ χ​ i​ 2​ (​σ​ i, t​ 2 ​ + ​σ​ W, t​ 2 ​ )​ , where ​​χ​i​​​ governs the 
relative volatility of the two country-specific shocks, ​​ϵ​i, t+1​​​ and ​​η​i, t+1​​​ , and ​​χ​W​​​ gov-
erns the relative volatility of the two common shocks.

We allow for correlation between the growth-rate shocks and the uncertainty 
shocks. This is meant to capture the possibility that times of high uncertainty may also 
tend to be times of low growth. Specifically, we allow the country-specific growth-rate 
shock ​​ϵ​i, t+1​​​ and the country-specific uncertainty shock ​​ω​i, t+1​​​ to be correlated with a 
correlation coefficient of ​λ​. We also allow the world growth-rate shock ​​ϵ​W, t+1​​​ and the 
world uncertainty shocks ​​ω​W, t+1​​​ to be correlated with a correlation coefficient of ​​λ​W​​​.

To summarize, we assume the following distributions for the random-walk, 
growth-rate, and uncertainty shocks:

(4)	​ ​η​i, t+1​​  ∼  N ​(0, ​χ​ i​ 2​ ​(​σ​ i, t​ 2 ​ + ​σ​ W, t​ 2 ​ )​)​,​

(5)	​ ​η​W, t+1​​  ∼  N ​(0, ​χ​ W​ 2 ​ ​σ​ W, t​ 2 ​ )​,​

(6)	​ ​[​ 
​ϵ​i, t+1​​​ ​ω​i, t+1​​

​]​  ∼  N ​

⎛
 ⎜ 

⎝
​[​
0​ 
0
​]​, ​[

​ 
​σ​ i, t​ 2 ​ + ​σ​ W, t​ 2 ​

​ 
λ ​σ​ω​​ ​√ 

_______
 ​σ​ i, t​ 2 ​ + ​σ​ W, t​ 2 ​ ​
​    

λ ​σ​ω​​ ​√ 
_______

 ​σ​ i, t​ 2 ​ + ​σ​ W, t​ 2 ​ ​
​ 

​σ​ ω​ 2 ​
 ​

]
​
⎞
 ⎟ 

⎠
​,​

(7)	​ ​[​ 
​ϵ​W, t+1​​​ ​ω​W, t+1​​

​]​  ∼  N ​
(

​[​
0​ 
0
​]​, ​[​ 

​σ​ W, t​ 2 ​
​ 

​λ​W​​ ​σ​W, t​​ ​σ​ω, W​​
​   

​λ​W​​ ​σ​W, t​​ ​σ​ω, W​​
​ 

​σ​ ω, W​ 2 ​
 ​

]
​
)

​.​

7 Here, we follow BY’s original specification for the volatility shocks, which is truncated at a small positive 
value. We could alternatively model ​log ​σ​ i, t+1​ 2 ​ ​ and ​log ​σ​ W, t+1​ 2 ​ ​ as following AR(1) processes. We have experimented 
with this specification. However, with this specification, the volatility of ​​σ​​ 2​​ drops to very low levels when ​​σ​​ 2​​ is 
small implying that ​​σ​​ 2​​ can “get stuck” close to zero for a very long time. It is not clear to us that the data support 
this feature. Also, our Markov Chain Monte Carlo (MCMC) estimation algorithm runs into trouble in this case since 
the likelihood function is very flat when ​log ​σ​​ 2​​ becomes sufficiently negative (​​σ​​ 2​​ sufficiently small). In this region 
very large movements in ​log ​σ​​ 2​​ correspond to tiny movements in ​​σ​​ 2​​. This leads the MCMC algorithm to get stuck. 
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To avoid negative variances, we truncate the process for ​​σ​ W, t​ 2 ​ ​ at a small positive 
value ​ζ​ and we truncate the process for ​​σ​ i, t​ 2 ​​ such that ​​σ​ i, t​ 2 ​  >  ζ − ​σ​ W, t​ 2 ​ ​ .8

We allow parameters to vary across countries whenever our data contains enough 
information to make this feasible. For example, we allow ​​σ​ i​ 2​​ to differ across coun-
tries. This allows some countries to have permanently higher or lower volatility 
of macroeconomic shocks than others. However, some parameters are difficult to 
estimate precisely for each country individually. In these cases, we rely on the panel 
structure of the dataset and assume that these parameters are common across coun-
tries. The parameters we make this pooling assumption for are: the persistence of the 
growth-rate components ​ρ​ and ​​ρ​W​​​ , the persistence of the stochastic volatility pro-
cesses ​γ​ , the volatility of the uncertainty shocks ​​σ​ ω​ 2 ​​ and ​​σ​ W, ω​ 2 ​ ​ , the average volatility 
of the world stochastic volatility process ​​σ​ W​ 2 ​​ , the relative standard deviation of the 
world random-walk and growth-rate shocks ​​χ​W​​​ , and the correlations between the 
growth-rate and uncertainty shocks ​λ​ and ​​λ​W​​​.9

We allow measured consumption—denoted ​​c​i, t​​​ —to differ from permanent con-
sumption ​​​c ̃ ​​i, t​​​ because of two transitory shocks:

(8)	​ ​c​i, t+1​​  = ​​ c ̃ ​​i, t+1​​ + ​ν​i, t+1​​ + ​I​ i, t+1​ d ​ ​ ψ​ i, t+1​ d ​  .​

The first of these shocks ​​ν​i, t+1​​​ is mainly meant to capture measurement error. We 
assume that this shock is distributed ​N(0, ​σ​ i, t, ν​ 2 ​ )​ , where the volatility of this shock is 
allowed to differ before and after 1945. By incorporating this break in the volatility 
of ​​ν​i, t+1​​​, we can capture potential changes in national accounts measurement around 
this time (Romer 1986, Balke and Gordon 1989). This is empirically important since 
it avoids the possibility that our estimates of the high persistence of macroeconomic 
uncertainty arise spuriously from these changes in measurement procedures.10

The second shock ​​I​ i, t+1​ d ​ ​ ψ​ i, t+1​ d ​ ​ captures transitory variation in consumption due 
to disasters.11 The dummy variable ​​I​ i, t​ d ​​ is set equal to one in periods identified as 
disaster periods by Nakamura et al. (2013)—almost exclusively WWI, the Great 
Depression, and WWII—and during a two-year recovery period after each such epi-
sode and zero otherwise.12 The disaster shock ​​ψ​ i, t​ d ​​ is distributed ​N(​μ​d​​ , 1)​. We fix 
the variance of ​​ψ​ i, t​ d ​​ at one (a large value), to ensure that this shock “soaks up” all 
transitory variation in consumption during the disaster periods. Allowing for this 
separate disaster shock avoids the concern that we are overestimating long-run risks 

8 For world stochastic volatility, this means that when an ​​ω​W, t+1​​​ is drawn that would yield a value of ​​σ​ W, t+1​ 2 ​   <  ζ​ , 
we set ​​σ​ W, t+1​ 2 ​   =  ζ​. This implies that the innovations to the ​​σ​ W, t+1​ 2 ​ ​ have a positive mean when ​​σ​ W, t+1​ 2 ​ ​ is close to ​ζ​. 
For the estimated values of the parameters of our model (baseline estimation), ​​σ​ W, t+1​ 2 ​   =  ζ​ about 9.2 percent of the 
time. We incorporate this truncation in our asset pricing analysis in Section V. 

9 Notice also, that we assume that the same parameter (​γ​) governs the persistence of both the common and 
country-specific components of stochastic volatility. We do this because there is insufficient information in our 
dataset to estimate a separate parameter for the persistence of world volatility. 

10 We restrict ​​ν​i, t+1​​​ to be i.i.d. to avoid the identification problem discussed in Quah (1992). 
11 The permanent effects of disasters are captured by ​​η​i, t+1​​​ , ​​η​W, t+1​​​ , ​​ϵ​i, t+1​​​ , and ​​ϵ​W, t+1​​​. 
12 Nakamura et al.’s (2013) results indicate that there is unusually high growth after disasters—i.e., recover-

ies—but that this unusually high growth dies out rapidly—it has a half-life of one year. By allowing for a two-year 
recovery period after disasters, we allow the disaster shocks in our model to capture the bulk of the unusually high 
growth after disasters and avoid having this growth variation inflate our estimates of long-run risks. 
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in the persistent component of consumption due to the huge but transitory spike in 
volatility during WWI, the Great Depression, and WWII.

To summarize, our model extends the long-run risks model of BY in four ways. 
First, we allow for both a country specific and world component of all the main 
shocks in the model, and we allow each country to differ in their sensitivity to the 
world shocks. Second, we allow the growth-rate and uncertainty shocks to be cor-
related. This allows for the possibility that times of low growth may also tend be 
times of high uncertainty. Third, we allow for time-variation in measurement error 
in consumption. This is crucial since it avoids the outcome that our estimates of the 
high persistence of macroeconomic uncertainty arise spuriously from changes in 
measurement procedures. Fourth, we allow for disasters—again key for avoiding the 
overestimation of stochastic volatility. Finally, we estimate the model using panel 
data on many countries and use the panel structure of the data to identify certain key 
parameters.

III.  Estimation

The model presented in Section II contains a large number of unobserved state 
variables, since it decomposes consumption into several unobserved components. 
We estimate the model using Bayesian MCMC methods.13 To carry out our Bayesian 
estimation we need to specify a set of priors on the parameters of the model. We 
choose highly dispersed priors to minimize their effect on our inference:

	​ ρ ∼  U(0.005, 0.995),        ​ ρ​W​​  ∼  U(0.005, 0.995),

	​ σ​ ω​ 2 ​  ∼  U(​10​​ −12​, 2.5 × ​10​​ −9​), ​ σ​ W, ω​ 2 ​   ∼  U(​10​​ −12​, 4 × ​10​​ −10​),

	 λ  ∼  U(−0.995, 0.995),      ​ λ​W​​  ∼  U(−0.995, 0.995),

	​ χ​ W​ 2 ​  ∼  U(​10​​ −4​, 25),             ​ χ​ i​ 2​  ∼  U(​10​​ −4​, 25),

	 γ  ∼  U(0.005, 0.98),        ​ σ​ ν, i​ 2 ​   ∼  U(​10​​ −8​, ​10​​ −2​),

	​ ξ​i​​  ∼  U(​10​​ −4​, 1),              ​ σ​ i​ 2​  ∼  U(​10​​ −8​ , 0.0004),

	​ μ​i​​  ∼  N(0.015, 0.030),          ​μ​d​​  ∼  N(0, 1)​​​​​​​.

We normalize the unconditional volatility of the world stochastic volatility process 
to be ​​σ​W​​  =  0.005​. Since we allow the loadings on the world volatility process to 

13 Our algorithm samples from the posterior distributions of the parameters and unobserved states using a Gibbs 
sampler augmented with Metropolis steps when needed. This algorithm is described in greater detail in Appendix B. 
The estimates discussed in Section IV for the three versions of the model are each based on four independent 
Markov chains. Each of these chains has 5 million draws or more, with the first 1 million draws from each chain 
dropped as “burn-in.” To assess convergence, we employ Gelman and Rubin’s (1992) approach to monitoring 
convergence based on parallel chains with “over-dispersed starting points” (see also Gelman et al. 2004, ch. 11). 
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vary across countries, ​​σ​W​​​ is unidentified unless volatility hits its lower bound.14 We 
assume that the initial values of ​​x​i, t​​​ , ​​x​W, t​​​ , ​​σ​i, t​​​ , and ​​σ​W, t​​​ are drawn from their uncondi-
tional distributions. We assume that the initial value of ​​​c ̃ ​​i, t​​​ for each country is drawn 
from a highly dispersed normal distribution centered on the initial observation for ​​c​i, t​​​ .

IV.  Empirical Results

Our baseline empirical results are for the full model described in Section II for 
the full sample period 1890–2009. We also report results for a shorter post-WWII 
sample period and for a simplified version of the model in which we shut down the 
world growth-rate and volatility components, as well as the correlation between the 
country-specific growth-rate and volatility shocks. We refer to this latter model as the 
“simple model.” Tables 1–3 present parameter estimates for these three cases.15 For 
each parameter, we present the prior and posterior mean and standard deviation. We 
refer to the posterior mean of each parameter as our point estimate for that parameter.

Overall, we find evidence for large amounts of long-run risk. A large frac-
tion of consumption volatility arises from persistent growth-rate shocks (roughly 

14 In the absence of the lower bound on volatility, this parameter would not be identified. Given the presence 
of the lower bound, the parameter is (weakly) identified by the effect of the truncation on the mean of the process. 
Given that there is no economic logic for the identification of this parameter, we choose to fix it. 

15 Table A2 presents some further details on the parameter estimates for the full model. 

Table 1—Estimates for Pooled Parameters

Prior Baseline Simple model Post-WWII

Persistence:
  Country-specific growth-rate shocks (​ρ​) 0.500 0.572 0.696 0.555

(0.286) (0.044) (0.032) (0.054)
  World growth-rate shocks (​​ρ​W​​​) 0.500 0.922 — 0.922

(0.286) (0.045) (0.049)
  Stochastic volatility (​γ​) 0.493 0.969 0.948 0.946

(0.281) (0.012) (0.022) (0.041)

Standard deviations:
  Country-specific stoch. vol. shock (​​σ​ω​​​) 0.000033 0.000025 0.000042 0.000031

(0.000012) (0.000006) (0.000006) (0.000008)
  World stoch. vol. shock (​​σ​ω, W​​​) 0.000013 0.000017 — 0.000016

(0.000005) (0.000003) (0.000003)
  Rel. SD of world random walk shock (​​χ​W​​​) 3.34 1.80 — 1.59

(1.18) (0.66) (0.68)

Correlations:
  Country-specific (​λ​) 0.00 -0.47 — -0.45

(0.57) (0.17) (0.23)
  World (​​λ​W​​​) 0.00 -0.42 — -0.47

(0.57) (0.24) (0.27)

Notes: The table reports prior and posterior means of the parameters with prior and posterior standard deviations 
in parentheses. The “Baseline” case is for our full model estimated on data from 1890–2009. The “Simple Model” 
case is for our simple model estimated on data from 1890–2009. The “Post-WWII” case is for our full model esti-
mated on data from 1950–2009.
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40 percent) and these shocks are quite persistent. These shocks lead to extended 
periods of high and low growth, despite the moderate short-term autocorrelation 
of consumption growth. We also identify large and persistent variation in volatility 
over time. Volatility is roughly five times higher at the ninety-fifth quantile of its dis-
tribution than it is at the fifth quantile. Finally, our model implies that the component 
of the growth-rate process that is common across countries is much more persistent 
than the component of these shocks that is idiosyncratic to particular countries. This 

Table 2—Estimates of Persistence and Volatility

Baseline
Simple 
model

Post-
WWII

BY 
(2004)

BKY 
(2012)

Panel A. Persistence (half-lives in years)
Country-specific growth-rate process (​​x​i, t​​​) 1.2 1.9 1.2 2.7 2.3
World growth-rate process (​​x​W, t​​​) 8.5 — 8.5 — —
Uncertainty processes (​​σ​ i, t​ 2

 ​ and ​σ​ W, t​ 
2
  ​​) 22.0 12.9 12.6 4.4 57.7

Panel B. Volatility (standard deviation of consumption growth)
Total 0.026 0.025 0.023 0.029 0.029
No growth-rate shocks (% of baseline) 0.628 0.686 0.586 0.757 0.792
Stoch. vol. fixed at fifth quantile 0.007 0.006 0.005 0.023 0.009
Stoch. vol. fixed at fiftieth quantile 0.024 0.024 0.021 0.029 0.028
Stoch. vol. fixed at ninety-fifth quantile 0.038 0.036 0.032 0.034 0.045

Notes: The table reports measures of persistence and volatility for three versions of our model as well as for the 
model in Bansal and Yaron (2004) and Bansal, Kiku, and Yaron (2012). Panel A reports the persistence of the 
country-specific growth-rate process, the world growth-rate process, and the uncertainty processes in terms of the 
half-life in years. Panel B reports the standard deviation of consumption growth in a long simulation of several vari-
ants of each model. The first row (labeled “total”) reports volatility of each model without any modification. The 
second row reports the volatility when the persistent growth-rate processes (​​x​i, t​​​ and ​​x​W, t​​​) are set to zero as a fraction 
of the total volatility in the baseline model. The third through fifth rows report the volatility of consumption growth 
in a version of each model where volatility is constant and set to the level of volatility that is the fifth, fiftieth, and 
ninety-fifth quantiles of the distribution of stochastic volatility for the United States in that model. 

Table 3—Estimates for Country-Specific Parameters

Baseline Simple model Post-WWII

Prior Median US Median US Median US

Rel. SD of random- 3.38 0.88 1.06 0.98 1.20 0.89 0.84
  walk shock (​​χ​i​​​) (1.18) (0.43) (0.41) (0.48) (0.54) (0.45) (0.39)
Sensitivity to common 0.500 0.59 0.61 — — 0.63 0.62
  shocks (​​ξ​i​​​) (0.289) (0.14) (0.15) — — (0.14) (0.16)
Average growth (​​μ​i​​​) 0.015 0.014 0.015 0.015 0.018 0.016 0.017

(0.030) (0.005) (0.005) (0.004) (0.004) (0.006) (0.006)

Standard deviations:
  Average stochastic 0.0133 0.0087 0.0081 0.0113 0.0110 0.0080 0.0083
    volatility (​​σ​i​​​) (0.0047) (0.0036) (0.0034) (0.0037) (0.0039) (0.0037) (0.0035)
  Post-1945 transitory 0.0067 0.0036 0.0024 0.0041 0.0037 0.0034 0.0023
    shock (​​σ​ν, t​​​) (0.0023) (0.0016) (0.0015) (0.0020) (0.0020) (0.0016) (0.0013)
  Pre-1945 transitory 0.0667 0.0230 0.0232 0.0227 0.0236 — —
    shock (​​σ​ν, t​​​) (0.0236) (0.0046) (0.0046) (0.0048) (0.0049) — —

Notes: The table reports prior and posterior means of the parameters with prior and posterior standard deviations 
in parentheses. The “Baseline” case is for our full model estimated on data from 1890–2009. The “Simple Model” 
case is for our simple model estimated on data from 1890–2009. The “Post-WWII” case is for our full model esti-
mated on data from 1950–2009. “Median” refers to the median value of the statistic in question—mean or standard 
deviation—across the countries.
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explains why consumption growth is more correlated across countries at low rather 
than high frequencies. These facts have important implications for asset pricing, as 
we describe in Section V.

A. Examining the Shocks

Perhaps the best way to illustrate the importance of long-run risks in our esti-
mates is to simply plot our estimates of the growth-rate and volatility processes. 
Figure 2 plots our estimate of the world growth-rate process. The most striking 
feature of our estimates for this process is its high values in the 1950s, 1960s, and 
early 1970s. This reflects the post-WWII European growth miracle.16 Our esti-
mated world growth-rate process also captures several major recessions such as the 
1979–1982 recession following the spike in oil prices that accompanied the Iranian 
Revolution, as well as the tightening of US monetary policy; the recession of 1990 
following, among other events, the Persian Gulf War, the unification of Germany, and 
the accompanying tightening of German monetary policy; and the Great Recession  
of 2007–2009. Earlier in our sample, our world growth-rate process captures the 
relatively high growth in the 1920s and the dismal growth of the Great Depression  
and WWII.17

Figure 3 presents our estimates of the evolution of the world stochastic volatility 
process (​​σ​W, t​​​). We estimate a large increase in world volatility during the Great 

16 It is intriguing that this growth spurt so closely followed World War II. It is tempting to infer that this high 
growth is due to postwar reconstruction. However, for most countries, the vast majority of the unusually high growth 
during this period occurred in years when consumption (and output) had surpassed its pre-WWII trend-adjusted 
level (see, e.g., Figure 1). 

17 Recall, though, that the temporary effects of WWII on the level of consumption are “soaked up” by the disas-
ter shock we allow for. Only the permanent effects of WWII are captured in our estimates of the world growth-rate 
process. 

Figure 2. The World Growth-Rate Process

Note: The figure plots the posterior mean value of ​​x​w, t​​​ for each year in our sample.
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Depression and WWII. World volatility remained high in the late 1940s and 1950s. 
It then fell to very low levels in the 1960s, but was high again in the 1970s and 
early 1980s. World volatility fell sharply in the mid- to late-1980s but was relatively 
high in the early 1990s. From 1995 to 2007, the world experienced a long period 
of relative tranquility. At the end of our sample period, world volatility rose sharply 
once again. In studying this figure, it is important to keep in mind that our model 
attributes much of the volatility in the first half of our sample to disasters and mea-
surement error.
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Figure 3. World Stochastic Volatility

Note: The figure plots the posterior mean value of ​​σ​w, t​​​ for each year in our sample.

Figure 4. Stochastic Volatility for the United States, the United Kingdom,  
and Canada
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Comparing Figures 2 and 3, it is evident that the world growth-rate process and 
the world stochastic volatility process are negatively correlated. Our model allows 
explicitly for a correlation between shocks to these processes (​​λ​W​​​). Table 1 reports 
that our estimate of this correlation is −0.42. We also estimate a common correla-
tion between the country-specific growth-rate shocks and uncertainty shocks in our 
data and find this correlation to be −0.47. Our estimates, thus, strongly suggest that 
periods of high volatility are also periods of low growth.

We estimate a substantial amount of heterogeneity in the evolution of volatility 
across countries. Figure 4 presents our estimates of the evolution of the volatility 
process for the United States, the United Kingdom, and Canada—(​σ​ i, t​ 2 ​ + ​​σ​ W, t​ 2 ​​​ )​​ 1/2​​ in 
our notation.18 For the United States, our results reflect the “long and large” decline 
in macroeconomic volatility documented by Blanchard and Simon (2001) as well as 
the rather abrupt decline in volatility in the mid-1980s documented by McConnell 
and Perez-Quiros (2000) and Stock and Watson (2002). The experience of the United 
Kingdom is quite different. Volatility in the United Kingdom was lower in the early 
part of the twentieth century (excluding disasters), but then rose substantially over 
the first three decades after WWII. Volatility in the United Kingdom began falling 
only around the time Margaret Thatcher came to power and has remained elevated 
relative to volatility in the United States ever since 1960. In contrast, volatility in 
Canada fell much more abruptly in the 1950s and early 1960s than volatility in the 
United States and was substantially below US volatility in the 1960s, 1970s, and 
early 1980s, at which point US volatility converged down to similarly low levels.

We estimate a substantial decline in the volatility of transitory shocks ​​σ​ν, i​​​ after 
1945 in most countries. Before 1945, the standard deviation of these transitory 
shocks is quite large—2.3 percent for the median country. After 1945, it is only 
0.4 percent for the median country. This change likely reflects in part changes in 
national accounts measurement, as we discuss in Section II.19

B. Comparison with BY and BKY

In both the original calibration of the long-run risks model in BY and the more 
recent calibration of BKY, long-run risks are relatively small, so small that they are 
hard to detect in macroeconomic data. In contrast, the long-run risks we estimate are 
relatively large. Table 2 reports that roughly 40 percent of the volatility of consump-
tion growth derives from the long-run risk shocks in our estimated model, while in 
the calibrations of BY and BKY, this ratio is only 20–25 percent. The long-run risks 
we estimate are therefore roughly twice the size of those considered by BY and BKY.

The amount of stochastic volatility we estimate is also much larger than that 
considered by BY, but comparable to the amount of stochastic volatility in BKY. To 
illustrate this, Table 2 reports the counterfactual volatility of consumption growth in 

18 Recall that ​​σ​ i, t​ 2 ​​ can be negative (as long as ​​σ​ i, t​ 2 ​ + ​σ​ W, t​ 2 ​ ​ is positive) and should be interpreted as the difference 
between country-specific volatility and world volatility. 

19 Ursúa (2011) argues—based on methods developed by Romer (1986)—that this change also reflects changes 
in macroeconomic fundamentals. Since transitory shocks turn out to be relatively unimportant for asset pricing, the 
choice of whether to treat this change as a consequence of measurement or fundamental shocks plays a small role 
in our asset pricing analysis. 
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the United States if the stochastic volatility processes were permanently “stuck” at 
the fifth, fiftieth, and ninety-fifth quantiles of their distributions.20 We find that the 
volatility of consumption growth is more than five times higher at the ninety-fifth 
quantile than it is at the fifth quantile (0.038 versus 0.007). In the calibration of BY, 
this ratio is only 1.48 (0.034 versus 0.023), while it is 5 in the calibration of BKY 
(0.045 versus 0.009).

Table 2 also reports the persistence of the growth-rate and uncertainty processes 
we estimate in terms of half-lives. The half-lives of the world and country-specific 
growth-rate processes that we estimate are 8.5 years and 1.2 years, respectively. 
These estimates straddle the persistence of the growth-rate processes considered in 
BY and BKY (half-lives of 2.7 years and 2.3 years, respectively). Interestingly, the 
results we report for our “simple model” show that it is crucial to allow for a world 
component in order to be able to capture the highly persistent movements in growth 
rates in the data. In the simple model, the half-life of the growth-rate shocks is only 
1.9 years and an analysis of the residuals from this model confirms that it is not able 
to capture well the low frequency movements in growth rates. The persistence of the 
uncertainty process we estimate (half-life of 22 years) is much higher than the per-
sistence of the uncertainty process in BY’s original calibration, but it is not as high 
as the very high persistence considered in BKY (half-life of 57.7 years).

C. Autocorrelations, Cross-Country Correlations, and Variance Ratios

A challenge in matching the empirical properties of aggregate consumption data 
is that, on the one hand, variance ratios—which provide evidence on the long-run 
autocorrelation of consumption—suggest substantial persistence in consumption 
growth rate. However, on the other hand, if one simply looks at autocorrelations at 
short and medium horizons, the autocorrelations are close to zero, suggesting low 
persistence.

Table 4 illustrates these effects. The first panel reports estimates of autocorrela-
tions in the estimated model (excluding disasters).21 In the data, the autocorrelation 
of consumption growth is positive but small at short to medium-term horizons for 
the median country. For the United States, the autocorrelation oscillates around zero 
at different horizons. At the same time, Table 4 shows that, in the data, the variance 
ratio for consumption growth for the median country is 1.53, substantially above 1. 
For the United States the corresponding figure is 1.29. Variance ratios above one indi-
cate reduced form evidence for positive autocorrelation of consumption growth.22

20 The comparison with BY and BKY is complicated since their model is formulated at a monthly frequency, 
while we estimate our model at an annual frequency. This complication is what leads us to use the statistics 
described here rather than compare the parameter estimates directly. 

21 In the data, we exclude disasters by subtracting from the raw data our estimate of the transitory disaster shock. 
This yields series for consumption that smoothly “interpolate” through disasters. For the simulated data from our 
model, we simulate the model without the transitory disaster shock. 

22 The definition and intuition behind variance ratios is discussed in more detail in Appendix C. The high value 
of the variance ratio for the United States contrasts with the well-known results of Cochrane (1988), who estimates 
a much smaller variance ratio for US output. Several factors contribute to the difference. First, the variance ratio for 
consumption is somewhat higher than for output. Second, we are looking at a somewhat longer sample period than 
Cochrane and the variance ratios are somewhat higher for this longer sample period. Third (and most important), 
the variance ratio excluding disasters is substantially larger than that including disasters since disasters are typically 
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Our model is able to fit both types of evidence on the persistence of consumption 
growth. On the one hand, the model generates modest short-term and medium-term 
autocorrelations in the growth rate of consumption. This is because the positive 
autocorrelation arising from the growth-rate process is mostly offset by the negative 
autocorrelation generated by the transitory shocks to the level of consumption. On 
the other hand, the long-run risks shocks to growth generate variance ratios substan-
tially above one: 1.33 for the median country and 1.39 for the United States.

We also compute an analogous variance ratio measure for assessing the persistence 
of shocks to volatility, introduced by BY. This statistic provides a rough measure of 
the persistence of stochastic volatility. As with the variance ratio for consumption 
growth, if this variance ratio is above one, it indicates that uncertainty shocks have 
persistent effects on volatility—i.e., high volatility periods are “bunched together” 
(the exact definition is presented in Appendix C). In the data, the variance ratios 
for realized volatility are again substantially above 1 (2.10 for the median country 
and 1.80 for the United States). This is hardly surprising given the long swings in 
volatility associated with phenomena such as the Great Moderation that the model 

followed by recoveries and therefore lower the variance ratio (Kilian and Ohanian 2002, Nakamura et al. 2013). 
Ursúa (2011) presents a related analysis. Rather than filtering the data the way we do, he excludes “outlier” growth 
observations. This simpler procedure also yields substantially larger variance ratios than raw consumption growth 
in his broader sample. 

Table 4—Properties of Consumption Growth

Median country United States

Model Model

  Data Median [2.5%, 97.5%] Data Median [2.5%, 97.5%]

AC(1) 0.12 −0.01 [−0.17, 0.17] −0.08 −0.05 [−0.33, 0.25]
AC(2) 0.13 0.13 [0.03, 0.27] 0.16 0.14 [−0.08, 0.40]
AC(3) 0.04 0.10 [0.01, 0.25] −0.21 0.09 [−0.11, 0.36]
AC(4) 0.09 0.07 [−0.01, 0.22] 0.28 0.09 [−0.15, 0.34]
AC(5) 0.01 0.06 [−0.02, 0.20] −0.09 0.08 [−0.19, 0.29]
AC(10) 0.12 0.02 [−0.05, 0.13] 0.11 0.02 [−0.21, 0.21]

 
VR(15) ΔC 1.53 1.33 [0.77, 3.08] 1.29 1.39 [0.44, 3.89]
VR(15) Vol 2.10 1.93 [1.22, 3.05] 1.80 2.12 [0.74, 4.61]

 
CrossC(1) 0.21 0.15 [0.08, 0.30] 0.18 0.16 [0.03, 0.34]
CrossC(5) 0.43 0.36 [0.14, 0.61] 0.43 0.38 [0.11, 0.67]
CrossC(10) 0.55 0.45 [0.15, 0.77] 0.54 0.47 [0.06, 0.79]

Notes: The table reports autocorrelations, cross-country correlations, and variance ratios for the real-world data 
and simulated data from the model (excluding disasters in both cases). Rows one through six present the autocor-
relation of one-year through five-year and ten-year consumption growth. The next three rows present cross-country 
correlations of one-, five-, and ten-year consumption growth. The last two rows present the 15-year variance ratio 
of consumption growth and the realized volatility of consumption growth. For the cross-country correlations, the 
median country results are the median of the 120 cross-country correlations across our 16 countries. For the results 
based on data from the model, we simulate 1,000 datasets from the model of the same size as the actual data. For 
each such simulation, we calculate the median across countries as well as the value for the United States for each 
statistic. We then report the median along with the 2.5 percent and 97.5 percent quantiles across simulations for 
each of these statistics.
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is intended to fit. Again, the model fits this feature of the data quite well. It yields a 
value of 1.93 for the median country and 2.12 for the United States.

The last panel of Table 4 presents cross-correlations across consumption growth 
in different countries, at different horizons. The correlation of consumption growth 
across countries is estimated to be substantial and to grow with the horizon, a point 
emphasized by Cogley (1990). The median one-year cross-country correlation in 
the data is 0.21, while it is 0.43 at the five-year horizon and 0.55 at the ten-year 
horizon. Our model provides an excellent fit to the data along this dimension. In the 
model, the one-year cross-country correlation is 0.15, while it is 0.36 and 0.45 at 
five-year and ten-year horizons, respectively, for the median country. These long-run 
correlations help explain observed cross-country co-movement in asset returns (e.g., 
Colacito and Croce 2011, Verdelhan forthcoming).

V.  Asset Pricing

We analyze the asset pricing implications of the model of aggregate consumption 
described in Section II within the context of a representative consumer endowment 
economy with Epstein-Zin-Weil preferences (Epstein and Zin 1989, Weil 1990). 
For this preference specification, Epstein and Zin (1989) show that the return on an 
arbitrary cash flow is given by the solution to the following equation:

(9)	​ ​E​t​​​[​β​​ θ​ ​​(​ 
​C​i, t+1​​ _____ ​C​i, t​​

 ​ )​​​ 
(−θ/ψ)

​ ​R​ c, t, t+1​ 
−(1−θ)​ ​R​i, t, t+1​​]​  =  1, ​

where ​​R​i, t, t+1​​​ denotes the gross return on an arbitrary asset in country ​i​ from  
period ​t​ to period ​t + 1​ , and ​​R​c, t, t+1​​​ denotes the gross return on the agent’s wealth, 
which in our model equals the endowment stream. The parameter ​β​ represents 
the subjective discount factor of the representative consumer. The parameter ​
θ  = ​  1 − γ _____ 

1 − 1 / ψ ​​  , where ​γ​ is the coefficient of relative risk aversion (CRRA) and ​ψ​ is 
the intertemporal elasticity of substitution (IES), which governs the agent’s desire 
to smooth consumption over time.

We begin by calculating asset prices for two assets: a risk-free one-period bond 
and a risky asset we will use to represent equity. The risk-free one-period bond has 
a certain payoff of one unit of consumption in the next period. We follow BKY in 
modeling equity as having a levered exposure to the stochastic component of perma-
nent consumption. Specifically, the growth rate of dividends for our equity claim is

(10)	​ Δ ​d​t+1​​  =  μ + ϕ(​x​i, t​​ + ​ξ​i​​ ​x​W, t​​ + ​η ​i, t+1​​) , ​

where ​ϕ​ is the leverage ratio on expected consumption growth (Abel 1999). We 
base our analysis on the posterior mean estimates for the baseline case from Section 
IV. We therefore abstract from learning, doubt, and fragile beliefs (Timmermann 
1993; Pastor and Veronesi 2009; Hansen 2007; Hansen and Sargent 2010; and 
Croce, Lettau, and Ludvigson 2015). We do not, however, mean to downplay the 
importance of these factors. Indeed, the importance of long-run risks are likely 
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to raise the extent of parameter uncertainty, given how hard it is to estimate the 
long-run risk parameters. Weitzman (2007) shows that parameter uncertainty can 
massively increase the equity premium.

The asset-pricing implications of our model with Epstein-Zin-Weil (EZW) pref-
erences cannot be derived analytically. We solve for asset prices in our model using 
standard grid-based numerical methods of the type used, for example, by Campbell 
and Cochrane (1999) and Wachter (2005).23 We choose a subjective discount factor 
of ​β  =  0.99​ to fit the observed average risk-free rate in our baseline specification. 
We follow BY in choosing an IES of ​ψ  =  1.5​ , and a leverage parameter of ​ϕ  =  3​. 
We choose a CRRA of ​γ  =  9​ to match the equity premium in US data.

Qualitatively, leverage and risk aversion play the same role in raising the risk 
premium, but they enter somewhat differently in the return formulas. In our setting 
with stochastic volatility, leverage has a nonlinear effect on the equity premium 
because it not only makes the shocks hitting dividends proportionally larger, but also 
it makes shocks to stochastic volatility effectively larger.24

To evaluate the asset pricing implications of long-run risks, we calculate asset 
prices as though all risk was associated with risk in “permanent consumption.” 
This measure excludes the transitory (measurement error) shock and the transitory 
variation in consumption during disasters—primarily WWI, WWII, and the Great 
Depression.

The asset pricing implications of disaster risk have been the focus of a large body 
of recent literature (see, e.g., Barro 2006). Indeed, two of the authors of the present 
paper (Nakamura and Steinsson) have quantified the asset pricing implications of 
disaster risk using similar methods to those employed in this paper (Nakamura et al. 
2010). However, what we seek to show here is that one does not have to believe in 
the importance of disaster risk to believe long-run risks have important asset pricing 
implications. Even if one believes that events such as WWI, WWII, and the Great 
Depression will not occur in the future, one still has to contend with the existence 
of smaller but much more persistent changes in growth rates and volatility—the 
focus of our paper. Hence, we believe that the asset pricing implications of long-run 
risks are worthy of analysis in isolation.25 Note that if we do not account sepa-
rately for disaster risk and instead allow these events to influence our estimates of 
long-run risks, then our estimates of the importance of long-run risks, and particu-
larly stochastic volatility, become even larger—in this sense, our baseline estimates 
are conservative. Also, for the post-WWII sample, the handling of disaster risk is 

23 We solve the integral in equation (9) on a grid. Specifically, we start by solving for the price-dividend ratio 
for a consumption claim. In this case, we can rewrite equation (9) as ​PD ​R​ t​ C​  = ​ E​t​​ ​[ f (Δ ​C​t+1​​ , PD ​R​ t+1​ C ​ )]​​ , where  
​PD ​R​ t​ C​​ denotes the price-dividend ratio of the consumption claim. We specify a grid for ​PD ​R​ t​ C​​ over the state space. 
We then solve numerically for a fixed point for ​PD ​R​ t​ C​​ as a function of the state of the economy on the grid. We 
can then rewrite equation (9) for other assets as ​PD ​R​t​​  = ​ E​t​​ ​[ f (Δ ​C​t+1​​ , Δ ​D​t+1​​ , PD ​R​ t+1​ C ​  , PD ​R​t+1​​)]​​ , where ​PD ​R​t​​​ 
denotes the price-dividend ratio of the asset in question and ​Δ ​D​t+1​​​ denotes the growth rate of its dividend. Given 
that we have already solved for ​PD ​R​ t​ C​​ , we can solve numerically for a fixed point for ​PD ​R​t​​​ for any other asset as a 
function of the state of the economy on the grid. 

24 BY model leverage by considering a scaled up dividend claim, in line with Abel (1999), who shows that this 
formulation works well in replicating the asset pricing implications of true leverage in a number of settings but does 
not analyze a model with stochastic volatility. This would be a useful topic for future research. 

25 In addition, while it would certainly be interesting to explore the implications of interactions between disas-
ters and long-run risks, this would entail considerable costs in terms of computational complexity. 
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unimportant since essentially no disasters have occurred after WWII according to 
our definition in the sample of countries we analyze.26

A. The Equity Premium

Table 5 presents key asset pricing statistics in the data and for our baseline spec-
ification of the model. The table presents results for the United States and for the 
median country in our sample. Our model matches the observed equity premium for 
the United States with a CRRA of 9, a slightly lower value than is used in BY and 
BKY. This value is roughly an order of magnitude lower than the value needed in a 
model without long-run risks (Mehra and Prescott 1985, Tallarini 2000). Long-run 
risks make the world a riskier place, and households must be compensated to hold 
equity that is exposed to these risks. Recall that our estimates of long-run risks are 
based solely on macroeconomic data. The amount of long-run risk we estimate is 
therefore not backward engineered to match the equity premium for a modest value 
of the CRRA. In light of this, our finding that the quantity of long-run risks is some-
what larger than in BY and BKY is of particular interest.27

Table 6 presents results on the equity premium and the risk free rate from our 
baseline model for all 16 countries in our sample. Interestingly, the model-generated 

26 When we analyze the predictability of returns and consumption growth in Section VB, we simulate consump-
tion growth adding back in our estimated process for “measurement error.” 

27 Table A3 in the Appendix presents analogous results to Table 5 for our two alternative specifications: the 
simple model and the post-WWII estimation of the baseline model. Results for both cases are quite similar to the 
baseline case. 

Table 5—Asset Pricing Statistics

Data Baseline model

  Median US Median US

E(​​R​m​​​ − ​​R​f​​​) 6.87 7.10 6.99 7.23
σ(​​R​m​​​ − ​​R​f​​​) 21.82 17.37 13.46 13.46
E(​​R​m​​​ − ​​R​f​​​)/σ(​​R​m​​​ − ​​R​f​​​) 0.32 0.41 0.52 0.54
E(​​R​m​​​) 9.10 8.23 8.20 8.47
σ(​​R​m​​​) 21.99 17.89 13.45 13.46
E(​​R​f​​​) 1.43 1.13 1.12 1.24
σ(​​R​f​​​) 4.57 3.33 1.53 1.54

E( p − d  ) 3.30 3.30 2.84 2.83
σ( p − d  ) 0.41 0.40 0.26 0.26
AC1( p − d  ) 0.85 0.90 0.89 0.89

Notes: Columns labeled as “Median” report the result for the median country for each statistic. 
Columns labeled as “US” report these statistics for the United States. The first two columns 
are estimates from real world data from non-disaster years. We use total nominal returns and 
dividend-price ratios on stock from GFD and total real returns on government bills and infla-
tion rates from Barro and Ursúa (2008b). The second two columns are based on data from our 
baseline model. For returns, the statistics we report are the unconditional average of the level of 
the ex post real net return in percentage points (i.e., multiplied by 100). ​​R​m​​​ denotes the return 
on equity (the market), while ​​R​f​​​ denotes the return on a short-term nominal government bond 
(risk-free rate). The last three rows report statistics for the logarithm of the price-dividend ratio 
on equity. For the model, these results are for a CRRA = 9, IES = 1.5, and subjective discount 
factor of β = 0.99, and are calculated using a sample of length 1 million years.
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equity premium varies substantially across countries—ranging from 4.7 percent to 
12.5 percent with an average of 7.7 percent. This variation arises because we allow for 
a rich array of heterogeneity across countries (e.g., different sensitivity to the world 
growth-rate component, different average volatility of the country-level growth-rate 
component, different average volatility of the random-walk shocks, etc.).

Figure 5 plots the equity premium in the model versus the equity premium in the 
data across the 16 countries in our sample. Despite the small number of countries, 
and many simplifying assumptions in our model, there is a clear positive correlation 
of 0.59 between the model-generated equity premium and the equity premium 
observed in the data. Countries with higher loadings on the world long-run risks 
factors, as well as larger random-walk shocks, have higher equity premia in the data.

Table 6 also presents results on the equity premium for a case where we “turn 
off  ” the uncertainty shocks in the model. This “constant volatility” model yields 
equity premia that are roughly half as large as the full model, implying that roughly 
half of the equity premium in our model results from the growth-rate shocks and 
the other half from the uncertainty shocks. Finally, Table 6 presents results on the 
equity premium for a third case where we eliminate all long-run risks and recalibrate 
the volatility of the random-walk shocks to match the volatility of ​Δ ​​c ̃ ​​i, t​​​. This case 
corresponds closely to the model considered by Mehra and Prescott (1985). It gen-
erates equity premia of only around 1 percent.

Table 6—The Equity Premium and Risk-Free Rate across Countries and Models

Equity premium Risk-free rate

 
Data

Full 
model

Constant 
volatility

Mehra-
Prescott Data

Full 
model

Australia 0.087 0.057 0.023 0.010 0.011 0.012
Belgium 0.081 0.079 0.028 0.005 0.014 0.007
Canada 0.065 0.065 0.028 0.014 0.013 0.013
Denmark 0.046 0.061 0.026 0.007 0.029 0.013
Finland 0.128 0.116 0.053 0.032 −0.001 0.005
France 0.068 0.071 0.024 0.004 −0.015 0.011
Germany 0.095 0.069 0.028 0.006 −0.022 0.011
Italy 0.054 0.089 0.034 0.005 −0.003 0.009
Netherlands 0.081 0.082 0.033 0.004 0.009 0.009
Norway 0.056 0.068 0.028 0.009 0.016 0.014
Portugal 0.120 0.125 0.054 0.029 0.001 0.002
Spain 0.051 0.104 0.042 0.006 0.010 0.006
Sweden 0.072 0.058 0.023 0.005 0.021 0.015
Switzerland 0.062 0.047 0.014 0.002 0.011 0.012
United Kingdom 0.050 0.064 0.025 0.004 0.014 0.011
United States 0.071 0.072 0.026 0.006 0.012 0.012

 
Average 0.074 0.077 0.031 0.009 0.007 0.010
Median 0.069 0.070 0.028 0.006 0.011 0.011

Notes: The table presents asset pricing statistics based on simulated data from our model as 
well as from the historical data. The historical data come from Barro and Ursúa (2008b). The 
“Constant Volatility” model is a version of the full model where we “turn off” the stochastic 
volatility by setting the volatility of the uncertainty shocks ​ω​ and ​​ω​W​​​ to zero but keep other 
parameters at their estimated values for the full model. For the “Mehra-Prescott” model we 
“turn off” both the stochastic volatility and the growth-rate shocks and then we recalibrate the 
random-walk shocks based on the volatility of permanent consumption in the full model. These 
results are for CRRA = 9, IES = 1.5, and a subjective discount factor of ​β = 0.99​.
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As we discuss above, we allow for a correlation between the growth-rate and uncer-
tainty shocks in our model. This correlation is estimated to be substantially negative 
(Table 1). The negative correlation contributes to raising the equity premium in our 
model. Since negative growth-rate shocks and shocks that increase uncertainty both 
raise marginal utility, being hit by both at the same time is particularly painful for the 
representative agent. We have recalculated asset prices for a case with ​λ = ​ λ​W​​  =  0​ 
but kept other parameters unchanged. This yields an equity premium that is about 1.4 
percentage points smaller for the United States than our baseline case.

B. Return Predictability

Our model generates substantial predictability in equity returns as a function of 
the price-dividend ratio. This lines up well with a large literature in finance docu-
menting long-horizon return predictability of equity returns in the data (Campbell 
and Shiller 1988, Fama and French 1988, Hodrick 1992, Cochrane 2008, and 
Van Binsbergen and Koijen 2010).28 The source of the return predictability in the 

28 The statistical significance of return predictability has been hotly debated (see, e.g., Stambaugh 1999, 
Ang and Bekaert 2007). Recent work by Lewellen (2004) and Cochrane (2008) has exploited the stationarity of 
price-dividend ratios and the lack of predictability of dividend growth to develop more powerful tests of return 
predictability. These tests reject the null of no predictability of returns at the 1–2 percent level. 
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Figure 5. Equity Premium in the Data and the Model

Notes: Each point gives the equity premium in the data (x-axis) and in the baseline model 
( y-axis) for one of the 16 countries in our sample. The figure also includes a regression line 
with an intercept of zero.
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long-run risks model is uncertainty shocks. A positive uncertainty shock leads to a 
stock market decline with no corresponding effect on expected dividends—imply-
ing that expected returns will be high going forward.

To evaluate the fit of the model to the data along this dimension, we estimate 
equations of the following form:

(11)	​ ​y​i, t+5​​  = ​ α​i​​ + ​β​i​​  p ​d​i, t​​ + ​ϵ​i, t+5​​ , ​

where ​p  ​d​i, t​​​ denotes the logarithm of the price-dividend ratio on equity and ​​y​i, t+5​​​ 
is one of three things: the five-year excess return on stocks, the five-year realized 
volatility of consumption growth, or the five-year growth rate of consumption.29 
We run these regressions in the data and on simulated datasets of the same length 
(120 years) from our model. We report the median from 1,000 such simulations, as 
well as the 2.5 percent and 97.5 percent quantiles.

The first panel of Table 7 presents results on the predictability of excess returns. 
Our point estimates imply a large degree of predictability of returns in the US data. 
The regression coefficient on the price-dividend ratio is −0.41 and the R2 of the 
regression is 0.24. However, the United States is a bit of an outlier in terms of the 
strength of this predictability. For the median country, the regression coefficient is 
−0.30 and the R2 is 0.11 in the data. Our baseline model generates a median regres-
sion coefficient for the United States of −0.38 and R2 of 0.10 and similar results for 

29 We use the absolute value of the residual from an AR(1) regression for consumption growth, summed over 
five-year intervals, as our measure of realized volatility, following Bansal, Khatchatrian, and Yaron (2005). 

Table 7—Predictability Regressions

Baseline model

Data Median country United States

Median
country

United
States Median

95% 
prob. int. Median

95% 
prob. int.

BY
median

BKY
median

Panel A. Five-year excess returns on price-dividend ratio
β −0.30 −0.41 −0.37 [−0.97, 0.18] −0.38 [−0.97, 0.18] −0.23 −0.39
R2 0.11 0.24 0.09 [0.00, 0.40] 0.10 [0.00, 0.42] 0.03 0.05

Panel B. Five-year realized volatility on price-dividend ratio
β −0.38 −0.81 −0.52 [−1.64, 0.43] −0.54 [−1.68, 0.40] −0.10 −0.83
R2 0.19 0.32 0.09 [0.00, 0.46] 0.08 [0.00, 0.45] 0.02 0.13

Panel C. Five-year consumption growth on price-dividend ratio
β 0.03 0.02 0.19 [0.00, 0.35] 0.19 [0.00, 0.35] 0.35 0.12
R2 0.04 0.02 0.26 [0.01, 0.69] 0.27 [0.01, 0.70] 0.32 0.08

Notes: The table reports results from regressions of excess returns, consumption growth, and realized volatility 
at the five-year horizon on the price-dividend ratio. Our measure of realized volatility is the absolute value of the 
residual from an AR(1) model for consumption growth. The first two columns report results using data from our 
16 country sample and the United States, respectively. The first column is the median across countries of the statis-
tic in question. The next four columns report results from our baseline model for the median country and the United 
States. For the baseline model, we report the median value of each statistic across 1,000 simulations along with 
the 95 percent probability interval. The last two columns report results for the models of Bansal and Yaron (2004) 
and Bansal, Kiku, and Yaron (2012). The results for the Bansal-Yaron model are taken from Beeler and Campbell 
(2009). We use the end of year convention for the timing of consumption, whereby time ​t​ consumption is assumed 
to occur at the end of year ​t​.
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the median country. The values for the data lie comfortably within the 95 percent 
probability intervals generated by the model.

In a recent survey, Ludvigson (2013) conjectures that a reasonably calibrated 
long-run risks model cannot fit the evidence of return predictability in the data. She 
notes that conventional calibrations of the long-run risks model explain a substan-
tially lower fraction of variation in expected returns (R2 less than 0.05) and that 
an estimated version of the model generates even less. Her analysis is based on 
estimates of a simplified version of the long-run risks model by Bidder and Smith 
(2015) in which the R2 of the return predictability regression for the estimated ver-
sion of the long-run risks model is essentially zero. Our model shows that, in fact, a 
fully estimated version of the long-run risks model generates more rather than less 
return predictability than in the calibrations of BY and BKY.

On the other hand, our model implies too much predictability of consumption 
growth. Given the degree of predictability we find in growth rates, our asset pricing 
model suggests the price-dividend ratio should predict future consumption growth: 
the median R2 implied by the model is 0.26, and the coefficient on the price-dividend 
ratio is 0.19. The confidence intervals on the model’s predictions are large, so we 
cannot formally reject our model. But the R2 and coefficient on the price-dividend 
ratio from the data are clearly at the bottom of the confidence interval from the 
model (0.03 and 0.04, respectively, in the median country).

The key feature of our model in generating return predictability is stochastic vol-
atility. Two features of our stochastic volatility process contribute to greater return 
predictability than in BY and BKY. First, the correlation between growth-rate shocks 
and uncertainty shocks implies that even when a high price-dividend ratio arises from 
a positive growth-rate shock, it portends higher expected returns, since uncertainty is 
also likely to be low. Second, the large amount of stochastic volatility in our model 
arises through a somewhat different mechanism than BKY. While the persistence 
of our uncertainty shocks process is lower, the uncertainty shocks themselves per-
tain to a much more volatile long-run risk process. This generates more variation  
in uncertainty at a medium-term horizon, and more predictability of returns.

The price-dividend ratio on stocks also has substantial predictive power for real-
ized volatility of consumption growth in both the data and model. For US data, the 
regression coefficient is −0.81 and the R2 is 0.32.30 For the median country, the 
regression coefficient is −0.38 and the R2 is 0.19. Our model helps explain this 
pattern in the data. Our baseline model generates a median regression coefficient 
of −0.52 and an R2 of 0.09 for the United States and similar results for the median 
country. Again, the values in the data are well within the 95 percent probability 
intervals generated by the model.

A related way to test this prediction is to study the co-movement of the time series 
of realized volatility and the price-dividend ratio. The relationship above suggests 
that the two should move in opposite directions, or equivalently that realized vol-
atility should co-move with the dividend-price ratio (inverse of the price-dividend 
ratio). Figure A1 plots our estimate of the evolution of realized volatility in the 

30 These results extend and reinforce earlier results by Bansal, Khatchatrian, and Yaron (2005). 
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United States along with the dividend-price ratio on stocks. There is a substantial 
co-movement between economic uncertainty and the value of the stock market, as 
emphasized by Lettau, Ludvigson, and Wachter (2008). Figure A1 in the online 
Appendix presents analogous plots for all countries in our sample, extending the 
results of Lettau, Ludvigson, and Wachter (2004), and illustrating that the co-move-
ment appears to hold in many countries after 1970.

A recent critique of the long-run risks model by Beeler and Campbell (2012) is 
that it generates too much predictability of consumption growth. The third panel of 
Table 7 presents statistics on the performance of the model along this dimension. 
The empirical results on consumption predictability do lie within the confidence 
interval generated by our model. However, the empirical value is clearly at the lower 
end of the interval, in line with Beeler and Campbell’s results.

C. Volatility of the Price-Dividend Ratio

An additional interesting feature of our empirical results is that the estimated 
model generates large and persistent swings in the price-dividend ratio. The vol-
atility of the price-dividend ratio is 0.26, about one-third higher than in BY and 
BKY. This difference arises because of the high volatility of long-run risk shocks 
in our model. While BY focused on vanishingly small growth-rate shocks—too 
small to ever identify in the macroeconomic data—we estimate substantially larger 
growth-rate shocks.

This same feature of the empirical estimates also endogenously generates a high 
volatility of equity returns. Our model generates a standard deviation of equity 
returns for the United States of 13 percent. A key point to emphasize about this 
result is that the high volatility of returns arises even without adding an extra shock 
to the dividend process, as in conventional calibrations of the long-run risks model.
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D. Bonds and Exchange Rates

The model also yields interesting implications regarding the term structure of 
bonds and regarding the volatility of exchange rates. To analyze the term structure, 
we approximate long-term bonds by a perpetuity with coupon payments that decline 
over time by 10 percent per year. This yields a bond with a duration similar to that 
of ten-year coupon bonds. In our model, the term premium for this real long-term 
bond is −2.4 percent. Piazzesi and Schneider (2006) document that the real yield 
curve in the United Kingdom has been downward sloping, while it has been mostly 
upward sloping in the United States. They caution, however, that this evidence is 
hard to assess because of the short sample and poor liquidity in the US Treasury 
Inflation-Protected Securities (TIPS) market.31

In a world with complete markets, the log change in the real exchange rate 
between two countries is

(12)	​ Δ ​e​t​​  = ​ m​ t​ ∗​ − ​m​t​​ , ​

where ​​e​t​​​ denotes the log real exchange rate (home goods price of foreign goods), 
and ​​m​t​​​ and ​​m​ t​ f​​ are the logarithm of the home and foreign stochastic discount factors, 
respectively. Hansen and Jagannathan (1991) show that ​σ(​M​t​​) ​R​ t​ f​  ≥  E(​R​ t​ e​)/σ(​R​ t​ e​)​ ,  
where ​​M​t​​​ is the level of the stochastic discount factor and ​​R​​ e​​ is the excess return 
on the stock market. From Table 5, we can see that ​​R​​ f​  ≃  1.01​ , ​E(​R​ t​ e​)  ≃  7%​ , and  
​σ(​R​ t​ e​)  ≃  18%​ , which implies ​σ(​M​t​​)  ≥  40%​. However, the annual standard devia-
tion of changes in real exchange rates has been roughly 10 percent in the post-Bretton 
Woods period (see Table 8). Brandt, Cochrane, and Santa-Clara (2006) point out 
that this logic combined with equation (12) implies that ​​m​t​​​ and ​​m​ t​ ∗​​ must be highly 
correlated—which is puzzling in standard models in which ​​m​t​​​ is proportional to 
consumption growth (which is not very correlated across countries).

Colacito and Croce (2011) point out that this puzzle, which they refer to as the 
“international equity premium puzzle,” can be resolved in a long-run risks model 
where the long-run risk factors are highly correlated across countries, even if transi-
tory shocks are not. They consider the case where the long-run risk factors are per-
fectly correlated across countries, and show that this calibration generates realistic 
predictions for exchange rate volatility and the co-movement of asset returns across 
countries.32

Our estimates of the world growth rate and uncertainty processes speak directly 
to the strength of the low frequency correlation Colacito and Croce emphasize. The 
larger these world long-run risks are, the more correlated will be the stochastic dis-
count factors in different countries (and therefore the less volatile will their real 
exchange rate be). Table 8 presents the standard deviation implied by our estimated 
model of annual changes in the bilateral real exchange rate versus the United States 

31 Building on Alvarez and Jermann’s (2005) analysis of the implication of the term structure for the properties 
of the stochastic discount factor, Koijen et al. (2010) emphasize that the positive autocorrelation of growth rates in 
the long-run risk model implies that the model has a downward sloping term structure of real bond yields. 

32 See also Lustig, Stathopoulus, and Verdelhan (2016) who argue based on long-term bond data that the perma-
nent component of nominal stochastic discount factors across countries are highly correlated. 
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for each country in our sample. The table also presents a counterfactual for this sta-
tistic based on the same simulated data from our estimated model, but ignores the 
correlation between the stochastic discount factors of each country and the United 
States that is implied by our model—i.e., simply adding the variances of the two 
stochastic discount factors and taking a square root. We see that the presence of 
common long-run risk shocks in our model lowers the volatility of the real exchange 
rate by roughly a factor of two, relative to what it would be if the stochastic discount 
factors were uncorrelated. Our model can therefore account for a large part of the 
discrepancy between the observed volatility of the real exchange rate and the vola-
tility implied by a model in which marginal utility across countries is uncorrelated. 
Nevertheless, our estimates of the cross-country correlation in long-run risks suggest 
that long-run risks cannot fully resolve the international equity premium puzzle.33

VI.  Intuition

In this section, we provide intuition for the asset pricing results in our paper 
using the elegant decomposition developed by Borovička, Hansen, and Scheinkman 

33 These results are relevant for our analysis of country-specific asset prices at the start of this section, in which 
we price assets using the stochastic discount factor of the domestic investor. If there were perfect risk-sharing, one 
could price the assets using foreign investors stochastic discount factors. However, as we discuss above, the com-
plete markets view is at odds with the data, even accounting for an important common component of long-run risks. 
In view of this discrepancy, it makes sense to price the stock market using the local investor given the large amount 
of home bias in the data for both assets and goods. 

Table 8—World Long-Run Risks and Real Exchange Rate Volatility

Exchange rate volatility

  Data Baseline estimation Ignoring correlation

Australia 0.09 0.51 0.81
Belgium 0.11 0.42 0.95
Canada 0.05 0.51 0.84
Denmark 0.10 0.47 0.84
Finland 0.10 0.57 1.03
France 0.10 0.40 0.91
Germany 0.10 0.44 0.89
Italy 0.10 0.45 1.00
Netherlands 0.10 0.44 0.97
Norway 0.08 0.46 0.87
Portugal 0.10 0.59 1.09
Spain 0.11 0.50 1.08
Sweden 0.11 0.45 0.83
Switzerland 0.11 0.44 0.79
United Kingdom 0.09 0.44 0.87

Average 0.10 0.47 0.92
Median 0.10 0.45 0.89

Notes: The table presents the standard deviation of the log change in the real exchange rate 
of each country with the United States. First, it presents results based on historical data from 
1975–2009. Second, it presents results based on simulated data from our baseline estimates. 
The last column calculates counterfactual exchange rates based on the simulated data from our 
estimated model but ignores the correlation between the stochastic discount factors of the two 
countries in question.
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(2014—henceforth, BHS). But let us begin by reviewing some basic asset pricing 
implications of our model for both stocks and bonds.

A positive growth-rate shock yields a large positive return on equity on impact 
(Figure 7). This positive return reflects the balance of two opposing forces. On the 
one hand, the shock raises expected future dividends on equity, which pushes up 
stock prices. On the other hand, since consumption growth is expected to be high 
for some time, agents’ desire to save falls, which pushes down all asset prices. If 
agents are sufficiently willing to substitute consumption over time (i.e., the IES is 
sufficiently high), the first of these effects is stronger than the second for equity, 
and the price of equity rises on impact. In the periods after the shock, returns on 
equity and the risk-free rate are higher than average because of agents’ reduced 
desire to save.

A positive uncertainty shock yields a large negative return on equity on impact 
(Figure 8). As with the growth-rate shock, there are two opposing forces that together 
determine the response of stock prices. The increase in economic uncertainty makes 
stocks riskier, which raises the equity premium. This tends to depress the value of 
stock. However, the increase in uncertainty also increases the desire of agents to 
save. This tends to raise the price of all assets. For sufficiently high risk aversion 
and willingness to substitute consumption over time, the first force is stronger than 
the second and the price of stocks falls on impact when uncertainty rises (Campbell 
1993). In the periods after the shock, the equity premium remains elevated because 
uncertainty has risen.

0

0.02

0.04

0.06

0.08

0.1

0.12

−2 −1 0 1 2 3 4

Return on equity
Risk-free rate

Figure 7. Asset Returns in Response to a World Growth-Rate Shock

Note: Response of asset returns to a one standard deviation shock in ​​ϵ​W, t​​​ starting from the mod-
el’s steady state.
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A. Shock Elasticities

An equity claim can be thought of as a portfolio of claims to the dividends that the 
equity claim will yield at each horizon (a portfolio of “equity strips”); it is also use-
ful to understand how sensitive the dividends, prices, and returns on each of these 
equity strips are to the different shocks that drive consumption growth in our model. 
BHS (2014) introduce the concepts of shock-exposure, shock-cost, and shock-price 
elasticities for this purpose. To illustrate these concepts, let’s consider shock elastic-
ities for the world growth-rate shock ​​ϵ​W, t+1​​​ (elasticities for other shocks are defined 
analogously).

The shock-exposure elasticity at horizon ​k​ then measures the elasticity of the level 
of expected dividends at time ​t + k​ with respect to exposure to the world growth-
rate shock in period ​t + 1​:

​SE​E​t, t+k​​  ≡ ​  d __ 
dr

 ​ log ​E​t​​ ​​​[exp ​(​d​t+k​​ + r ​ 
​ϵ​W, t+1​​ _____ ​σ​W, t​​ ​ − ​ 1 _ 

2
 ​ ​r​​ 2​)​]​|​​

r=0

​​  = ​   1 ___ ​σ​W, t​​ ​ ​ 
​E​t​​ [​D​t+k​​ ​ϵ​W, t+1​​]  __________ ​E​t​​ ​D​t+k​​

 ​ ​ ,

where ​​D​t+k​​  =  exp (​d​t+k​​)​ is the level of dividends at time ​t + k​.
The shock-cost elasticity at horizon ​k​ measures the elasticity of the level of the 

period ​t​ price of the time ​t + k​ equity strip with respect to exposure to the world 
growth-rate shock. The expression for the shock-cost elasticity is analogous to 
that for the shock-exposure elasticity except that ​​d​t+k​​​ is replaced by ​​m​t, t+k​​ + ​d​t+k​​​ , 
where ​​m​t, t+k​​​ denotes the logarithm of the stochastic discount factor from period ​t​  
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Figure 8. Asset Returns in Response to a World Uncertainty Shock

Note: Response of asset returns to a one standard deviation shock in ​​ω​W, t​​​ starting from the 
model’s steady state.
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to period ​t + k​. Finally, the shock-price elasticity is the difference between the two 
elasticities defined above. Intuitively, this is the elasticity of the expected ​k​-period 
return (between period ​t​ and ​t + k​) on the time ​t + k​ equity strip with respect to 
exposure to the world growth-rate shock. In Appendix D, we present expressions for 
the shock-cost and shock-price elasticity, as well as an alternative derivation that is 
useful for intuition.

Figure 9 plots the shock-exposure and shock-price elasticities (i.e., the elasticity 
of dividends and returns, respectively) with respect to the four long-run risk shocks 
in our model: the growth-rate shocks, ​​ϵ​i, t+1​​​ and ​​ϵ​W, t+1​​​ , and the volatility shocks, ​​
ω​i, t+1​​​  and ​​ω​W, t+1​​​ , evaluated at the model’s steady state. The shock-exposure 
elasticities are plotted on the left and the shock-price elasticities are plotted on  
the right.

Let’s begin by discussing the shock-exposure elasticities. All four shock-exposure 
elasticities start at zero. This is because the ​t + 1​ shocks have no effect on time ​
t + 1​ dividends. The shock-exposure elasticities for the two growth-rate shocks 
then grow over time as the effect of the shock on the level of dividends grows. The 
shock-exposure elasticity plateaus much earlier for the idiosyncratic than the world 
growth-rate shock, because of the greater persistence of the world growth-rate 
shock.

These increasing shock-exposure elasticities are ultimately the source of the 
upward sloping term structure of real yields implied by the long-run risks model. 
Koijen et al. (2010) emphasize that this feature of the model appears inconsistent 
with empirical evidence on dividend strip prices, which suggest a downward sloping 
real term structure. The inclusion of disaster risk in the asset pricing exercise is likely 
to improve the fit of the model to the asset pricing data in this regard, since rare disas-
ters are partially mean reverting and therefore can generate a downward-sloping real 
term premium, as emphasized by Nakamura et al. (2013).

In contrast to the standard long-run risks model, the shock-exposure elasticities 
for uncertainty fall over time (in response to a positive shock). The difference versus 
the standard model (which implies an increasing profile) arises from the correlation 
between growth-rate shocks and uncertainty shocks in our model: positive uncer-
tainty shocks tend to occur in conjunction with negative growth-rate shocks, leading 
to a negative shock-exposure elasticity.34

Turning to the shock-price elasticities (the elasticity of returns) plotted on the 
right-hand side of Figure 9, we see that both growth-rate shocks have a positive 
shock price elasticity starting in period 1, and uncertainty shocks have a negative 
shock-price elasticity starting in period 1. In both cases, the shock-price elastic-
ities are essentially constant as the horizon increases. This arises even though 
the shock-exposure elasticities are steeply sloped and zero in period 1. The flat 
shock-price elasticities arise from the nature of Epstein-Zin-Weil preferences, as 
discussed in BHS (2014). Intuitively, this is a consequence of the effect of future 
expectations on the current stochastic discount factor.

34 The shock-exposure elasticity to an uncertainty shock is positive in the standard model because the uncer-
tainty shocks in the long-run risk model are shocks to uncertainty regarding log dividends, which has a level effect 
on dividends themselves. 



30	 American Economic Journal: macroeconomics� JANUARY 2017

We can use the relative magnitude of the shock-price elasticities for the differ-
ent long-run risk shocks to infer their relative importance for asset pricing. The 
most important shocks from the perspective of the shock-price elasticities are the 
world growth-rate and world uncertainty shocks. The world growth-rate shock has a 
shock-price elasticity roughly twice as large as the idiosyncratic growth-rate shock. 
The world uncertainty shock has a shock-price elasticity roughly four times as large 
as the idiosyncratic uncertainty shock. This difference arises because of the much 
greater persistence of the world growth-rate shocks relative to the idiosyncratic 
growth-rate shocks. The world uncertainty shocks determine the volatility of these 
highly persistent world growth-rate shocks; and therefore also have a large effect on 
asset pricing.
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VII.  Conclusion

Our paper represents the first estimation of the long-run risks model based on 
macroeconomic data alone. We find evidence for both persistent growth-rate shocks 
and volatility shocks—the key features of the model. We show that it is crucial 
to distinguish between world and country-specific shocks, since world shocks are 
far more persistent than their idiosyncratic counterparts. In addition, we estimate a 
robust negative correlation between volatility and growth-rate shocks, and a much 
larger volatility of long-run risks shocks than conventional calibrations.

We next investigate the asset pricing implications of the model. An advantage 
of our estimation approach based on macroeconomic data alone is that the param-
eter estimates cannot be viewed as “backward engineered” to fit the asset pricing 
data. We emphasize three main results. First, our model explains a substantial 
fraction of cross-country variation in the equity premium. Second, our model 
generates more predictability of excess returns than conventional calibrations (in 
line with the data) but also more consumption growth predictability (not in line 
with the data). Third, our model endogenously generates a large volatility of the 
price-dividend ratios.

There are numerous ways in which our analysis could be extended. First, we 
do not consider the implications of parameter uncertainty. Given the difficulty 
of accurately estimating the long-run risks parameters, there is no doubt that 
parameter uncertainty is large, and likely to substantially increase the risk per-
ceived by agents in the economy (see, e.g., Weitzman 2007). Second, our analysis 
assesses the asset pricing importance of long-run risks, as opposed to the com-
bination of long-run risks and disasters. Adding disaster risk would increase the 
amount of risk, and would likely help fit other features of the asset pricing data 
that the long-run risk misses, such as the downward-sloping profile of real yields 
(Nakamura et al. 2010). Though computationally challenging, we view these as 
important topics for future research. Finally, for simplicity, our model assumes 
permanently different average growth rates for different countries. An interesting 
extension would be to allow for convergence towards the frontier country or con-
ditional convergence dynamics.
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Appendix A: Additional Tables

Table A1—Sample Period of Data

Barro-Ursúa GFD

 
Consumer 

expenditures

Total nominal 
return on 

stocks

Total nominal 
return on 

government bills Inflation

Total nominal 
return on 

stocks

Dividend-price 
ratio on 
stocks

Australia 1901–2009 1890–2006 1890–2006 1890–2006 1890–2006 1890–2006
Belgium 1913–2009 1898–1913; 

1919–1939; 
1941–1943; 
1947–2006

1890–1944; 
1947–2006

1890–1944; 
1947–2006

1897–2006 1927–1939; 
1951–2006

Canada 1890–2009 1916–2006 1903–1913; 
1935–2006

1890–2006 1914–2006 1934–2006

Denmark 1890–2009 1915–2006 1890–2006 1890–2006 1914–2006 1969–2006
Finland 1890–2009 1923–2006 1915–2006 1915–2006 1912–2006 1962–2006
France 1890–2009 1890–1939; 

1942–2006
1890–2006 1890–2006 1890–2006 1890–1914; 

1919–2006
Germany 1890–2009 1890–2006 1890–2006 1890–2006 1890–2006 1890–1944; 

1950–2006
Italy 1890–2009 1906–2006 1890–2006 1890–2006 1905–2006 1925–1944; 

1946–2006
Netherlands 1890–2009 1920–1944; 

1947–2006 
1890–2006 1890–2006 1919–2006 1969–2006

Norway 1890–2009 1915–2006 1890–2006 1890–2006 1914–2006 1969–2006
Portugal 1910–2009 1932–1974; 

1978–2006 
1930–2006 1930–2006 1931–2006 1988–2006

Spain 1890–2009 1890–1935; 
1941–2006 

1890–2006 1890–2006 1890–2006 1940–1968; 
1981–2006

Sweden 1890–2009 1902–2006 1890–2006 1890–2006 1901–2006 1915–2006
Switzerland 1890–2009 1911–1913; 

1917–2006
1895–2006 1890–2006 1910–2006 1918–1939; 

1966–2006
United Kingdom 1890–2009 1890–2006 1890–2006 1890–2006 1890–2006 1923–2006
United States 1890–2009 1890–2006 1890–2006 1890–2006 1890–2006 1890–2006

Table A2—Estimates of Country-Specific Parameters

Rel. SD 
random 

walk shock 
(​​χ​i​​​)

Sensitivity 
to common 

shocks 
(​​ξ​i​​​)

Average 
SD 

stoch. vol. 
(​​σ​i​​​)

Average 
growth 
(​​μ​i​​​)

SD transitory shock (​​σ​ν,  i​​​)
post-1945 pre-1945

  Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Australia 1.80 0.58 0.40 0.14 0.0073 0.0034 0.0039 0.0020 0.036 0.009 0.013 0.004
Belgium 0.97 0.44 0.71 0.13 0.0070 0.0034 0.0037 0.0015 0.020 0.008 0.009 0.005
Canada 1.90 0.61 0.42 0.13 0.0082 0.0037 0.0031 0.0014 0.030 0.009 0.016 0.004
Denmark 1.02 0.49 0.48 0.17 0.0100 0.0039 0.0065 0.0022 0.012 0.003 0.014 0.005
Finland 3.06 0.82 0.68 0.16 0.0076 0.0037 0.0037 0.0021 0.022 0.008 0.020 0.006
France 0.80 0.38 0.63 0.12 0.0070 0.0031 0.0018 0.0010 0.027 0.005 0.013 0.005
Germany 0.79 0.41 0.58 0.15 0.0105 0.0037 0.0027 0.0013 0.013 0.004 0.012 0.005
Italy 0.72 0.38 0.79 0.13 0.0093 0.0036 0.0035 0.0017 0.015 0.003 0.014 0.006
Netherlands 0.59 0.33 0.72 0.15 0.0107 0.0038 0.0031 0.0016 0.023 0.005 0.013 0.006
Norway 1.27 0.57 0.51 0.17 0.0092 0.0038 0.0055 0.0023 0.006 0.003 0.017 0.005
Portugal 3.06 0.78 0.81 0.13 0.0069 0.0035 0.0046 0.0022 0.029 0.009 0.018 0.007
Spain 0.59 0.37 0.92 0.07 0.0107 0.0037 0.0022 0.0013 0.048 0.008 0.014 0.007
Sweden 0.77 0.45 0.47 0.15 0.0095 0.0038 0.0039 0.0018 0.025 0.005 0.016 0.004
Switzerland 0.71 0.36 0.44 0.10 0.0058 0.0029 0.0016 0.0007 0.038 0.005 0.009 0.004
United Kingdom 0.60 0.30 0.55 0.16 0.0105 0.0034 0.0039 0.0019 0.006 0.002 0.011 0.005
United States 1.06 0.41 0.61 0.15 0.0081 0.0034 0.0024 0.0015 0.023 0.005 0.015 0.005

           
Average 1.23 0.48 0.61 0.14 0.0086 0.0035 0.0035 0.0016 0.023 0.006 0.014 0.005
Median 0.88 0.43 0.59 0.14 0.0087 0.0036 0.0036 0.0016 0.023 0.005 0.014 0.005

Note: The table presents our estimates of the posterior mean and standard deviation of the country-specific param-
eters in our full model. 
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Appendix B: Model Estimation

We employ a Bayesian MCMC algorithm to estimate our model. More specifi-
cally, we employ a Metropolized Gibbs sampling algorithm to sample from the joint 
posterior distribution of the unknown parameters and variables conditional on the 
data. The full probability model we employ may be denoted by 

	 f (Y, X, Θ)  =  f (Y, X | Θ) f (Θ), 

where ​Y  =  { ​c​i, t​​ , ​I​ i, t+1​ d ​  }​ is the set of observable variables for which we have data, 

	 X  =  ​​{​​c ̃ ​​i, t​​ , ​x​i, t​​ , ​x​W, t​​ , ​σ​ i, t+1​ 
2
  ​ , ​σ​ W, t+1​ 

2
  ​}​​ 

is the set of unobservable variables, and 

	 Θ  =  ​​{ρ, ​ρ​W​​ , γ, ​σ​ W​ 2 ​ , ​σ​ ω​ 2 ​, ​σ​ W, ω​ 2 ​ , λ, ​λ​W​​ , ​ξ​i​​ , ​χ​i​​ , ​σ​ i​ 
2​ , ​σ​ ν, i​ 

2 ​  , ​μ​i​​ , ​μ​d​​ }​​ 

is the set of parameters. From a Bayesian perspective, there is no real importance to 
the distinction between ​X​ and ​Θ​. The only important distinction is between variables 
that are observed and those that are not. The function ​f (Y, X | Θ)​ is often referred to 
as the likelihood function of the model, while ​f (Θ)​ is often referred to as the prior 
distribution. Both ​f (Y, X | Θ)​ and ​f (Θ)​ are fully specified in Sections II and III of the 

Table A3—Asset Pricing Statistics

Data Baseline Simple model Post-WWII

  Median US Median US Median US Median US

E(​​R​m​​​ − ​​R​f​​​) 6.87 7.10 6.99 7.23 5.41 5.35 6.46 6.50
σ(​​R​m​​​ − ​​R​f​​​) 21.82 17.37 13.46 13.46 13.01 13.05 13.02 12.77
E(​​R​m​​​ − ​​R​f​​​)/σ(​​R​m​​​ − ​​R​f​​​) 0.32 0.41 0.53 0.54 0.41 0.41 0.51 0.51
E(​​R​m​​​) 9.10 8.23 8.20 8.47 6.87 6.94 7.91 8.08
σ(​​R​m​​​) 21.99 17.89 13.45 13.46 13.03 13.04 13.00 12.74
E(​​R​f​​​) 1.43 1.13 1.12 1.24 1.44 1.58 1.19 1.58
σ(​​R​f​​​) 4.57 3.33 1.53 1.54 1.27 1.25 1.42 1.39

               

E( p − d  ) 3.30 3.30 2.84 2.83 3.14 3.16 2.91 2.92
σ( p − d  ) 0.41 0.40 0.26 0.26 0.21 0.21 0.24 0.24
AC1( p − d  ) 0.85 0.90 0.89 0.89 0.85 0.85 0.87 0.87

Notes: Columns labeled as “Median” report the result for the median country for each statistic. 
Columns labeled as “US” report these statistics for the United States. The first two columns 
are estimates from real world data from non-disaster years. We use total nominal returns and 
dividend-price ratios on stock from GFD and total real returns on government bills and infla-
tion rates from Barro and Ursúa (2008b). The remaining columns are based on data from the 
three versions of our model. For returns, the statistics we report are the unconditional aver-
age of the level of the ex post real net return in percentage points (i.e., multiplied by 100). ​​R​m​​​ 
denotes the return on equity (the market), while ​​R​f​​​ denotes the return on a short-term nominal 
government bond (risk-free rate). The last three rows report statistics for the logarithm of the 
price-dividend ratio on equity. For the model, these results are for CRRA = 9, IES = 1.5, and 
a subjective discount factor of ​β​ = 0.99, and are calculated using a sample of length 1 mil-
lion years.



34	 American Economic Journal: macroeconomics� JANUARY 2017

paper. The likelihood function may be constructed by combining equations (1)–(3) 
and (8), the distributional assumptions for the shocks in these equations detailed in 
Section II, and the assumptions about the distributions of ​​c ̃ ​​ , ​​x​i, t​​​ , ​​x​W, t​​​ , ​​σ​ i, t​ 2

 ​​ , and ​​σ​W, t​​​ 
for the initial period for each country that are detailed in Section III. The prior dis-
tributions are described in detail in Section III. 

The object of interest in our study is the distribution ​f (X, Θ | Y  )​,  i.e., the joint 
distribution of the unobservables conditional on the observed values of the observ-
ables. For expositional simplicity, let ​Φ  =  (X, Θ)​. Using this notation, the object 
of interest is ​f (Φ | Y  )​. The Gibbs sampler algorithm produces a sample from the joint 
distribution by breaking the vector of unknown variables into subsets and sampling 
each subvector sequentially conditional on the value of all the other unknown vari-
ables (see, e.g., Gelman et al. 2004 and Geweke 2005). In our case, we implement 
the Gibbs sampler as follows. 

	 (i)	 We derive the conditional distribution of each element of ​Φ​ conditional on 
all the other elements and conditional on the observables. For the ​i​ th element 
of ​Φ​ , we can denote this conditional distribution as ​f (​Φ​i​​ | ​Φ​−i​​ , Y  )​ , where ​​Φ​i​​​ 
denotes the ​i​ th element of ​Φ​, and ​​Φ​−i​​​ denotes all but the ​i​ th element of ​Φ​. 
In most cases, ​f (​Φ​i​​ | ​Φ​−i​​ , Y  )​ are common distributions such as normal distri-
butions or gamma distributions for which samples can be drawn in a com-
putationally efficient manner. In cases where the Gibbs sampler cannot be 
applied, we use the Metropolis algorithm to sample values of ​f (​Φ​i​​ | ​Φ​−i​​ , Y  )​.35 

	 (ii)	 We propose initial values for all the unknown variables ​Φ​. Let ​​Φ​​ 0​​ denote 
these initial values. 

	 (iii)	 We cycle through ​Φ​ sampling ​​Φ​ i​ t​​ from the distribution ​f (​Φ​i​​ | ​Φ​ −i​ t−1​, Y  )​ where 

	​ ​Φ​ −i​ t−1​  =  ​(​Φ​ 1​ t ​, …  , ​Φ​ i−1​ 
t ​ , ​Φ​ i+1​ 

t−1​, … , ​Φ​ d​ 
t−1​)​​

		  and ​d​ denotes the number of elements in ​Φ​. At the end of each cycle, we have 
a new draw ​​Φ​​ t​​. We repeat this step ​N​ times to get a sample of ​N​ draws for ​Φ​. 

	 (iv)	 It has been shown that samples drawn in this way converge to the distribution ​
f (Φ | Y  )​ under very general conditions (see, e.g., Geweke 2005). We assess 
convergence and throw away an appropriate burn-in sample. 

35 The Metropolis algorithm samples a proposal ​​Φ​ i​ ∗​​ from a proposal distribution ​​J​t​​ (​Φ​ i​ ∗​ | ​Φ​ i​ t−1​)​. This proposal 
distribution must be symmetric, i.e., ​​J​t​​ (​x​a​​ | ​x​b​​)  = ​ J​t​​ (​x​b​​ | ​x​a​​)​. The proposal is accepted with probability ​min (r, 1)​ 
where ​r  =  f (​Φ​ i​ ∗​ | ​Φ​−i​​ , Y  )/ f (​Φ​ i​ t−1​ | ​Φ​−i​​ , Y  )​. If the proposal is accepted, ​​Φ​ i​ t​  = ​ Φ​ i​ ∗​​. Otherwise ​​Φ​ i​ t​  = ​ Φ​ i​ t−1​​. Using 
the Metropolis algorithm to sample from ​f (​Φ​i​​ | ​Φ​−i​​ , Y  )​ is much less efficient than the standard algorithms used 
to sample from known distributions such as the normal distribution in most software packages. Intuitively, this is 
because it is difficult to come up with an efficient proposal distribution. The proposal distribution we use is a normal 
distribution centered at ​​Φ​ i​ t−1​​. 
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In practice, we run four such “chains” starting two from one set of initial values 
and two from another set of initial values. We choose starting values that are far 
apart in the following way: For one chain, we set the initial values of ​​x​i, t​​  =  0​ for 
all ​i​ and ​t​. For the other chain, we set the initial values of ​​x​i, t​​  =  Δ ​c​i, t​​​ for all ​i​ and ​t​. 

Given a sample from the joint distribution ​f (Φ | Y  )​ of the unobserved variables 
conditional on the observed data, we can calculate any statistic of interest that 
involves ​Φ​. For example, we can calculate the mean of any element of ​Φ​ by calcu-
lating the sample analogue of the integral 

	​​ ∫ 
 
​ 

 

​​​ ​​Φ​i​​​  f ​​(​Φ​i​​ | ​Φ​ −i​ 
t−1​, Y)​​ d​​Φ​i​​​ .

Appendix C: Variance Ratios

Variance ratios are a simple tool to quantify the persistence of shocks to aggre-
gate consumption (Cochrane 1988). The ​k​-period variance ratio for consumption 
growth is defined as the ratio of the variance of ​k​-period consumption growth and 
1-period consumption growth divided by ​k​: 

	 V​​R​i, k​​​  = ​​  1 __ 
k
 ​​ ​​ 
va​r​t​​ ​(​∑ j=0​ 

k−1 ​​ Δ ​c​i, t−j​​)​
  ________________  

va​r​t​​ (Δ ​c​i, t​​)
 ​​  .

The intuition for this statistic comes from the fact that for a simple random-walk 
process ​va​r​t​​(​c​i, t​​ − ​c​i, t−k​​)​ is equal to ​k​ times ​va​r​t​​(​c​i, t​​ − ​c​i, t−1​​)​ , implying that the vari-
ance ratio for such a process is equal to one for all ​k​. For a trend-stationary process, 
the variance ratio is less than one and falls toward zero as ​k​ increases. However, 
for a process that has persistent growth-rate shocks—i.e., positively autocorrelated 
growth rates—the variance ratio is larger than one. 

BY introduce a variance ratio statistic for assessing the persistence of shocks 
to volatility. They first compute the innovations to consumption growth ​​u​i, t​​​ as the 
residuals from an AR(5) regression and use the absolute value of these innovations ​| ​
u​i, t​​ |​ as a measure of realized volatility of consumption growth. They then construct 
variance ratios for ​| ​u​i, t​​ |​ , 

	 V​​R​ i, k​ 
u ​​  = ​​  1 __ 

k
 ​​ ​​ 
va​r​t​​ ​(​∑ j=0​ 

k−1 ​​ | ​u​i, t−j​​ |)​
  ________________  

var (| ​u​i, t​​ |)
 ​​  .

This statistic provides a rough measure of the persistence of stochastic volatility. As 
with the variance ratio for consumption growth, if this variance ratio is above one, 
it indicates that uncertainty shocks have persistent effects on volatility—i.e., high 
volatility periods are “bunched together” leading to a high value of the variance in 
the numerator. 
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Appendix D: Shock Elasticities

The shock-cost elasticity at horizon ​k​ for the world growth-rate shock is 

	​ SC​E​t, t+k​​  ≡ ​  d __ 
dr

 ​ log ​E​t​​ ​​​[exp ​(​m​t, t+k​​ + ​d​t+k​​ + r ​ 
​ϵ​W, t+1​​ _____ ​σ​W, t​​ ​ − ​ 1 _ 

2
 ​ ​r​​ 2​)​]​|​​

r=0

​​ 

	 = ​   1 ___ ​σ​W, t​​ ​ ​ 
​E​t​​ ​[​M​t, t+k​​ ​D​t+k​​ ​ϵ​W, t+1​​]​  ______________  

​E​t​​ ​[​M​t, t+k​​ ​D​t+k​​]​
 ​ ​ .

The shock-price elasticity at horizon ​k​ for the world growth-rate shock is 

  ​  SP​E​t, t+k​​  ≡  SE​E​t, t+k​​ − SC​E​t, t+k​​

	 = ​   1 ___ ​σ​W, t​​ ​ ​ 
​E​t​​ ​[​D​t+k​​ ​ϵ​W, t+1​​]​  ____________ ​E​t​​ ​D​t+k​​

 ​ ​ − ​​  1 ___ ​σ​W, t​​ ​ ​ 
​E​t​​ ​[​M​t, t+k​​ ​D​t+k​​ ​ϵ​W, t+1​​]​  ______________  

​E​t​​ ​[​M​t, t+k​​ ​D​t+k​​]​
 ​ ​ .

It is useful to develop an alternative way of deriving the shock elasticities. For 
concreteness, let’s consider the shock-exposure elasticity for horizon ​k​ and for the 
world growth-rate shock. The distribution of the world growth-rate shock divided 
by its standard deviation is ​​ϵ​W, t+1​​/​σ​W, t​​  ∼  N(0, 1)​. Let’s denote cumulative dis-
tribution of ​​ϵ​W, t+1​​/​σ​W, t​​​ by ​Q(​ϵ​W, t+1​​/​σ​W, t​​)​. Now, let’s contemplate the notion that 
the distribution of ​​ϵ​W, t+1​​/​σ​W, t​​​ is perturbed and becomes ​​ϵ​W, t+1​​/​σ​W, t​​  ∼  N(r, 1)​. 
In other words, its mean increases by ​r​. Let’s denote the cumulative distribution 
of this alternative distribution by ​​Q​​ r​ (​ϵ​W, t+1​​/​σ​W, t​​)​. Intuitively, if the distribution of  
​​ϵ​W, t+1​​/​σ​W, t​​​ changes from ​Q(​ϵ​W, t+1​​/​σ​W, t​​)​ to ​​Q​​ r​ (​ϵ​W, t+1​​/​σ​W, t​​)​ , the economy will get 
hit by a larger value of ​​ϵ​W, t+1​​/​σ​W, t​​​ on average. 

Let ​​X​t​​​ denote the state of the economy at time ​t​. Consider the expected dividend 
in period ​t + k​ conditional on information at time ​t​ and also conditional on a partic-
ular value ​ϵ​ for the world growth-rate shock at time ​t + 1​: 

	​​ Φ​t, t+k​​ (ϵ)  ≡  E [​D​t+k​​ | ​X​t​​  =  x, ​ϵ​W, t+1​​/​σ​W, t​​  =  ϵ]​. 

Finally, consider the following generalized impulse response function: 

	​ GIR​F​​ r​ (x)  ≡  log ​∫ 
 
​ 

 

​​ ​Φ​t, t+k​​ (ϵ) d​Q​​ r​ (ϵ) − log ​∫ 
 
​ 

 

​​ ​Φ​t, t+k​​ (ϵ) dQ (ϵ)​. 

This is the difference between the log of ​​Φ​t, t+k​​ (ϵ)​ averaged across ​ϵ​ under the per-
turbed distribution and under the unperturbed distribution. The shock-exposure elas-
ticity is then defined as 

	​​  d __ 
dr

 ​​ ​​​[GIR​F​ t, t+k​ 
r
  ​]|​​

r=0
​​​  = ​​ 

​∫ 
 
​ 

 

​​ ​Φ​t, t+k​​ (ϵ) ϵ dQ(ϵ)
  ______________  

​∫ 
 
​ 

 

​​ ​Φ​t, t+k​​ (ϵ) dQ(ϵ)
 ​​ .
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