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 A B S T R A C T

In standard models, economic activity fluctuates symmetrically around a ‘‘natural rate’’ and 
stabilization policies can dampen these fluctuations but do not affect the average level of 
activity. An alternative view – labeled the ‘‘plucking model’’ by Milton Friedman – is that 
economic fluctuations are drops below the economy’s full potential ceiling. We show that the 
dynamics of the unemployment rate in the US display a striking asymmetry that strongly favors 
the plucking model: increases in unemployment are followed by decreases of similar amplitude, 
while the amplitude of a decrease does not predict the amplitude of the following increase. 
In addition, business cycles last seven years on average and unemployment rises much faster 
during recessions than it falls during expansions. We augment a standard labor search model 
with downward nominal wage rigidity and show how it can fit the plucking property.

1. Introduction

In the workhorse models currently used for most business cycle analysis, economic activity fluctuates symmetrically around a 
‘‘natural rate’’ and stabilization policy does not appreciably affect the average level of output or unemployment. At best, stabilization 
policy can reduce inefficient fluctuations around the natural rate. As a consequence, in these models the welfare gains of stabilization 
policy are trivial (Lucas, 1987, 2003).

An alternative view is that economic contractions involve drops below the economy’s full-potential ceiling or maximum level. 
Milton Friedman proposed a ‘‘plucking model’’ analogy for this view of business cycles: ‘‘In this analogy, [...] output is viewed 
as bumping along the ceiling of maximum feasible output except that every now and then it is plucked down by a cyclical 
contraction’’ (Friedman, 1964, 1993).1 In the plucking model view of the world, improved stabilization policy that eliminates or 
dampens the ‘‘plucks’’ – i.e., contractions – increases the average level of output and decreases the average unemployment rate. 
Stabilization policy can therefore potentially raise welfare by substantial amounts (De Long and Summers, 1988; Benigno and Ricci, 
2011; Schmitt-Grohe and Uribe, 2016).
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1 The term ‘‘plucking’’ originates in Friedman’s image of a string (output) attached to the underside of a board (potential output): ‘‘Consider an elastic string 
stretched taut between two points on the underside of a rigid horizontal board and glued lightly to the board. Let the string be plucked at a number of points 
chosen more or less at random with a force that varies at random, and then held down at the lowest point reached’’. (Friedman, 1964)
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We show that the dynamics of the US unemployment rate strongly favor the plucking model of business cycles. An implication 
of the plucking model—highlighted by Friedman (1964)—is that the dynamics of unemployment should display the following 
asymmetry: economic contractions are followed by expansions of a similar amplitude—as if the economy is recovering back to 
its maximum level—while the amplitude of contractions are not related to the previous expansion—each pluck seems to be a new 
event. We refer to this asymmetry as the plucking property. We present strong evidence that the US unemployment rate displays 
the plucking property: The increase in unemployment during a contraction forecasts the amplitude of the subsequent expansion 
one-for-one, while the fall in unemployment during an expansion has no explanatory power for the size of the next contraction.

To match the facts about plucking that we document in the data, we introduce downward nominal wage rigidity into a tractable 
version of the Diamond–Mortenson–Pissarides model with endogenous separations analyzed by Fujita and Ramey (2012). We show 
that the model can quantitatively match the plucking dynamics of US unemployment. Our model reproduces the plucking property 
because good shocks mostly lead to increases in wages, while bad shocks mostly lead to increases in unemployment. The dynamics 
of the unemployment rate thus become asymmetric; the unemployment rate rises far above its steady state level in response to 
adverse shocks, but falls much less in response to favorable shocks.

The plucking dynamics of our model imply that fluctuations in unemployment are fluctuations above a resting point of low 
unemployment, not symmetric fluctuations around a natural rate. As a consequence, a reduction in the volatility of aggregate 
shocks not only reduces the volatility of the unemployment rate, but also reduces its average level, as in the models of Benigno and 
Ricci (2011) and Schmitt-Grohe and Uribe (2016). Eliminating all aggregate shocks in our calibrated model reduces the average 
unemployment rate from 5.7% to 3.1%.

An alternative interpretation of the ‘‘plucking’’ property of unemployment is that it derives from exogenous shocks to the 
determinants of the unemployment rate that themselves have this property. We have chosen to model the exogenous shocks in 
our model as symmetric for two reasons. First, we are interested in exploring the ability of the DMP model to generate asymmetry 
within the labor market. Second, prior empirical work has found asymmetries to be more pronounced in the unemployment rate 
than in other macroeconomic data suggesting that the source of asymmetry is the labor market (e.g., McKay and Reis, 2008).

While our baseline model fits the plucking property, it fails to fit some other salient features of unemployment dynamics. 
Empirically, business cycles last around 7 years from peak to peak, and the unemployment rate rises much more rapidly during 
downturns than it falls during expansions. In principle, search models such as the one we introduce provide an intuitive mechanism 
for slow recoveries: firms can shed workers rapidly, but it takes time due to search and matching frictions to expand employment. 
In practice, however, the large number of workers who flow between employment and unemployment in every month implies that 
the DMP model does not have appreciable internal propagation (see, e.g. Cole and Rogerson, 1999). As a result, unemployment 
falls quickly once negative shocks dissipate. Our baseline model inherits this feature of standard search models, generating short 
business cycles.

We explore the potential for additional non-standard features to explain this speed asymmetry, including insecure short-term 
jobs and a hump-shaped driving process for productivity shocks (an AR(2) process). Intuitively, the presence of insecure short-
term jobs implies that most new matches turn out to be poor matches and separate quickly; however, some survive and become 
stable matches. As a consequence, workers who become unemployed cycle through several jobs before finding stable employment, 
a pattern emphasized by Hall (1995). While these simple deviations from our baseline model cannot match all of the empirical facts 
we present, we argue they provide suggestive evidence for what kind of models will be able to unify these empirical patterns. We 
leave a full theoretical solution to this problem to future work.

Our work is related to several strands of existing literature. Petrosky-Nadeau et al. (2018) show how a DMP model features 
asymmetries that can generate business-cycles disasters – large drops in production – despite symmetric shocks. This force generates 
some plucking. But when we consider business cycles of the size we have experience in our sample period, it generates much 
less plucking than we document, motivating the role of DNWR. Kim and Nelson (1999) and Sinclair (2010) are two of the very 
few modern attempts to assess the specific asymmetry emphasized by Friedman. Caballero and Hammour (1998), Bordo and 
Haubrich (2012), and Fatás and Mihov (2013) explore related ideas. Ferraro (2018) provides an alternative explanation for the 
speed asymmetry in the unemployment rate.

The paper proceeds as follows. Section 2 presents our empirical results on the asymmetric dynamics of the unemployment rate. 
Section 3 lays out our plucking model of business cycles. Section 4 shows how this model can match the plucking property, and 
demonstrates that stabilizing fluctuations can reduce the average level of unemployment. Section 5 considers whether extensions to 
the baseline model can help match the longer duration of unemployment cycles in the data, and/or help better match the asymmetry 
in the duration of contractions and expansions. Section 6 concludes.

2. The plucking property and the dynamics of unemployment cycles

We start by demonstrating Friedman’s plucking property for post-WWII US unemployment data; namely, the amplitude of a 
contraction forecasts the amplitude of the subsequent expansion, while the amplitude of an expansion does not forecast the amplitude 
of the subsequent contraction. We also demonstrate a speed asymmetry in unemployment: the unemployment rate rises more quickly 
than it falls, implying that the duration of recoveries is typically much longer than the duration of recessions, as emphasized by Neftçi 
(1984) among others. Finally, we review the empirical evidence on wage rigidity, and show that the incidence of wage rigidity is 
countercyclical.

To implement our empirical analysis, we define business cycle peaks and troughs such that they line up exactly with peaks and 
troughs of the unemployment rate. This yields business cycle dates that are very similar to but not identical to those identified by 
the NBER Business Cycle Dating Committee. Fig.  1 plots the unemployment rate over our sample period – which runs from  January 
2 
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Fig. 1. Peaks and Troughs in the Unemployment Rate.
Note: The unemployment rate is plotted in blue. Business cycle peaks are denoted by dashed red vertical lines, while business cycle troughs are denoted by solid 
red vertical lines. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. The Plucking Property of the Unemployment Rate.
Note: The points in the left panel are labeled with the year the contraction in question ended and expansion in question began. The points in the right panel 
are labeled with the year the expansion in question ended and contraction in question began. OLS regression lines are plotted in each panel.

1948 to February 2020 – with vertical lines indicating the times that we identify as business cycle peaks and troughs. For details 
on our algorithm, see Appendix A.2

2.1. The plucking property

Fig.  2 presents scatter plots illustrating the plucking property for the unemployment rate. The left panel plots the amplitude of 
a contraction on the 𝑥-axis and the amplitude of the subsequent expansion on the 𝑦-axis. The amplitude of contractions is defined 
as the percentage point increase in the unemployment rate from the business cycle peak to the next trough. The amplitude of 
expansions is defined analogously. There is clearly a strong positive relationship between the amplitude of a contraction and the 
amplitude of the subsequent expansion in our sample period. In other words, the size of a contraction strongly forecasts the size of 
the subsequent expansion.

2 We identify ten peaks and ten troughs. To these we add a peak at the beginning of our sample. One might worry that the contraction at the beginning 
of our sample may have started earlier. We are however reassured on this point by the fact that the NBER identified November 1948 as a peak. We end our 
sample at the onset of the Covid-19 recession, another clear peak in the data.
3 
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Table 1
Plucking property of unemployment and speed asymmetries.
 𝛽 𝑅2  
 Subsequent expansion on contraction 1.12 0.59 
 (0.33)  
 Subsequent contraction on expansion −0.38 0.22 
 (0.27)  
 Speed of expansions (pp/year) 0.87  
 Speed of contractions (pp/year) 1.89  
 P-value for equal speed 0.002  
  
 Duration of expansions (months) 59.1  
 Duration of contractions (months) 26.9  
Note: The first row reports the coefficient in an OLS regression of the size of the subsequent expansion 
(percentage point fall in unemployment rate) on the size of a contraction (percentage point increase 
in unemployment rate). The second row reports the coefficient in an analogous regression of the size 
of the subsequent contraction on the size of an expansion. The speed of expansions and contractions 
in the third and fourth rows is measured in percentage points of unemployment per year.

Table  1 reports the estimated coefficient from an OLS regression of the size of the subsequent expansion on the size of a 
contraction. The relationship is roughly one-for-one. For every percentage point increase in the amplitude of a contraction, the 
amplitude of the subsequent expansion increases by 1.1 percentage points on average. Despite the small number of data points, the 
relationship is highly statistically significant. Furthermore, the explanatory power of the amplitude of the previous contraction is 
large. The 𝑅2 of this simple univariate regression is 0.59.

The right panel of Fig.  2 plots the amplitude of an expansion on the 𝑥-axis and the amplitude of the subsequent contraction on 
the 𝑦-axis. In sharp contrast to the left panel, there is no statistically significant relationship in this case. The size of an expansion 
does not forecast the size of the next contraction. One cannot reject that, in Friedman’s language, each contractionary pluck that 
the economy experiences is independent of what happened before. Table  1 reports the estimated coefficient from a linear regression 
of the size of the subsequent contraction on the size of an expansion. The relationship is actually slightly negative, but is far from 
statistically significant. Moreover, the 𝑅2 of the regression is only 0.22.3

2.2. The speed asymmetry

Unemployment rises more quickly during contractions than it falls during expansions, a point made quantitatively in early work 
by Neftçi (1984).4 Table  1 reports the average speed of expansions and contractions to illustrate this asymmetry. We measure the 
change in unemployment (in percentage points) over the spell and the length of time the spell lasts for. The speed for an expansion 
or contraction is the ratio of those two numbers. We then take a simple average across all expansions and separately a simple 
average across all contractions.

We find that the unemployment rate rises roughly twice as quickly during contractions (1.9 percentage points per year) as it 
falls during expansions (0.9 percentage points per year). This difference is highly statistically significant. We run a regression of the 
absolute value of the speed of expansions and contractions on a dummy variable for a spell being a contraction and find that the 
𝑝-value for the dummy is 0.002.

Looking back at Fig.  1, we can clearly see that when the unemployment rate starts falling, it usually falls relatively steadily for 
a long time. As a consequence, expansions are quite long. The average length of expansions in our sample is roughly 59 months, or 
almost five years. Contractions are also quite persistent, but less so. The average length of contractions in our sample is roughly 27 
months, a bit more than two years. Perhaps most strikingly, in a few cases – the 1960s, 1980s, 1990s, and 2010s – the unemployment 
rate has fallen steadily for six to ten years without reversal.

3 Jackson and Tebaldi (2017) suggest that the duration (not size) of an expansion is predictive of the size of the following contraction. They motivate this 
idea by analogy to forest fires: the longer the expansion, the more ‘‘underbrush’’ builds up – e.g., low quality matches and entrants – that becomes fuel in the 
subsequent contraction. We find no evidence of the forest fire theory at the aggregate level: the duration of an expansion is no more predictive of the size of the 
following contraction than the size of the expansion is. The relationship is actually negative (but not significantly so), driven by the fact that the three longest 
post-WWII expansions (1961–1968, 1982–1989, 1992–2000) were followed by relatively mild recessions. Tasci and Zevanove (2019) confirm these results and 
also present state level results for the plucking model and forest fire theory. Their state level results are similar to our results at the aggregate level: There is 
strong evidence for the plucking property but no evidence for the forest fire theory.

4 Sichel (1993) refers to this asymmetry as the ‘‘steepness’’ asymmetry, while McKay and Reis (2008) refer to it as the greater ‘‘violence’’ of contractions, in 
reference to Mitchell (1927). Given that contractions and expansions are of about the same average size (3.7 percentage points), the fact that contractions are 
‘‘steeper’’ or ‘‘more violent’’ than expansions is equivalent to the fact that they are briefer. Awareness of this asymmetry dates back at least to the 1920s. Mitchell 
(1927) notes that ‘‘business contractions appear to be briefer and more violent than business expansions’’.
4 
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Fig. 3. San Francisco Fed Wage Rigidity Meter.
Note: The figure plots the share of wage freezes of all job-stayers (paid by the hour or not) with respect to the wage one year prior, with no correction for 
measurement errors. This series is constructed by the Federal Reserve Bank of San Francisco using data used from the Current Population Survey.

2.3. Wage rigidity

A large literature has presented microeconomic evidence of downward nominal wage rigidity in US data.5 Olivei and Tenreyro 
(2010) present evidence that such wage rigidity matters for real outcomes. A large theoretical literature has studied the implications 
of downward nominal wage rigidity for business cycles.6

An intuitive fact about the data is that wage rigidity has been countercyclical in recent US business cycles—i.e., wage freezes 
tend to occur during recessions. Fig.  3 plots the fraction of ‘‘Wage Freezes’’ from the San Francisco Fed’s Wage Rigidity Meter for 
the period 1997–2019 along with the unemployment rate (Left Panel) and the non-employment rate for the working age population 
(Right Panel).7 The correlation is striking. The fraction of wage freezes rises rapidly in each of the three recessions that occur in this 
sample period. Before 1997 the data are less complete, and the correlation is weaker because of the confounding effects of changes 
in trend inflation.

3. A plucking model with downward nominal wage rigidity

Next, we present a model designed to fit the plucking property discussed in Section 2. This model augments the workhorse 
DMP model with endogenous separation developed by Fujita and Ramey (2012) with downward nominal wage rigidity. We begin 
by describing the model with Nash Bargaining, then go on to present a version of the same model with downward nominal wage 
rigidity.

3.1. Search and matching with endogenous separation

The model consists of an infinite mass of atomistic firms, and a mass of workers with inelastic labor supply normalized to one. 
At the beginning of a period, workers are either already matched with a firm, or looking for a job.8 If a firm and a job-seeker match 
in period 𝑡, we assume the worker starts working right away.9 To match with a new worker, a firm must post a vacancy, at a cost 𝑐

5 See, in particular, McLaughlin (1994), Kahn (1997), Card and Hyslop (1997), Bewley (1999), Altonji and Devereux (2000), Kurmann and McEntarfer (2017), 
Hazell and Taska (2018), Grigsby et al. (2021). Correcting for measurement error might reveal an even higher prevalence of wage rigidity. Early work using 
data from the Panel Study of Income Dynamics (PSID) and the Current Population Survey (CPS) includes McLaughlin (1994), Kahn (1997), and Card and Hyslop 
(1997). Altonji and Devereux (2000) report larger amounts of downward nominal wage rigidity and virtually no wage cuts in the PSID after correcting for 
measurement error. Gottschalk (2005) and Barattieri et al. (2014) report similar findings based on their adjustments for measurement error in the Survey of 
Income and Program Participation.

6 Prominent contributions include, e.g., Akerlof et al. (1996), Kim and Ruge-Murcia (2009), Benigno and Ricci (2011), Abbritti and Fahr (2013), Schmitt-Grohe 
and Uribe (2016), Chodorow-Reich and Wieland (2020). The importance of wage rigidity for generating realistic fluctuations in unemployment has been stressed 
by Shimer (2005), Hall (2005), Gertler and Trigari (2009), and Gertler et al. (2020).

7 The Wage Freeze measure reports the fraction of job-stayers whose wages are unchanged versus one year prior (Daly et al., 2011, 2012; Daly and Hobijn, 
2014). See https://www.frbsf.org/economic-research/indicators-data/nominal-wage-rigidity/.

8 Only unemployed workers look for jobs. Fujita and Ramey (2012) also develop a version of the model with on-the-job search. We consider their model 
with endogenous separation but no on-the-job search.

9 This timing of the labor market follows, e.g., Blanchard and Gali (2010), but differs from Fujita and Ramey (2012). It is not important for our results, but 
avoids the unpalatable assumption that the number of job-seekers at the beginning of period 𝑡 (which includes at least all the workers who separated from their 
jobs at the end of 𝑡−1) is the same as the number of unemployed workers 𝑢  in period 𝑡, even when search frictions shrink to zero and the job finding rate is 1.
𝑡

5 
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per period in which the vacancy remains open. An open vacancy fills with probability 𝑞𝑡, which is taken as exogenous by the firm. 
In the aggregate, the probability 𝑞𝑡 is determined by a matching function 𝑞(𝜃𝑡), where 𝜃𝑡 = 𝑉𝑡∕𝑈0,𝑡 denotes labor market tightness. 
Labor market tightness is the ratio of the number of vacancies posted 𝑉𝑡 to the number of job-seekers 𝑈0,𝑡 at the beginning of the 
period. The matching function also determines the probability for a job-seeker of finding a job. This is equal to the ratio of matches 
𝑞(𝜃𝑡)𝑉𝑡 to job-seekers 𝑈0,𝑡, 𝑓 (𝜃𝑡) ≡ 𝑞(𝜃𝑡)𝑉𝑡∕𝑈0,𝑡 = 𝜃𝑡𝑞(𝜃𝑡).

When a worker and a firm are matched, they produce output 𝐴𝑡𝑥𝑡, where 𝐴𝑡 and 𝑥𝑡 are aggregate and match-specific productivity 
factors. We assume that both follow AR(1) exogenous processes in logs,

log(𝐴𝑡) = 𝜌𝑎 log(𝐴𝑡−1) + 𝜀𝑎𝑡 , (1)

log(𝑥𝑡) = 𝜌𝑥 log(𝑥𝑡−1) + 𝜀𝑥𝑡 , (2)

where 𝜀𝑎𝑡  and 𝜀𝑥𝑡  are Gaussian shocks with standard deviations 𝜎𝑎𝜀  and 𝜎𝑥𝜀 . All new matches start at the same match productivity 
level 𝑥ℎ𝑖𝑟𝑒, which we take to be average match productivity 𝑥 = 1.10

An ongoing match continues into the next period unless it is exogenously terminated – which occurs with probability 𝛿 – or 
endogenously terminated. Let 𝐽𝑡(𝑥𝑡) be the value to a firm of an ongoing match with match-specific productivity 𝑥𝑡.11 The firm can 
terminate the match if it yields a negative value. This implies that 𝐽𝑡(𝑥𝑡) is given by: 

𝐽𝑡(𝑥𝑡) = max{𝐽 𝑐
𝑡 (𝑥𝑡), 0} (3)

where 𝐽 𝑐
𝑡  is the value of the match to the firm if it is continued, which solves the recursion 

𝐽 𝑐
𝑡 (𝑥𝑡) = 𝑥𝑡𝐴𝑡 −𝑤𝑡(𝑥𝑡) + 𝛽(1 − 𝛿)𝐸𝑡

(

𝐽𝑡+1(𝑥𝑡+1)
)

, (4)

where 𝑤𝑡(𝑥𝑡) is the real wage paid in the match at period 𝑡.
Let 𝑊𝑡(𝑥𝑡) be the value to a worker of a match with match-specific productivity 𝑥𝑡, and 𝑈𝑡 be the value to a worker of being 

unemployed. Since the worker can terminate the match if it yields it less than being unemployed, the value of being employed in 
a match at 𝑥𝑡 is given by 

𝑊𝑡(𝑥𝑡) = max{𝑊 𝑐
𝑡 (𝑥𝑡), 𝑈𝑡} (5)

where 𝑊 𝑐
𝑡  is the value if the match is continued, which solves the recursion 

𝑊 𝑐
𝑡 (𝑥𝑡) = 𝑤𝑡(𝑥𝑡) − 𝜁 + 𝛽𝐸𝑡

(

(1 − 𝛿)𝑊𝑡+1(𝑥𝑡+1) + 𝛿(1 − 𝑓𝑡+1)𝑈𝑡+1 + 𝛿𝑓𝑡+1𝑊𝑡+1(𝑥ℎ𝑖𝑟𝑒)
)

, (6)

where 𝜁 is the disutility cost of working relative to being unemployed. The value of being unemployed solves the recursion 
𝑈𝑡 = 𝑏 + 𝛽𝐸𝑡

(

(1 − 𝑓𝑡+1)𝑈𝑡+1 + 𝑓𝑡+1𝑊𝑡+1(𝑥ℎ𝑖𝑟𝑒)
)

, (7)

where 𝑏 is unemployment benefits. Subtracting (7) from (6), the value of being employed relative to being unemployed, 𝑉𝑡 = 𝑊𝑡−𝑈𝑡, 
solves the recursion 

𝑉 𝑐
𝑡 (𝑥𝑡) = 𝑤𝑡(𝑥𝑡) − 𝑧 + 𝛽(1 − 𝛿)𝐸𝑡

(

𝑉𝑡+1(𝑥𝑡+1) − 𝑓𝑡+1𝑉𝑡+1(𝑥ℎ𝑖𝑟𝑒)
)

, (8)

where 
𝑉𝑡(𝑥) = max{𝑉 𝑐

𝑡 (𝑥), 0} (9)

and 𝑧 = 𝑏 + 𝜁 is the flow value of unemployment in terms of both unemployment benefits and leisure.
Assuming free entry, the cost of posting a new vacancy must in equilibrium be equal to the benefit to the firm of posting a new 

vacancy. This equates the value of a new hire to the firm to the expected cost of a new hire: 
𝐽𝑡(𝑥ℎ𝑖𝑟𝑒) =

𝑐
𝑞𝑡
. (10)

The model is closed with an assumption on wage-setting. Fujita and Ramey (2012) assume that wages are set according to 
Nash-bargaining, as is standard in search models. Define the total value of a continuing match to be 𝑆𝑐

𝑡 (𝑥𝑡) = 𝐽 𝑐
𝑡 (𝑥𝑡) + 𝑉 𝑐

𝑡 (𝑥𝑡). Under 
Nash-bargaining, 𝑉 𝑐,𝑁𝑎𝑠ℎ

𝑡 = 𝛾𝑆𝑐,𝑁𝑎𝑠ℎ
𝑡 , where 𝛾 ∈ [0, 1] is the bargaining power of workers. Combining Eqs. (4) and (8) and the 

Nash-bargaining assumption gives 
𝐽 𝑐,𝑁𝑎𝑠ℎ
𝑡 (𝑥𝑡) = (1 − 𝛾)(𝐴𝑡𝑥𝑡 − 𝑧) + 𝛽(1 − 𝛿)𝐸𝑡

(

𝐽𝑁𝑎𝑠ℎ
𝑡+1 (𝑥𝑡+1) − 𝑓𝑁𝑎𝑠ℎ

𝑡+1 𝛾𝐽𝑁𝑎𝑠ℎ
𝑡+1 (𝑥ℎ𝑖𝑟𝑒)

)

. (11)

Eqs. (10) and (11) allow us to solve for 𝑞𝑡 and 𝐽 𝑐,𝑁𝑎𝑠ℎ
𝑡 (𝑥𝑡), as detailed in Appendix B.

10 Because Fujita and Ramey (2012) also consider a model with on-the-job search, they assume that new matches start at the highest productivity level to 
make sure all job offers are accepted. Since we do not consider on-the-job search, job offers are accepted even if the productivity in new matches is not the 
highest productivity level. Our process for match-specific shocks is also a more standard AR(1) process than the memoryless Poisson process with infrequent 
large shocks assumed in Fujita and Ramey (2012).
11 We make explicit the dependence of 𝐽𝑡 and other value functions only in the idiosyncratic state 𝑥𝑡. The dependence of 𝐽𝑡 on the aggregate state is kept 

implicit in the 𝑡 time-index of 𝐽 .
𝑡
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Combining (4) and (11) allows us to recover the Nash wage as 

𝑤𝑁𝑎𝑠ℎ
𝑡 (𝑥𝑡) =

(

𝛾𝐴𝑡𝑥𝑡 + (1 − 𝛾)𝑧
)

+ 𝛽(1 − 𝛿)𝐸𝑡

(

𝛾𝑓𝑁𝑎𝑠ℎ
𝑡+1 𝐽𝑁𝑎𝑠ℎ

𝑡+1 (𝑥ℎ𝑖𝑟𝑒)
)

. (12)

3.2. Downward nominal wage rigidity

We extend the Fujita–Ramey model to allow for downward nominal wage rigidity (DNWR).12 The presence of match hetero-
geneity implies that wages differ for new and ongoing matches. We assume DNWR for both groups. For an ongoing match at time 
𝑡, the nominal wage is either the flexible nominal wage – which we assume to be the wage that would obtain if the firm set wages 
by Nash bargaining in this and future periods – or, if this requires the nominal wage to fall, the nominal wage remains unchanged 
from the previous period, i.e.: 

𝑤𝑡(𝑥𝑡, 𝑤𝑡−1) = max
{

𝑤𝑁𝑎𝑠ℎ
𝑡 (𝑥𝑡),

𝑤𝑡−1
𝛱𝑡

}

, (13)

where 𝛱𝑡 is the inflation rate.
For new matches, we assume that the hiring wage at time 𝑡 is either the flexible nominal wage – which we again assume to be 

the wage that would obtain under Nash bargaining – or, if this requires the nominal hiring wage to fall, the nominal hiring wage 
in the previous period, i.e.: 

𝑤𝑛𝑒𝑤
𝑡 (𝑥ℎ𝑖𝑟𝑒, 𝑤𝑛𝑒𝑤

𝑡−1 ) = max

{

𝑤𝑁𝑎𝑠ℎ
𝑡 (𝑥ℎ𝑖𝑟𝑒),

𝑤𝑛𝑒𝑤
𝑡−1
𝛱𝑡

}

. (14)

To generate fluctuations in firms’ hiring decisions, wage rigidity in new matches is particularly important, as emphasized 
by Pissarides (2009). Assumption (14) is therefore essential to introducing DNWR in a search and matching model with match 
heterogeneity. Hazell and Taska (2018) document such DNWR in new hires’ wages.13

In both Eqs. (13) and (14), inflation relaxes the constraint on downward real wage adjustments: it greases the wheels of the 
labor market. We specify monetary policy as directly setting a path for the inflation rate 𝛱𝑡, which we take to be constant at some 
target value 𝛱 . Eqs. (10) and (11) still hold under DNWR, except that the firm’s value function now depends on lagged wages. We 
first solve the model under Nash-bargaining to recover the Nash wage (12), then use Eqs. (10) and (11) to solve for 𝐽 𝑐

𝑡  and 𝑞𝑡, as 
detailed in Appendix B.

3.3. Worker flow accounting

Let 𝑠𝑡 be the destruction rate, defined as the fraction of matches that get destroyed at the beginning of period 𝑡. Because matches 
can be endogenously terminated, the destruction rate 𝑠𝑡 depends on the cross-sectional distribution of employment across the state 
of matches. Under Nash-bargaining, the state of a match reduces to match productivity 𝑥𝑡. Fujita and Ramey (2012) show how to 
keep track of the distribution of employment across matches to calculate the destruction rate in this case. Under DNWR, the state of 
a match includes both match productivity 𝑥𝑡 and the lagged wage 𝑤𝑡−1. Appendix B shows how to keep track of the joint distribution 
of employment across the joint state (𝑥𝑡, 𝑤𝑡−1) and calculate the destruction rate under DNWR.

Workers’ job-finding rate 𝑓𝑡 is a direct function of the vacancy-filling rate 𝑞𝑡 through the matching function and can therefore 
be easily recovered from 𝑞𝑡. Since we assume that job-seekers who match with a firm at the beginning of period 𝑡 start working at 𝑡, 
workers who separate from a firm between 𝑡−1 and 𝑡 and join the pool of job-seekers may find a new job at 𝑡 without spending time 
unemployed, instead transitioning directly from job to job. The exit rate from employment to unemployment is therefore distinct 
from the destruction rate 𝑠𝑡 and equal to 

�̄�𝑡 = (1 − 𝑓𝑡)𝑠𝑡. (15)

The law of motion of the unemployment rate 𝑢𝑡 is 

𝑢𝑡 = (1 − 𝑓𝑡)𝑢𝑡−1 + �̄�𝑡(1 − 𝑢𝑡−1). (16)

12 We assume DNWR by directly specifying the wage-rule. Other work directly specifying a wage rule in a search and matching framework includes Blanchard 
and Gali (2010), Shimer (2010), and Michaillat (2012). This approach has the advantage that we can more easily investigate what features the wage process 
needs to generate realistic unemployment dynamics.
13 Our model does not feature preemptive wage moderation of the type that is present in wage setting models (e.g., Kim and Ruge-Murcia, 2009; Elsby, 

2009; Benigno and Ricci, 2011). Yet this does not mean firms in our model are myopic. They rationally maximize intertemporal profits. What they preemptively 
moderate in anticipation of a fall in productivity is hires, not wages. Either wages or hires can respond to concerns about the future. In our model it is hires 
that are moderated, because wages are not set by firms.
7 
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Table 2
Calibration.
 𝛽 0.961∕12

 𝜂 0.5
 𝑐 0.30
 𝑧 0.95
 𝛿 1.9%
 𝜌𝑎 0.98
 𝜌𝑥 0.98

 Nash DNWR  
 𝛱 – 1.021∕12  
 𝛾 0.57 0.43  
 𝜎𝑎

𝜀 st. 𝜎𝑎 = 1.6% st. 𝜎𝑎 = 1.5% 
 𝜎𝑥

𝜀 st. 𝜎𝑥 = 2.1% st. 𝜎𝑥 = 1.5% 
Note: The abbreviation ‘‘st.’’ stands for ‘‘such that’’.

3.4. Calibration

Table  2 provides a summary of our calibration. We calibrate the model to a monthly frequency. We set the discount factor 𝛽
to correspond to an annual interest rate of 4%. We assume a Cobb–Douglas matching function 𝑞(𝜃) = 𝜇𝜃−𝜂 and set the elasticity of 
the matching function to 𝜂 = 0.5, in the middle of the range reported in Petrongolo and Pissarides (2001)’s survey. We calibrate 
the flow value of unemployment following Hagedorn and Manovskii (2008) to 𝑧 = 0.95, so that the model generates significant 
fluctuations in the job-finding rate under Nash bargaining, which we will consider as a benchmark.14 This calibration also generates 
the realistic prediction that firms’ surplus is increasing in productivity under DNWR, as explained in Appendix H. We calibrate the 
exogenous destruction rate 𝛿 to match the average monthly share of quits in the non-farm sector in JOLTS between January 2000 
and February 2020 of 1.9%. The JOLTS data likely overstates the number of exogenous separations since many quits are job-to-job 
flows. We therefore provide robustness results under a lower calibration of 𝛿 = 1% in Appendix F.

The parameters 𝜇 and 𝑐 jointly determine hiring costs. One of the two is redundant as only the composite parameter 𝑐𝜇
−1
1−𝜂  is 

relevant for the equilibrium. (See Appendix B.1 for further discussion of this point.) We normalize 𝜇 to 1. We calibrate 𝑐 so that 
the cost of hiring a worker 𝑐𝑞 = 𝐽 is 10% of monthly wages in a steady state with 𝑢 = 5.7% and �̄� = 2%, in line with what Silva and 
Toledo (2009) report based on the Employer Opportunity Pilot Project survey in the US. This yields 𝑐 = 0.30.

We set the auto-regressive root of the aggregate productivity process 𝜌𝑎 to 0.98 following Shimer (2010). We set the auto-
regressive root of the match-specific productivity process 𝜌𝑥 to 0.98, following Foster et al. (2008)’s estimates of the persistence of 
plants’ TFP (0.8 on an annual basis). When we consider the model under downward nominal wage rigidity, we set inflation to 2% 
per year. Inflation is immaterial in the version of the model without DNWR.

This leaves 𝛾, 𝜎𝑎𝜀  and 𝜎𝑥𝜀 . We pick them to match the average level of the unemployment rate (5.7% in the data), the standard 
deviation of the unemployment rate (1.6% in the data), and the average of the rate of exit from employment �̄� (2% as reported 
by Fujita and Ramey (2006, 2012)). We choose to match the standard deviation of unemployment exactly (as opposed to calibrating 
to the standard deviation of productivity in the data) so that we can apply our definition of expansions and contractions to our 
simulated samples in the same way as we do to the real world data. These choices yield 𝛾 = 0.57, 𝜎𝑎 = 1.6% and 𝜎𝑥 = 2.1% under 
Nash bargaining, and 𝛾 = 0.43, 𝜎𝑎 = 1.5% and 𝜎𝑥 = 1.5% under DNWR.

4. Quantitative analysis of the baseline model

Given the asymmetries and non-linearities our model is intended to capture, we rely on global methods to numerically solve for 
the equilibrium. Appendix B discusses the algorithm we use in detail. We simulate 5000 samples of 866 periods (the length of our 
sample of real-world data) and calculate the statistics reported in the empirical Table  1 in each of these simulated samples. We then 
report the median estimate across samples for each statistic as a point estimate and the standard deviation of the estimates across 
samples in parentheses below each point estimate.

Table  3 reports the results. The top panel presents results on the plucking property. We first consider the model with flexible 
wages (Nash bargaining). This version of the model generates non-trivial plucking, but substantially less than in the data. The 
regression coefficient for the size of expansions on the previous contraction is 0.35 versus −0.04 for contractions on the previous 
expansion. These coefficients are 1.12 and −0.38 in the data. Next, we present results for the model with DNWR. This case produces 
substantially more plucking that the model with flexible wages. The regression coefficient for the size of expansions on the previous 
contraction is 0.64 versus −0.05 for contractions on the previous expansion. Appendix F shows that the plucking property is equally 
present – if anything slightly more so – when the exogenous separation rate is calibrated to a lower value of 𝛿 = 1%.

14 Fujita and Ramey (2012) show that their model under Nash bargaining can generate fluctuations in the unemployment rate away from a high calibration of 
𝑧 by making unemployment fluctuate through fluctuations in separations. As they show, however, away from a high calibration of 𝑧, the model cannot generate 
fluctuations in the job-finding rate.
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Table 3
Simulation results: Plucking property, speed, and duration.
 Data AR(1) AR(2) AR(2) + Job Ladder
 Nash DNWR Nash DNWR Nash DNWR  
 Subsequent expansion 1.12 0.35 0.64 0.40 0.64 0.39 0.47  
 on contraction, 𝛽 (0.43) (0.27) (0.26) (0.15) (0.27) (0.19)  
 Subsequent contraction −0.38 −0.04 −0.05 0.02 −0.02 0.03 0.00  
 on expansion, 𝛽 (0.44) (0.31) (0.28) (0.15) (0.29) (0.19)  
 Subsequent expansion 0.59 0.16 0.42 0.17 0.42 0.16 0.22  
 on contraction, 𝑅2 (0.24) (0.26) (0.18) (0.17) (0.18) (0.15)  
 Subsequent contraction 0.22 0.07 0.04 0.04 0.01 0.04 0.02  
 on expansion, 𝑅2 (0.17) (0.11) (0.10) (0.03) (0.10) (0.05)  
 Speed of expansions 0.87 1.56 2.53 0.73 2.07 0.61 1.19  
 (pp/year) (0.64) (0.73) (0.18) (0.29) (0.11) (0.26)  
 Speed of contractions 1.89 1.56 4.56 0.70 3.66 0.60 1.56  
 (pp/year) (0.78) (1.51) (0.20) (0.83) (0.11) (0.28)  
 Duration of expansions 59.1 35.8 27.4 84.6 37.6 91.9 58.6  
 (months) (12.1) (6.7) (16.6) (3.7) (16.7) (7.2)  
 Duration of contractions 26.9 36.1 18.3 86.5 23.5 92.5 40.8  
 (months) (12.1) (5.5) (16.9) (2.7) (16.4) (6.3)  
Note: The table compares data from the model under AR(1) shocks, from the model under AR(2) shocks, and from the model under AR(2) shocks and a job 
ladder, in each case both with Nash bargaining and with downward nominal wage rigidity (DNWR). The first (third) row reports the coefficient (𝑅2) in an 
OLS regression of the size of an expansion (percentage point fall in unemployment rate) on the size of the previous contraction (percentage point increase in 
unemployment rate). The second (fourth) row report the coefficient (𝑅2) in an analogous regression of the size of a contraction on the size of the previous 
expansion. The next two rows report the average speed of expansions and contractions, measured in percentage points of unemployment per year. The final 
two rows report the average duration of expansions and contractions, measured in months. Expansions and contractions of more than 6.5 percentage points 
are excluded from the samples. Appendix E provides results including all expansions and contractions. For the version of the model without a job ladder, the 
reported point estimate is the median value of the statistic over 5000 samples of 866 periods each (the length of our sample of real-world data). For the model 
under AR(2) shocks and a job ladder, results are shown for 1000 samples of 5*866 periods each, to avoid samples with no or few cycles of less than 6.5 
percentage points. The standard error reported in parentheses is the standard deviation of the estimates across the 5000 (or 1000) samples.

There is a large amount of noise in the relationship between the amplitude of expansions and contractions in the model. This is 
particularly the case in the model with flexible wages. In this model, the 𝑅2 of the size of expansions on the previous contraction 
is only 0.16, compared to 0.59 in the data. The model with DNWR does substantially better on this metric with an 𝑅2 of 0.42.

4.1. Mechanisms for plucking

Two features of the model contribute to the plucking property. First, non-linearity in the worker-flow Eqs. (15)–(16) generates 
plucking. Fig.  4 plots the steady-state relationship between the job finding rate and unemployment implied by the worker-flow rela-
tionship (15)–(16) taken in steady-state.15 The relationship is convex because it gets harder and harder to lower the unemployment 
rate the lower it gets. Earlier work has emphasized this non-linearity (Petrosky-Nadeau and Zhang, 2017; Petrosky-Nadeau et al., 
2018).16

The reason why this non-linearity generates only modest amounts of plucking is that over the empirically relevant range of 
unemployment rates – between 2.5% and 10.8% for the sample period 1948–2019 – the degree of non-linearity is modest. This 
is illustrated in Fig.  4. In Table  3, we make sure not the overstate the strength of this non-linearity by presenting results for a 
‘‘top-truncated’’ sample that only includes expansions and contractions that are less than 6.5 percentage points in size—i.e., the size 
of the 2009–2019 expansion which is the largest one in our sample.17

The second feature of our model that contributes to plucking is DNWR. When wages are downward rigid, negative shocks typically 
result in higher unemployment while positive shocks yield wage increases. As a result, unemployment sometimes rises far above its 
steady state, but rarely falls below. Table  3 shows that this feature can generate a substantial amount of plucking.

But even the model with DNWR produces less plucking than the data. The top panel of Fig.  5 helps us understand why. This panel 
plots a simulated path of unemployment in our model with DNWR. A prominent feature of this simulated series is that expansions are 
often interrupted by a new contraction before unemployment has had enough time to fully recover. This can introduce a great deal 
of noise in our measure of plucking (as shown in Figure C.1 of Appendix C). Some expansions will be cut short. Others will appear 
excessively long because their length is governed not only by the size of the previous contraction but also by earlier contractions 
the recovery from which were cut short.

15 The analytical expression is 𝑢 = 𝑠∕(𝑠+ (𝑓∕(1 − 𝑓 ))) under our assumption that workers who separate from a firm get a chance to find a new job right away 
and spend no time unemployed. Assuming instead that workers must necessarily spend one period unemployed before finding a new job, the relationship would 
be 𝑢 = 𝑠∕(𝑠 + 𝑓 ). In this case too, the steady-state worker-flow relationship is convex but the non-linearities it induces are quantitatively small.
16 Hairault et al. (2010), Jung and Kuester (2011), and Lepetit (2020) also emphasize this source of non-linearity.
17 Counterfactually large business cycle fluctuations are a feature of the search and matching model under constant returns to labor and would disappear 

under decreasing returns to labor. See Appendix H on how decreasing returns affect the model.
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Fig. 4. Steady-State Worker-Flow Relationship.
Note: The figure plots the steady-state relationship between the job-finding rate and the unemployment rate implied by the worker-flow Eqs. (15)–(16). In plain 
line the relationship is plotted over the range of unemployment rates observed in the US between 1948 and 2019: from 2.5% to 10.8%.

Fig. 5. Simulated Paths for the Unemployment Rate, Job-Finding Rate and Employment Exit Rate.
Note: The figure plots sample path of 72 years (the same length as our empirical sample) for the unemployment rate 𝑢, the job-finding rate 𝑓 and employment 
exit rate �̄� in the Fujita–Ramey model with downward nominal wage rigidity of Section 3. The dashed lines indicate the steady-state level of each variable.
10 
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A second weakness of the model with DNWR is that the unemployment rate is much less persistent than in the data. The low 
persistence in the model is documented in the lower half of Table  3. The model generates unemployment cycles that are far too 
short. The average duration of expansions is 27.4 months versus 59.1 in the data, and the average duration of contraction is 18.3 
months, versus 26.9 in the data.

The model with flexible wages does considerably better on these metrics. With our Hagedorn and Manovskii (2008) calibration, 
movements in real wages are muted and the model’s endogenous variables inherit the behavior of the shock process. This yields 
quite a bit of persistence. With DNWR, however, it is nominal wages that are rigid in downturns. Real wages fall due to increases 
in the price level. This implies that gaps between 𝐴𝑡 and 𝑤𝑡 get eroded faster than in the flexible wage model with the Hagedorn 
and Manovskii (2008) calibration.

4.2. Stabilization policy and output gaps in the plucking model

In a thought-provoking exercise, Lucas (1987, 2003) showed that the welfare benefits of eliminating all economic fluctuations 
are trivial in a simple benchmark model. Crucially, Lucas assumed in this thought experiment that the average level of economic 
activity was unaffected by the elimination of business cycles. Our plucking model violates this assumption.

In a plucking model, recessions are asymmetrically periods when the economy drops below potential. Eliminating these business 
cycle fluctuations raises the average level of economic activity. The top panel of Fig.  5 shows that in our model, eliminating all 
fluctuations reduces the average unemployment rate from 5.7% to 3.1%. Conversely, increasing the standard deviation of aggregate 
shocks by 50% (from 1.5% to 2.25%) increases the average unemployment rate to 12.3%. Figure D.2 in Appendix D plots the average 
level of the unemployment rate in our plucking model as a function of the volatility of aggregate shocks.

The plucking model also implies that standard measures of the output gap are biased. Aiyar and Voigts (2019) show that common 
estimation methods of the output gap implicitly assume a zero-mean output gap. In the plucking model, however, output does not 
fluctuate symmetrically around a natural rate. Standard methods systematically underestimate the amount of slack because the 
output gap is on average negative.

4.3. Entry and exit over the business cycle

The bottom two panels of Fig.  5 give simulated paths for the job-finding rate 𝑓𝑡 and the rate of exit from employment �̄�𝑡 in 
our model. Both the hiring and separation margins contribute to the sharp rise in unemployment during recessions, consistent with 
evidence documented by Elsby et al. (2009) for US data.18 Negative shocks decrease the job-finding rate and increase the rate of 
exit from employment, while positive shocks mostly lead to increases in wages.

We quantify the relative importance of hiring versus separations by calculating their contributions to the volatility of unemploy-
ment. For the contribution of the job-finding rate 𝑓 , we simulate the unemployment rate from Eq.  (16) with �̄� fixed at its mean, 
then calculate the standard deviation of the resulting counterfactual unemployment rate, and divide it by the standard deviation 
of actual unemployment. Analogously, for the employment exit rate, we do the same analysis with the job-finding rate fixed at its 
mean. According to this metric, fluctuations in the job-finding rate explain 43% of fluctuations in unemployment, while fluctuations 
in the employment exit rate explain 54%.

Table  4 reports additional statistics: the volatility, the autocorrelation, and the correlation with productivity of the unemployment 
rate, of the job-finding rate, and of the employment exit rate. We calculate these statistics for the HP-filtered log of simulated series 
from the model. Relative to the model with Nash bargaining, the model with DNWR lowers the correlation of all three variables with 
productivity and brings it closer to the data. The autocorrelation statistics are, however, substantially smaller than in the data—a 
manifestation of the lack of persistence also captured with the speed and duration statistics in Table  3. Also, to match the volatility 
of the unemployment rate, the model requires shocks that imply a volatility of the separation rate that is about twice as high as in 
the data.19

5. Extensions

Our baseline model does not match the long duration of unemployment cycles in the data, and the asymmetry in the duration 
of contractions and expansions. Next, we consider whether extensions to the baseline model can help match these features of the 
data. We analyze the effect of (1) subjecting the model to AR(2) shocks, and (2) assuming that new workers often turn out to be 
poor matches for the firm. The second of these features yields a job ladder with a ‘‘slippery’’ first rung, increasing the time it takes 
a firm to rebuild its workforce after layoffs.

18 The separation margin is not necessary to replicate the plucking property, however. In a previous version of the paper, we considered a version of the 
model with constant exogenous separation rate and decreasing returns to scale, and showed that it, too, generated the plucking property.
19 Here, our calibration strategy differs from Fujita and Ramey (2012), who calibrate the idiosyncratic shock process to match the autocorrelation and volatility 

of the separation rate and, as a result, underperform on the volatility of the unemployment rate.
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Table 4
Second order moments.
 𝑋𝑡 𝑢𝑡 𝑓𝑡 �̄�𝑡  
 Data  
 𝜎(𝑋) 0.096 0.077 0.058  
 𝑐𝑜𝑟𝑟(𝐴𝑡 , 𝑋𝑡) −0.460 0.369 −0.535 
 𝑐𝑜𝑟𝑟(𝑋𝑡 , 𝑋𝑡−1) 0.926 0.803 0.631  
 Nash  
 𝜎(𝑋) 0.115 0.063 0.080  
 𝑐𝑜𝑟𝑟(𝐴𝑡 , 𝑋𝑡) −0.964 0.965 −0.875 
 𝑐𝑜𝑟𝑟(𝑋𝑡 , 𝑋𝑡−1) 0.815 0.771 0.508  
 DNWR  
 𝜎(𝑋) 0.130 0.070 0.115  
 𝑐𝑜𝑟𝑟(𝐴𝑡 , 𝑋𝑡) −0.81 0.792 −0.539 
 𝑐𝑜𝑟𝑟(𝑋𝑡 , 𝑋𝑡−1) 0.666 0.567 0.194  
Note: The table reports the second order moments of the Fujita–Ramey model of Section 3 under 
Nash bargaining and Downward Nominal Wage Rigidity. The moments are reported after data 
have been converted to quarterly, logged, and HP-filtered. The data panel uses the data from 
Fujita and Ramey (2012) and is therefore identical to the results they report. For the model 
panels, the table reports medians of each statistics over our 5000 samples of 866 months each.

5.1. Ar(2) shocks

We first assume that instead of following an AR(1) process, aggregate shocks follow an AR(2): 
log(𝐴𝑡) = (𝐼 − 𝜌𝑎1𝐿)

−1(𝐼 − 𝜌𝑎2𝐿)
−1𝜀𝑎𝑡 , (17)

still with Gaussian innovations, 𝜀𝑎𝑡 ∼  (0, 𝜎𝑎𝜀 ). We are motivated by the DSGE literature, which often includes equations that yield 
AR(2) dynamics–e.g., investment adjustment costs, habits in consumption, and lagged terms in the price and wage Phillips curves 
combined with AR(1) shocks. An AR(2) process can generate high persistence at business cycle frequencies without extreme levels 
of persistence at very low frequencies, and also helps fit the fact that the dynamic responses of economic activity to many shocks 
is hump-shaped (e.g. Romer and Romer, 2004; Christiano et al., 2005).20

We estimate the two roots 𝜌𝑎1 and 𝜌𝑎2 of aggregate productivity process from the BLS quarterly series on labor productivity. We 
first apply a three-period moving-average filter to smooth out high-frequency variations including measurement errors. We then 
detrend the series by removing a quadratic trend. The quadratic trend allows us to capture the productivity slowdown from the 
1970s onward. We then estimate an AR(2) on the cyclical component of labor productivity. After converting the roots to a monthly 
frequency, this yields 𝜌𝑎1 = 0.985 and 𝜌𝑎2 = 0.88.21

When simulating the model, we recalibrate the bargaining power of workers 𝛾 and the volatility of aggregate shocks 𝜎𝑎 so 
that we continue to match the average and standard deviation of unemployment in the data. This gives 𝛾 = 0.55 and 𝜎𝑎 = 0.016
under Nash bargaining, and 𝛾 = 0.37 and 𝜎𝑎 = 0.010 under DNWR. One downside of the AR(2) model is that, with only aggregate 
shocks, the DNWR binds rarely, because the aggregate productivity process is so smooth. In an earlier version of this paper, we 
included sectoral shocks, which generated binding DNWR constraints and a large amount of plucking even with 2% inflation and 
2% aggregate productivity growth. For simplicity, here, we recalibrate a model with only aggregate shocks to have a 0.5% inflation 
target to generate a non-trivial role for the DNWR constraint.22

The middle columns of Table  3 present the results for the AR(2) version of the model. The model under DNWR features about 
as much plucking as the baseline model under an AR(1).23 This model does generate somewhat longer contractions and expansions 
(37.6 and 23.5 months)—closer to what we see in the data, though still less persistent. The model under Nash bargaining generates 
less plucking but much longer expansions and contractions. The reason is the same as with AR(1) shocks: under Nash bargaining the 
gap between wages and productivity inherits the dynamics of the shock process, while under DNWR the gap erodes faster. Neither 
model generates asymmetries in the speed of contractions versus expansions like those we see in the data.

5.2. Job ladder

We next assume that on top of AR(2) shocks, a newly hired worker can turn out to be a poor match to the firm so that the firm 
can choose to lay them off and look for another worker. The fact that newly hired workers face much higher separation rates than 

20 Fujita and Ramey (2007) explore an alternative mechanism for increasing the propagation of shocks in the labor market. They assume that the cost of 
opening a vacancy is non-zero and increasing in the number of new vacancies opened. This makes vacancy creation sluggish.
21 The autoregressive coefficients of the AR(2) estimation are 𝜙𝑎

1 = 1.64 and 𝜙𝑎
2 = −0.65. They are related to the roots 𝜌𝑎1 and 𝜌𝑎2 through the equation 

𝐼 −𝜙𝑎
1𝐿−𝜙𝑎

2𝐿
2 = (𝐼 − 𝜌𝑎1𝐿)(𝐼 − 𝜌𝑎2𝐿). This gives roots 0.96 and 0.68 on a quarterly frequency. The monthly roots are the quarterly roots raised to the power 1∕3.

22 Our analysis of the earlier model with sectoral shocks is available in the NBER working paper version of this paper.
23 As in our baseline analysis, we report results for a ‘‘top-truncated’’ sample that only includes expansions and contractions that are less than 6.5 percentage 

points in size to avoid overstating the role of non-linearities arising from counterfactually large business cycles.
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workers with longer tenure has been emphasized by Hall (1995), Pries (2004), Krolikowski (2017), Jung and Kuhn (2019), Jarosch 
(2023), and Hall and Kudlyak (2021), among others. The need to assess workers’ suitability on the job instead of through job 
interviews increases the time needed to find a good match. It can potentially increase the duration of recoveries.

We model this process by adding a job ladder with a slippery first rung to the model of Section 3. We assume that during the first 
𝑀 months of a new hire’s tenure at a firm, the newly hired worker faces a probability 𝑑 of seeing its productivity collapse to zero. 
The firm then chooses to lay them off. During this trial period, the worker’s idiosyncratic productivity if it does not collapse remains 
constant at its initial value. Once their trial period is over, the worker’s idiosyncratic productivity starts to fluctuate according to 
the idiosyncratic productivity process (2). Appendix G details how we formalize this assumption.

For illustrative purposes, we take the trial period to last 𝑀 = 12 months, and the monthly probability of turning into a poor 
match to be 𝑑 = 10%. When simulating the model, we recalibrate the bargaining power of workers 𝛾 and the volatility of aggregate 
shocks 𝜎𝑎 to still match the average and standard deviation of unemployment in the data. This gives 𝛾 = 0.29 and 𝜎𝑎 = 0.013 under 
Nash bargaining, and 𝛾 = 0.25 and 𝜎𝑎 = 0.012 under DNWR.

The rightmost columns of Table  3 present the results for this version of the model. While the model under DNWR features 
longer expansions than without the job ladder (58.6 months, close to the empirical value of 59.1 months), it also features longer 
contractions, so that the asymmetry between expansions and contractions is much less than in the data. In addition, the model under 
DNWR now features somewhat less plucking than in our baseline specification.24

6. Conclusion

We build a plucking model of the business cycle that captures the asymmetry in the predictive power of contractions and 
expansions emphasized by Milton Friedman. We show that a workhorse labor search model augmented with downward nominal 
wage rigidity can fit these facts. In this model, eliminating business cycles lowers the average unemployment rate. Since output is 
more often below than above the natural rate, standard methods systematically underestimate the amount of slack in the economy.

While our benchmark model with match heterogeneity and downward nominal wage rigidity succeeds in fitting the plucking 
property, it fails to match the overall duration of unemployment cycles, and the fact that expansions are on average twice as 
long as contractions. We consider additional non-standard features that may be required to match the asymmetry and duration of 
contractions and expansions—namely, AR(2) shocks and a job ladder with a ‘‘slippery’’ first rung. However, none of these simple 
extensions to the basic model can fit the constellation of facts we emphasize. Additional features such as decreasing returns to scale, 
and sectoral heterogeneity may be important in fitting these facts. A full integration of these features is a promising topic for future 
research.

Appendix A. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jmoneco.2025.103766.

Data availability

Replication package is available as supplementary material at doi https://eml.berkeley.edu/~jsteinsson/papers/pluckingReplicati
zip.
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