
NS2015 – Revision

Michele Fornino

March 26, 2017

Introduction

This documentation concerns the revision of the paper “High-Frequency Identification of Monetary Non-
Neutrality” by Emi Nakamura and Jón Steinsson, that was carried out between March and August 2016.
The subjects of this revision were the estimation of the key parameters of a NK model augmented with an
information effect and the modification of the Simulated Method of Moments estimation with the inclusion
of GDP growth expectations moments and a special bootstrap procedure to compute confidence intervals
for the estimated parameters.

The Matlab program consists of a script file called run.m and a host of functions that are called within
the script to perform the basic tasks of estimation.

Estimation

The parameters of the model that we wish to estimate are:

• ψ: share of monetary shock that reflects the natural rate

• κζ: slope of Phillips curve

• ρ1 and ρ2: autoregressive coefficients in the monetary policy rule

The above parameters are estimated through a two-step Simulated Method of Moments procedure. In par-
ticular, we first look for the values of ρ1 and ρ2 which minimize a quadratic loss function of the deviations
of real forwards and real yields implied by the simulated model from those in the data. The loss function’s
weighting matrix is constructed as a diagonal matrix listing all the inverse standard errors of the moments
estimated in the data.

Second, we feed these values of ρ1 and ρ2 in another minimization, where we look for the values of
ψ and κζ which again minimize a quadratic loss function. This time, though, only the inflation and GDP
expectation moments are targeted by the loss function, using again a diagonal matrix constructed with
the inverse of the standard deviation of the moments. At the end of the second stage, we have provisional
values of the parameters that can be fed again in another iteration until convergence is attained.

The minimization procedure is implemented through the fmincon routine in Matlab, with parameter
values restricted within reasonable bounds. In particular, for ε = 0.001, ρ1,ρ2 ∈ [−1+ε,1−ε], and ψ,κζ ∈
[ε,1−ε].

Bootstrap

In order to gauge the statistical confidence in the parameter estimates obtained with the methodology
described above, we compute quantiles of the relevant distributions by an ad-hoc resampling method very
similar to the conventional bootstrap. In particular, the main issue is that we start out with two separate
datasets from which we compute the moments used in the SMM procedure: the first one is at a higher

1



frequency and not only includes FOMC meeting days, but also other days in the month; the second dataset
contains GDP growth expectations from the Blue Chip survey and it is at monthly frequency.

Therefore, at each iteration of the resampling routine, we make sure to draw two independent datasets
that can be used to compute all of the moments of interest and then run the conventional SMM procedure
to obtain both parameter estimates and impulse response functions. Stratification is used extensively to
ensure that the bootstrapped datasets are consistennt with the original ones. For instance, both the pro-
portion of FOMC meeting days and of the observations after and before 2004 are kept constant.1 Quantiles
and other relevant statistics are then easily computed.

Matlab Code Documentation

The following paragraph describes the implementation of the above procedure within Matlab.

The main routine

The main routine that must be executed is run.m. Both this routine and all of the relevant subroutines are
commented extensively in order to allow the programmer to quickly understand what each part of the code
does. We refer the programmer to the comments to understand in detail what each option of the first block
of run.m does and how to set it up. It is structured in four main sections:

1. Housekeeping and Settings: calls that populate a structure object, called par, containing all of the
parameters of interest and the instructions for the graphs and robustness cases. This is useful be-
cause it can be passed on as a unique argument to subroutines. It is an alternative to defining many
global variables and has the main advantage that it can be manipulated by subroutines which pass
it on to subsubroutines, but without altering its definition in the workspace of the parent script. The
structure contains many settings, auxiliary cell variables, and a few substructures of interest:

(a) calibration: contains the calibrated values of some parameters of the model;

(b) options: contains the settings of the fmincon minimization program, created with optimset.

(c) cases and robustness: this is an important dichotomy. “Cases” refers to a set of estimation
runs, for instance changing calibrated parameters, or calibrating rather than estimating the
habits parameter. “Robustness” refers to exploring, e.g., IRFs for a given set of estimated pa-
rameters but changing some aspects of the model without carrying out the estimation phase
each time. Currently, these robustness may allow for optimal or alternative monetary policy
rule, and change the values of estimated parameters. For both, the user may instruct the code
to perform as many custom runs as wanted. The main advantage is that this does not require
the user to change by hand the settings to check each version of the model separately;

(d) figures: contains settings for the figures, such as whether to save to file and how long the IRFs
should be;

(e) bootstrap: seed and number of draws for the bootstrap procedure;

2. Moments Estimation and SMM Estimation of the Model(s): Calls to the three main subroutines that
perform the point estimation using the SMM procedure described in the paper:

(a) loaddata.m: creates a structure called data which contains the datasets used to compute the
empirical moments that must be targeted. These are dd1, dd2, and ddGDP. They vary because
moments are estimated on different datasets depending on data availability and frequency.

1This is relevant because for some moments we are only able to compute the effect of the path factor for the period after 2004.

2



(b) momentestimation.m: creates a structure called moments which lists all of the empirical mo-
ments that are relevant for the SMM procedure and that we wish to match. These regressions
are analogous to the ones in the empirical part of the paper. The reason why we cannot simply
use the moments estimated in the empirical part is that this function will be called by the boot-
strap routine to perform the empirical analysis on resampled datasets, and the procedures on
the true and resampled samples must be exactly the same.

(c) modelestimation.m: creates a structure called model, which contains information about the
estimation procedure and the model for the estimated values of the parameters, stored in three
substructures:

i. estimation, which contains technical information about the minimization procedure, for
instance the flags, the value of the loss function at optimum, and the analysis of the fit in
terms of how well the moments are targeted.

ii. irfs, which contains the IRFs to a monetary shock for the baseline mode, the counterfac-
tual version in which the public already knows of the growth in natural output, and the
difference.

iii. parameters, which contains parameter values divided in calibrated and estimated.

3. Draw Figures: Call to figures.m, a subroutine that creates graphs of IRFs based on the point esti-
mates of the parameters. It creates a folder structure within the subfolder output, where all of the
figures can be found in EPS format.

4. Bootstrap: Calls to the two main subroutines that compute the bootstrapped distributions of the esti-
mated parameters. They contribute to the creation of a structure called bootstrap, built as follows:

(a) bootstrapmomentsmodel.m: creates the substructure distributions, which in turn contains
substructures moments, irfs, and parameters, each one of them containing a whole bootstrapped
distribution.

(b) bootstrapstats.m: creates a substructure statistics, which in turn contains substructures
means, stdev, quantiles, each one containing the relevant moments of the boostrapped distri-
butions for the objects of interest (i.e., moments, irfs, and parameters). The functioning of this
routine is straightforward.

The following describes in some detail how the routines modelestimation.m and bootstrapmomentsmodel.m
work:

1. modelestimation.m: in itself, this function is just a wrapper. The structure model described above
that is saved by this routine is of dimension given by Number of cases × Number of robustness. For
each combination of cases and robustness checks, the following functions are called:

(a) structuralestimation.m: First, it defines the weighting matrix as a diagonal of the inverse
standard deviation of the empirical moments. Second, the two step minimization procedure is
implemented as described in the paper. Finally, the output of the minimization procedure is
analyzed and stored: for instance, the loss function is decomposed by empirical moments to
understand which ones fit better then others etc. The objective function of the minimization
procedure is a function called objectiveEstINFO.m: in itself, it is a quadratic loss function in
the deviation of the empirical moments from the theoretical moments. Crucially, it is possible
to compute this loss function only for a subset of the moments. The theoretical moments are
computed using the gensys.m routine (and its dependencies) developed by Chris Sims, itself
called in the specification file modelINFO.m which contains the linearized version of the model.
The empirical moments, instead, are passed on as argument to this function, and are the ones
outputted by momentestimation.m;

3



(b) modelIRFs.m: using the solution of the model and the estimated parameters, it computes IRFs
by iterating forward on the system of difference equations;

(c) modelParameters.m: auxiliary routine that saves the parameters in the model.parameters struc-
ture that is outputted by the modelestimation routine.

2. boostrapmomentsmodel.m. Note: this function does not operate for the cases/robustness lists de-
fined in par, but only for the “custom run”, which essentially is a single run of the code for a given
parametrization. The function operates in three steps:

(a) boostrapdataset.m: Create strata variables by amending the data structure created by the
loaddata.m routine. These are described in the appendix to the paper.

(b) Run boostrap itself as many times as number of bootstrap repetitions required:

i. boostrapsampling.m: this is the routine that performs the resampling by strata.
ii. momentestimation.m: same as above, but now feed it the resampled dataset.

iii. modelestimation.m: same as above, but now feed it the resampled dataset.

(c) allocate distributions of objects of interest within bootstrap.distributions structure.

Parallel Computing and Replicability

A remark is due on parallel computing. Note that the code is written to take advantage of parallel comput-
ing, especially for the bootstrap routine. There are two places within the code where parallel computing can
be used: calls to fmincon, and calls to boostrapmomentsmodel.m. The first one is determined by the op-
tion useparallel set by optimset. The second one is determined by the option par.bootstrap.parallel.
Note that the code is written in such a way that automatically excludes the possibility that fmincon is
called with the option useparallel set to true when the same is requested of boostrapmomentsmodel.m.
Parallel computing is extremely effective for the bootstrap procedure and should be used whenever possible.

One issue with parallel computing is replicability. Unfortunately, it is impossible right now to have
the bootstrap run on many CPUs while at the same time retaining the ability to replicate the bootstrap
runs. The fundamental reason is that the order with which CPUs will draw random numbers is not pre-
dictable and depends on the machine used. Therefore, if replicability is key, then we urge the user to set
par.bootstrap.parallel to false.

Example

Here is an example of how to use the code. We suppose the user wishes to estimate the model by targeting
only the inflation moments, calibrate the habits parameter to .8, estimate the information parameter. In
addition, the user wants to have 2.5th and 97.5th quantiles of the estimated parameters to build a 95%
confidence band. This first task we will call baseline. The user is also curious of what would happen to
point estimates if instead of estimating the information parameter, this were calibrated to .3, say, but is not
interested in investing the time to have confidence bands around these alternative parameters.

These tasks can be performed in two ways:

1. Easier way, but longer:

(a) Step 1. Perform point estimation and bootstrap for the baseline analysis:

i. set par.momentUse = 2, telling the code to only use inflation moments in the estimation
procedure, and to ignore both the stock price and GDP moments.

ii. set par.B_PSI_est = 1, telling the code to calibrate the habits parameter and estimate the
information parameter;

iii. modify the 5th entry of par.x0, and set it to .8, the value chosen for the calibration of the
habits parameter.

4



iv. set par.bootstrap.draws = 500, and par.bootstrap.seed = an integer number of your
choice, useful for replicability (see the previous paragraph for details about parallel comput-
ing and replicability);

v. make sure that par.cases.run = 0 and par.robustness.run = 0.
vi. execute run.m and make sure to rename the .mat file created by the code

(b) Step 2. Perform only point estimation for the alternative analysis (I assume that the run.m file
is left as modified in Step 1 above):

i. set par.B_PSI_est = 3, telling the code to calibrate both the habits and information pa-
rameters.

ii. modify the 4th entry of par.x0, and set it to .3, the value chosen for the calibration of the
information parameter in the alternative exercise.

iii. make sure that par.cases.run = 0 and par.robustness.run = 0.
iv. execute run.m but for the last section, and make sure to rename the .mat file created by the

code differently from the one in Step 1

2. Faster way, a little harder to set up. Crucially, here we see the fact that bootstrap does only work with
the “custom run”, that is it does not interact with the par.cases and par.robustness blocks:

(a) set par.momentUse = 2, telling the code to only use inflation moments in the estimation proce-
dure, and to ignore both the stock price and GDP moments.

(b) set par.B_PSI_est = 1, telling the code to calibrate the habits parameter and estimate the
information parameter;

(c) modify the 5th entry of par.x0, and set it to .8, the value chosen for the calibration of the habits
parameter.

(d) set par.bootstrap.draws = 500, and par.bootstrap.seed = an integer number of your choice,
useful for replicability (see the previous paragraph for details about parallel computing and
replicability);

(e) set:

i. par.cases.run = 1.
ii. par.cases.names = {’baseline’, ’calibrateInfo’};

iii. par.cases.chgparams = {’sigma’};2

iv. par.cases.sigma = [.5; .5] or anyway to the value chosen for par.calibration.sigma;
v. par.cases.B_PSI_est = [1; 3], telling the code that in the first case you’d like it to have

the habits parameter calibrated but estimate the information parameter, and in the second
case to calibrate both.

vi. Set a 2×5 matrix par.cases.x0, where the first row contains the same vector as par.x0,
but for the 5th entry that must be set to .8 (the calibrated value for the habits parameter).
The second row can be the same as par.x0, but for the 4th and 5th entries that must be set
to .3 and .8.

(f) make sure that par.robustness.run = 0;

(g) execute run.m, noting that bootstrap will only be run for the “custom run” as if we had set
par.cases.run = 0.

How to access the stored results?

2This is done because the typical exercise is to change parameters. In this case we don’t want to explore what happens to
estimation if we change parameters, but cannot leave this option empty.

5



1. Estimated parameters: type model.parameters.estimated

2. Loss function and its decomposition: type model.estimation.loss and model.estimation.lossAnalysis

3. Figures (if drawn and saved): look for folder output within the current directory.

4. Quantiles of estimated parameters: type bootstrap.statistics.quantiles.parameters.”...” where “...” is
the name of the parameter of interest for which the quantiles are wanted, which can be AR1, AR2,
slopePC, PSI. Recall that this is a 13×1 vector that lists the [.005 ,.01, .025, .05, .1, .25, .5 ,.75, .9, .95,
.975, .99, .995] quantiles. Therefore, the user may extract the 3rd and 11th elements of this vector as
the lower and upper bounds of the confidence band for each parameter.

6



Addendum: SMM Weighting Matrix
Miguel Acosta, May 29, 2018

Note that the weighting matrix used for the SMM estimation uses homoskedastic standard errors, not
the heteroskedastic (robust) standard errors reported in the paper.

7


