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ESTIMATING THE IES

1. Traditional estimation strategies for IES in macro
(e.g., Hall, 1988; Campbell and Mankiw, 1989)

o Very structural approach (although it doesn’t look it)
o Example of a common type of reasoning in empirical macro

2. Critique of traditional strategy

o ldentification challenges are broader and more challenging
than sometimes acknowledged

3. Example of different sort of structural approach
(Best-Cloyne-lizetzki-Kleven 2019)
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ESTIMATING THE IES

o Consumption Euler equation with power utility and log-normality:
1
EiAlog Cri1 = YEifi 141 + 1 log 8 + §[¢0i2 + 17105 — 207]
o Can be rewritten as:

Alog Cii1 = pj + Ylitp1 + €41

where

€itr1 = P(Etlitr1 — ligr1) — (EtAlog Cri1 — Alog Cii1)
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ESTIMATING THE IES

Alog Cryq = pj + Pty + €7 141

where
€it+1 = Y(Etlit41 — lit11) — (EtAlog G — Alog Cryq)

o Can we estimate this using OLS?
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ESTIMATING THE IES

Alog Cryq = pj + Pty + €7 141

where
€it+1 = Y(Etlit41 — lit11) — (EtAlog G — Alog Cryq)

o Can we estimate this using OLS?

o Suppose there is a “good shock” that leads to a high realization of r; ;11
o This shock will be correlated with the error term
(consumption (and return) will rise relative to expectation)
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AN IV APPROACH

Alog Cri1 = i+ Yl 1 + €41

where
€it+1 = Y(Etlit41 — lit11) — (EtAlog G — Alog Cryq)

o Can we think of instruments that will work in this case?

(Hint: Error term is an expectation error)
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AN IV APPROACH

Alog Cri1 = i+ Yl 1 + €41

where
€it+1 = Y(Etlit41 — lit11) — (EtAlog G — Alog Cryq)

o Can we think of instruments that will work in this case?

(Hint: Error term is an expectation error)
o Any variable know at time t works as an instrument

o Since ¢; 41 is an expectation error, it is orthogonal to all variables
known at time t or earlier

o So, we can use lags of anything as instruments
(Wow, lots of possible instruments)
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ASIDE: OLS WITH RISK-FREE RATE

o If rj +11 is the risk-free rate (ry ;) it is known at time ¢
o Then we have:
Alog Cry1 = pi+ Pt + €41
where
€ity1 = Alog Crr1 — EtAlog Cp iy
@ In this case, OLS would work!
o In practice, the real return on even Thbills is uncertain due to inflation

o Could estimate by OLS using TIPS (Treasury Inflation Protected Securities)
although sample would be short (TIPS started trading in 1997)
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ESTIMATING IES

o Campbell and Mankiw (1989) estimate:

Alog Cii1 = pi + Y1 + €41

using lags of real rates, consumption growth, and nominal rates
as instruments (see also Hall (1988))
o Complication: C; is a time average over a quarter

o Even if C; were a random walk, time averaging would imply serial
correlation of changes (Working, 1960)
o Campbell and Mankiw (1989) lag instruments by 2 periods to avoid this
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Table 3 UNITED STATES, 1953-1986

Ac, = p + o1,
First-stage regressions o estimate Test of
Row Instruments Ac equation  r equation (s.e.) restrictions
1 None (OLS) — — 0.276 —
(0.079)
2 Ty o v v ity 0.063 0.431 0.270 0.031
(0.009) (0.000) (0.118) (0.029)
3 Trgr + - Tieg 0.067 0.426 0.281 0.034
(0.014) (0.000) (0.118) (0.050)
4 Acy_y, - .. Ay 0.024 —-0.021 —-0.707 0.000
(0.101) (0.966) (2.586) (0.215)
5 Ac,y, - - . ,Ac ¢ 0.018 0.007 0.992 0.008
(0.007) (0.316) (0.478) (0.189)
6 Aiy_y, ..., AL 0.061 0.024 1.263 -0.021
(0.010) (0.105) (0.545) (0.918)
7 Aiy_y, ..., A6 0.102 0.028 1.213 —-0.022
(0.002) (0.119) (0.445) (0.700)
8 ATV A 0.062 0.455 0.204 0.047
Aciy, - - 4ACLy, (0.026) (0.000) (0.119) (0.033)
9 VI A 0.103 0.476 0.150 0.100
Ac,_y, - . AC_y, (0.006) (0.000) (0.111) (0.005)
Aiy_y, ... ,AL

Note: The columns labeled “First-stage regressions” report the adjusted R? for the OLS regressions of the
two variables on the instruments; in parentheses is the p-value for the null that all the coefficients
except the constant are zero. The column labeled “A estimate” reports the IV estimate of A and, in
parentheses, its standard error. The column labeled “Test of restrictions” reports the adjusted R? of the
OLS regression of the residual on the instruments; in parenthesis is the p-value for the null that all the

coefficients are zero.

Source: Campbell and Mankiw (1989)
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ESTIMATING THE IES

o Hall (1988) ran similar specifications. He favored estimates close to
zero and interpreted them as estimates of the IES.

o Campbell and Mankiw (1989) worry about misspecification
due to hand-to-mouth consumers

Consumption growth predictable. Should not be true if 1 = 0

Over-identifying restrictions rejected

Estimates very unstable

Reverse regression not consistent with ¢ = 0

&L b=
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REVERSE REGRESSION

o Just as the consumption Euler equation implies that
Alog Cri1 = pi + Yl 41 + €i 111
it also implies that
1
fite1 = ai+ EA log Ct11 + i t11

o If ¢ = 0, this “reverse regression” should yield a large estimate for 1 /4

o Under the maintained assumptions above, this “reverse regression”
can be estimated using IV with the same set of instruments

o This is the specification used by Hansen and Singleton (1983)

Nakamura-Steinsson (UC Berkeley) Estimation of IES 10/47



Table 4 UNITED STATES, 1953-1986
r,=p+ 1o Ac

First-stage regressions

1/o estimate Test of
Row Instruments Ac equation  r equation (s.e.) restrictions
1 None (OLS) - — 0.304 —
(0.087)

2 VIR 0.063 0.431 1.581 0.086
(0.009) (0.000) (0.486) (0.001)

3 Ty 0.067 0.426 1.347 0.113
(0.014) (0.000) (0.390) (0.001)

4 Ao, ... A, 0.024 -0.021 -0.342 -0.021
(0.101) (0.966) (0.428) (0.878)

5 Ay ... A 0.018 0.007 0.419 -0.010
(0.007) (0.316) (0.258) (0.440)

6  Ai, ...,A0, 0.061 0.024 0.768 -0.021
(0.010) (0.105) (0.334) (0.919)

7 Aiy, ... Al 0.102 0.028 0.638 —0.024
(0.002) (0.119) (0.249) (0.747)

8 sty 0.062 0.455 1.034 0.236
Ay, - - A, (0.026) (0.000) (0.333) (0.000)

9 gy 0.103 0.476 0.521 0.455
Acyy, . . L Acy, (0.006) (0.000) (0.220) (0.000)

Qi y ... AQ,

Note: The columns labeled “First-stage regressions” report the adjusted R? for the OLS regressions of the
two variables on the instruments; in parentheses is the p-value for the null that all the coefficients
except the constant are zero. The column labeled “A estimate” reports the IV estimate of A and, in
parentheses, its standard error. The column labeled “Test of restrictions” reports the adjusted R? of the
OLS regression of the residual on the instruments; in parenthesis is the p-value for the null that all the
coefficients are zero.

Source: Campbell and Mankiw (1989)
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Is IES BIG OR SMALL??

o What is going on!!

o It can’t both be true that:

o 1 is close to zero
o 1/4 is relatively small
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Is IES BIG OR SMALL??

o What is going on!!

o It can’t both be true that:

o 1 is close to zero
o 1/y is relatively small

o Yogo (2004): Puzzle due to weak instruments
o Consumption growth notoriously hard to predict!!
o Employs first-stage F-stat for weak instruments
developed by Stock and Yogo (2003)
o Concludes that reverse regression is unreliable due to weak instruments,
but regression with real Tbill rate as regressor is reliable
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TABLE 1.—TEST FOR WEAK INSTRUMENTS

p-Value

Country Sample Period Variable F TSLS Bias TSLS Size Fuller-k LIML
USA 1947.3-1998.4 Ac 2.93 0.93 1.00 0.53 0.37
ry 15.53 0.00 0.66 0.00 0.00

re 2.88 0.93 1.00 0.54 0.39

AUL 1970.3-1998.4 Ac 1.79 0.99 1.00 0.81 0.69
Ty 21.81 0.00 0.14 0.00 0.00

re 1.82 0.99 1.00 0.80 0.68

CAN 1970.3-1999.1 Ac 3.03 0.92 1.00 0.50 0.35
ry 15.37 0.00 0.67 0.00 0.00

re 251 0.96 1.00 0.64 0.48

FR 1970.3-1998.3 Ac 0.17 1.00 1.00 1.00 1.00
ry 38.43 0.00 0.00 0.00 0.00

re 3.09 091 1.00 0.49 0.34

GER 1979.1-1998.3 Ac 0.83 1.00 1.00 0.97 0.93
Ty 17.66 0.00 045 0.00 0.00

re 0.69 1.00 1.00 0.98 0.95

USA 1970.3-1998.4 Ac 3.53 0.86 1.00 0.39 0.25
rr 11.92 0.02 0.92 0.00 0.00

re 2.16 0.97 1.00 0.72 0.58

SWD 1921-1994 Ac 1.02 1.00 1.00 0.95 0.89
ry 5.50 0.55 1.00 0.10 0.05

re 1.67 0.99 1.00 0.84 0.72

UK 1921-1994 Ac 1.93 0.98 1.00 0.78 0.65
Ty 4.87 0.66 1.00 0.16 0.08

re 4.18 0.77 1.00 0.26 0.15

USA 1891-1995 Ac 1.55 0.99 1.00 0.86 0.76
rr 2.87 0.93 1.00 0.54 0.39

re 1.00 1.00 1.00 0.95 0.90

‘The table reports the first-stage F-statistic from a regression of the endogenous variable onto the instruments. The
(r,). The instruments are twice lagged nominal interest rate, inflation, consumption growth, and log dividend-price ratio. The table also reports the p-value of the test for weak instruments. The null hypotheses are:
(1) the TSLS relative bias is greater than 10%, (2) the size of the 5% TSLS r-test can be greater than 10%, (3) the Fuller-k relative bias is greater than 10%, and (4) the size of 5% LIML t-test can be greater than 10%.

Source: Yogo (2004)
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TABLE 2.—ESTIMATES OF THE EIS USING THE INTEREST RATE

1 v

Country Sample Period TSLS Fuller-k LIML TSLS Fuller-k LIML
USA 1947.3-1998.4 0.68 330 34.11 0.06 0.03 0.03
(0.48) (3.20) (112.50) (0.09) (0.10) (0.10)

AUL 1970.3-1998.4 050 237 30.03 005 004 003
(0.48) (2.45) (107.71) ©.11) (0.12) (0.12)

CAN 1970.3-1999.1 -1.04 —2.40 -2.98 —030 -033 —034
(039) (1.13) (154) (0.16) 0.17) 0.17)

FR 1970.3-1998.3 -3.12 -1.83 ~12.38 ~0.08 ~0.08 ~0.08
(3.75) (1.72) (29.61) (0.19) (0.19) (0.19)

GER 1979.1-1998.3 -1.05 -1.38 -229 —042 —043 —0.44
0.62) (0.90) (1.87) (035) (035) (0.36)

ITA 1971.4-1998.1 —334 —5.82 —14.81 —0.07 —0.07 —0.07
(1.98) (447) (18.55) (0.08) (0.08) (0.08)

JAP 1970.3-1998.4 ~0.18 ~0.86 —21.56 —0.04 —0.04 -0.05
(0.43) (123) (106.53) 021 (0.23) (0.23)

NTH 1977.3-1998.4 -0.53 —1.41 —6.94 -0.15 -0.15 —0.14
(0.41) (133) (13.96) (0.28) 0.29) (0.29)

SWD 1970.3-1999.2 —0.10 —021 —399.86 0.00 0.00 0.00
(1.10) (154) (16075.06) (0.10) (0.10) (0.10)

SWT 1976.2-1998.4 ~1.56 ~1.51 -2.00 ~0.49 —0.49 ~0.50
(0.83) (0.79) (1.18) (0.29) (0.29) (0.29)

UK 1970.3-1999.1 1.06 376 621 0.17 0.16 0.16
(0.45) (242) (5.17) (0.13) (0.13) (0.13)

USA 1970.3-1998.4 053 219 47.66 0.06 002 002
(0.50) (2.60) (249.47) (0.09) ©.11) ©.11)

SWD 1921-1994 117 330 17.77 0.06 0.06 0.06
(1.13) (334) (38.67) ©.11) (0.12) 0.12)

UK 1921-1994 240 299 352 026 027 028
(1.01) (1.33) (1.65) (0.12) (0.13) (0.13)

USA 1891-1995 —0.38 ~117 —39.71 —0.03 —0.03 —0.03
(1.12) (2.90) (257.54) ©.11) (0.15) (0.16)

‘The reciprocal of the EIS is estimated from 7, = p; + (1A)Ac,+; + 77,1, and the EIS is estimated from Ac,; = 7, + Wrye; + &1 The instruments are the twice lagged nominal interest rate, inflation,

consumption growth, and log dividend-price ratio. Standard errors in parentheses.

Source: Yogo (2004)
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ESTIMATING THE IES

o Weak instruments is not the only empirical challenge!
o Above approach relies heavily on
Alog Ciiq = pi + Vlit41 + €i 141 (1)
being a structural equation
o In particular, heavy reliance on ¢; ;1 being only an expectation error

o But what if equation (1) is misspecified?
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SLOW MOVING PREFERENCE SHOCKS

o Suppose U'(Ct,n;) and n; is persistent

@ 7 can be:

o Preference shocks (e.g., sentiment, preference for borrowing)
o Labor supply (i.e., non-separable utility)

o If 1 is persistent, then 7;_; will affect both

o Lagged variables being used as instruments
o Current n;

o This will lead IV with lagged variables to be biased
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PREFERENCES SHOCKS AND OLS

o Suppose we are estimating
Alog Cri1 = pi + Plity1 + €ty
by OLS in the presence of preference shocks

o Increased desire to save drives down interest rates,
and raises consumption growth

o Implies current interest rates negatively correlated with ¢; ¢ 1

o Downward bias in OLS estimate of ¢
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PREFERENCE SHOCKS AND LAGGED INSTRUMENTS

o Suppose we are estimating
Alog Ciq = pj+ Yl 11 + €41
by IV with lagged instruments and persistent preference shocks

o Increase in desired savings in period t — j will affect instruments
at time t — j and also increase desire to save in period t

o Part of correlation between instruments and r; ;1 due to
lagged preference shock

o Lagged preference shock lowers r; ;1 and raises A log Cty1 due to
affect on current preference shock

o Same downward bias as OLS
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OTHER SOURCES OF MISSPECIFICATION

1. Hand-to-mouth consumers (more generally: liquidity constraints)
(see Werning (2015))

2. Time-varying volatility:

1
Eillog Ciy1 = Eh 1 +log B + 5ot + 47 0f — 20c]

We have been assuming that all the o terms are constant
What if they are not?
Bansal and Yaron (2004): « will be downward biased

Persistent increase in o lowers E;r; ;11 and is part of error term
(see also Carrol, 1997; Blundell et al., 1994; Guvenen, 2000)

3. Consumption commitments (housing, cars) lead to more complicated
consumption Euler equation (Chetty and Szeidl, 2016)
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COMMON IN MACRO

o This lagged instrument strategy has been common in macro

o E.g., Phillips curve estimation

o Stems from taking simple structural model extremely literally

o Applied micro approach very different:

o Error term contains all sorts of things
o We don’t know the true model
o Want conclusions to be robust to many structural stories

o Lagged instrument strategy becoming less common in macro
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GRUBER (2013)

o Most work estimates IES using time-series variation,
but hard to find exogenous variation in the time series

o Gruber (2013) exploits variation in rates of return in the cross-section
to identify the IES

o After-tax rates of return are influenced by capital tax rates

o Exploits exogenous variation in capital tax rates
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GRUBER (2013)

o Most variation in tax rates potentially endogenous
(e.g., due to variation in income)

o Constructs “simulated” tax rates based on predicted income from
exogenous characteristics (e.g., education, age, and sex)

o Controls flexibly for these characteristics

o ldentification comes only from changes in the tax system
over the sample period
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ESTIMATING THE IES

o Specification:
GCj,t+1 = o+ BATRATE; + Xid + AZ;MJH’I] +e€

o GC: Non-durable consumption growth for household i (from CEX)

o ATRATE: Income specific after tax rate of return for household i
(SCF portfolio shares and NBER TAXSIM tax rates)

o X: vector of baseline demographic characteristics

o AZ: vector of demographic changes

o Includes time and state fixed effects

o IV: Instrument for ATRATE using tax rate based on
predicted income for a given demographic group
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Table 2. Base case estimates.

After-Tax T-Bill Rate  After-Tax Rate of Return

OLS, no year dummies —0.551 0.105
(0.116) (0.032)
Lag IV, no year dummies 2.616 0.328
(0.490) (0.130)
Tax IV 2.032 2.239
(0.796) (0.894)
Number Obs. 66,314 66,208

Notes: Estimates from models such as Eq. (1) in text. Each cell represents the
estimated EIS from a separate model: first column uses after-tax T-bill rate, while
second column uses weighted average after-tax rate of return. Standard errors in
parentheses.

Source: Gruber (2013)
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IDENTIFICATION OF IES

o No consensus in the literature!!
o Macro people often use IES < 1, influenced by Hall (1988)

o Asset pricing people often use IES > 1 because values < 1 yield
counter-intuitive responses of asset prices to shocks

o With IES < 1, bad news about future growth increases stock prices
because of strong desire to save

Nakamura-Steinsson (UC Berkeley) Estimation of IES 25/47



REDUCED FORM VS. STRUCTURAL INFERENCE

o Simplest form of inference:

o Run regression in which one of the coefficients may be interpreted as
direct causal evidence of parameter in question (e.g., IES)

o Often what we can measure is not directly what we are
interested in estimating

o What we can measure, however, often yield powerful inference about
what we are interested in if viewed through the lens of a structural
model (provide tell-tale signs about parameter of interest)

(See Nakamura-Steinsson (2018) for more discussion of this idea.)
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BEST-CLOYNE-ILZETZKI-KLEVEN (2019)

o Use “mortgage notches” in the UK to shed light on IES
o Statistics they calculate do not provide direct estimates of IES

o But viewed through sensible structural models, they (arguably)
provide powerful inference about IES

o How to make convincing inference through the lens of a structural
model is a complicated art

o Which model to use?
o How robust are the conclusions?

o Best et al. paper is a good example of this
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UK MORTGAGE MARKET

o UK mortgages have low fixed rates for 2, 3, or 5 years
then much higher flexible rates

o High penalty for refinancing early
o Most people refinance at the time of interest rate reset

o Authors focus on refinancers so as to abstract from the effect of
mortgage size on home size
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FIGURE A.1: REFINANCING HAPPENS WHEN THE RESET RATE KICKS IN

N
[9)] (9
| |

Number of Mortgages (Thousands)
N -
3] =)
1 1

o
1

Time Between Mortgages (Years)

["""1 Remortgage When Should Il Remortgage After Should
[ ] Remortgage Before Should

Notes: The figure shows the distribution of the time to refinance, excluding individuals where the date on which the
reset rate kicks in is unobserved. The figure shows individuals individuals who refinance more than 6 months after their
reset rate kicks in in black, individuals who refinance more than 2 months before their reset rate kicks in in white, and
the remainder who refinance around their reset date in gray.

Source: Best-Cloyne-lizetzki-Kleven (2019)
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UK MORTGAGE MARKET

o Interest rate jumps by discrete amounts (features notches) at certain
loan-to-value (LTV) thresholds

o Very salient: daily menu in newspapers, on bank websites, etc.

Estimate rate function:

ri = f(LTV;) + B1bank; + Bavariability; ® duration; ® month; + Ssrepayment; + Saterm; + v;

No individual characteristics because UK mortgage market is like a
supermarket (no individual negotiation)

But adding age, income and family status has no effect on results
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FIGURE 3
Interest rate jumps at notches

Notes: This figure shows the conditional interest rate as a function of the LTV ratio from the non-parametric regression (2.1). In each LTV
bin, we plot the coefficient on the LTV bin dummy plus a constant given by the mean predicted value E [?,-] from all the other covariates
(i.e. omitting the contribution of the LTV bin dummies). The figure shows that the mortgage interest rate evolves as a step function with
sharp notches at LTV ratios of 60%, 70%, 75%, 80%, and 85%.

Source: Best-Cloyne-lizetzki-Kleven (2019)
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FIGURE 1
Observed LTV distribution among U.K. refinancers

Notes: This figure shows the observed distribution of LTV ratios among refinancers in the U.K. between 2008-14. There are interest rate
notches at LTV ratios of 60%, 70%, 75%, 80%, 85%, and 90% (depicted by vertical lines).

Source: Best-Cloyne-lizetzki-Kleven (2019)
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BUNCHING AND THE IES

o Large amount of bunching below interest rate notches

o Intuitively, this is informative about IES:

o Households must cut consumption to get below notch
o How willing are households to cut consumption now to raise
life-time consumption?
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BUNCHING AND THE IES

Two Challenges:
1. Need to translate bunching into IES estimate

o What is counterfactual?
o Is observed bunching a lot or a little?

2. Many other features of reality affect bunching

o Patience
o Demand for buffer stock savings (i.e., income risk and risk aversion)
o Frictions to household optimization (inattention, inertia, myopia)
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BUNCHING AND THE IES

o Authors write down a structural model

o Ask: For what parameter values model can match bunching
in the data?

o Bunching highly sensitive to the IES

o Relatively insensitive to reasonable variation in other parameters
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GOOD EXAMPLE OF STRUCTURAL ESTIMATION

o This is a good example of the use of structural estimation

o The moments being used are shown to be highly informative about
something specific in the model and are used to estimate that thing

o Often structural estimation is a big black box with lots of moments
estimating lots of parameters without a clear sense of what identifies
what
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B Counterfactual LTV Distribution
10,000 |
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6,000
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Al 1
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Actual LTV

Counterfactual LTV ‘

FIGURE 4
Constructing the counterfactual LTV distribution.

Notes: This figure shows the two steps in the construction of the counterfactual LTV distribution among refinancers. Each panel shows the
actual LTV distribution with dots (as in Figure 1). Panel A shows the distribution of passive LTVs with crosses, calculated based on the
LTV of the previous mortgage, amortization, and the house value at the time of refinancing. Panel B shows the distribution of counterfactual
LTVs with crosses, which adjusts passive LTVs for the average equity extraction of non-bunchers in the actual distribution.

Source: Best-Cloyne-lizetzki-Kleven (2019).
Based on “passive behavior”, i.e., what would LTV have been if no refinancing.
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SIMPLE STRUCTURAL MODEL

o Two periods (0 and 1)
o Households have decided to stay in current home
o Face a refinancing decision

o Utility:

g (c—1)/c (c—1)/o
o—1 (CO + 501 )
where ¢ is discount factor and ¢ is IES
o Budget constraints:
Co= Yo+ Wo—(1 —>\)POH
c1=y1— R\PoH+ (1 —d)P1H

where )\ is LTV on new mortgage, d is depreciation rate of houses,
and R is mortgate interest rate
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SIMULATION OF SIMPLE MODEL

o Authors simulate model for different values of IES
o Distribution of W is calibrated to replicate counterfactual LTV

distribution when R is constant
o Other parameters are calibrated to “reasonable” values:

0=0.96

d = 0.025

Py

B 1.026
Yi=%
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Source: Best-Cloyne-lizetzki-Kleven (2019)
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VARYING OTHER PARAMETERS

o But could it be that other values of the other parameters could
justify a large IES?

o Authors set IES = 1 and then vary other parameters to maximize
fit at notches

o Varying other parameters cannot give good fit with IES = 1 even
allowing for very unreasonable values for other parameters
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Panel B: 0 = 1; Calibrated ¢, y, P
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PRECAUTIONARY SAVINGS

o Adjustment to interest rate notches affected by demand for
buffer stock savings

o Simple structural model doesn’t capture this (no risk)

o But simple structural model provides an upper bound:

o Makes extreme assumption of no liquid wealth
o All adjustment borne by consumption

o Addition of liquid wealth and precautionary savings would add an
adjustment margin

o Even lower IES needed to justify small amount of bunching

Nakamura-Steinsson (UC Berkeley) Estimation of IES 43/47



FRICTIONS TO HOUSEHOLD OPTIMIZATION

o Most important “treat to identification” is frictions to
household optimization (inattention, inertia, myopia)

o Estimate fraction of non-optimizers as those in dominated region
(right above notch) relative to counterfactual

o Redoes model simulations assuming this fraction of non-optimizers
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B Counterfactual LTV Distribution
10,000 -
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6,000
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Number of Mortgages
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FIGURE 4
Constructing the counterfactual LTV distribution.

Notes: This figure shows the two steps in the construction of the counterfactual LTV distribution among refinancers. Each panel shows the
actual LTV distribution with dots (as in Figure 1). Panel A shows the distribution of passive LTVs with crosses, calculated based on the
LTV of the previous mortgage, amortization, and the house value at the time of refinancing. Panel B shows the distribution of counterfactual
LTVs with crosses, which adjusts passive LTVs for the average equity extraction of non-bunchers in the actual distribution.

Source: Best-Cloyne-lizetzki-Kleven (2019)
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FIGURE A.7: OBSERVED VS SIMULATED LTV DISTRIBUTIONS WITH FRICTION ADJUSTMENT
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TABLE 3
Bounding optimization frictions and the EIS

Notch
70 75 80 85 Pooled
Panel A: Adjustment factor a
0.11 0.15 0.15 0.03 0.12
(1) Notched banks only (0.02) (0.02) (0.03) (0.01) (0.01)
(2) Dominated region 0.21 0.30 0.15 0.08 0.22
€ (0.02) (0.03) (0.02) (0.03) (0.01)
(3) Entire hole 0.67 0.60 0.57 0.40 0.61
(0.05) (0.02) (0.04) (0.09) 0.02)
Panel B: Elasticity of intertemporal substitution o
. 0.02 0.08 0.06 0.11 0.05
(4) Unadjusted 0.00) ©.01) 0.01) 0.04) ©.01)
. . 0.02 0.11 0.08 0.11 0.07
(5) Dominated region: notched banks only 0.00) ©.01) 0.02) 0.04) ©01)
. . 0.03 0.17 0.08 0.13 0.09
(6) Dominated region: all banks 0.00) 0.02) 0.02) 0.05) ©.01)
. e 0.16 0.50 0.31 0.30 0.30
(7) All mass in the hole is friction (0.05) 0.07) (0.08) (8.53) (0.03)

Notes: The table shows how the estimated EIS is affected by assumptions on optimization frictions. The top panel of
the table shows the friction adjustment factor a estimated in three different cases. Row (1) shows the friction adjustment
based on mass in the dominated region using only notched banks, row (2) shows the friction adjustment based on mass
the dominated region using all banks (our baseline estimates), while row (3) shows the friction adjustment assuming that
all mass in the hole is due to friction. The bottom panel of the table shows the estimated EIS when not adjusting for
optimization friction (in row (4)), and when adjusting for friction using each of the three measures provided in the top
panel (in rows (5)—(7)). As explained in the main text of the article, the EIS estimates provided in rows (4) or (5) are in
general lower bounds, whereas the EIS estimate provided in row (7) is an upper bound. The upper bound is based on the
extreme assumption that all density mass in the hole—not just the mass in the much narrower dominated region—can be
explained by friction rather than by heterogeneity in true p es (i.e. true p es are assumed to be homogeneous
in the population).

Source: Best-Cloyne-lizetzki-Kleven (2019)
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