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ESTIMATING THE IES

1. Traditional estimation strategies for IES in macro
(e.g., Hall, 1988; Campbell and Mankiw, 1989)

Very structural approach (although it doesn’t look it)

Example of a common type of reasoning in empirical macro

2. Critique of traditional strategy

Identification challenges are broader and more challenging

than sometimes acknowledged

3. Example of different sort of structural approach

(Best-Cloyne-Ilzetzki-Kleven 2019)
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ESTIMATING THE IES

Consumption Euler equation with power utility and log-normality:

Et∆ logCt+1 = ψEt ri,t+1 + ψ log β +
1
2
[ψσ2

i + ψ−1σ2
c − 2σic ]

Can be rewritten as:

∆ logCt+1 = µi + ψri,t+1 + ϵi,t+1

where

ϵi,t+1 = ψ(Et ri,t+1 − ri,t+1)− (Et∆ logCt+1 −∆ logCt+1)
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ESTIMATING THE IES

∆ logCt+1 = µi + ψri,t+1 + ϵi,t+1

where

ϵi,t+1 = ψ(Et ri,t+1 − ri,t+1)− (Et∆ logCt+1 −∆ logCt+1)

Can we estimate this using OLS?

Suppose there is a “good shock” that leads to a high realization of ri,t+1

This shock will be correlated with the error term

(consumption (and return) will rise relative to expectation)
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AN IV APPROACH

∆ logCt+1 = µi + ψri,t+1 + ϵi,t+1

where

ϵi,t+1 = ψ(Et ri,t+1 − ri,t+1)− (Et∆ logCt+1 −∆ logCt+1)

Can we think of instruments that will work in this case?

(Hint: Error term is an expectation error)

Any variable know at time t works as an instrument

Since ϵi,t+1 is an expectation error, it is orthogonal to all variables

known at time t or earlier

So, we can use lags of anything as instruments

(Wow, lots of possible instruments)
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ASIDE: OLS WITH RISK-FREE RATE

If ri,t+1 is the risk-free rate (rf ,t ) it is known at time t

Then we have:

∆ logCt+1 = µi + ψrf ,t + ϵi,t+1

where

ϵi,t+1 = ∆ logCt+1 − Et∆ logCt+1

In this case, OLS would work!

In practice, the real return on even Tbills is uncertain due to inflation

Could estimate by OLS using TIPS (Treasury Inflation Protected Securities)

although sample would be short (TIPS started trading in 1997)
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ESTIMATING IES

Campbell and Mankiw (1989) estimate:

∆ logCt+1 = µi + ψri,t+1 + ϵi,t+1

using lags of real rates, consumption growth, and nominal rates

as instruments (see also Hall (1988))

Complication: Ct is a time average over a quarter

Even if Ct were a random walk, time averaging would imply serial

correlation of changes (Working, 1960)

Campbell and Mankiw (1989) lag instruments by 2 periods to avoid this
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 Consumption, Income, and Interest Rates * 199

 Table 3 UNITED STATES, 1953-1986

 Act = /I + Ear

 First-stage regressions
 a estimate Test of

 Row Instruments Ac equation r equation (s.e.) restrictions

 1 None (OLS) - - 0.276
 (0.079)

 2 rt-2 . . . Irt-4 0.063 0.431 0.270 0.031
 (0.009) (0.000) (0.118) (0.029)

 3 rt-2 .. . rt-6 0.067 0.426 0.281 0.034
 (0.014) (0.000) (0.118) (0.050)

 4 Act-2 . .. ,/Ct4 0.024 -0.021 -0.707 0.000
 (0.101) (0.966) (2.586) (0.215)

 5 Act_2 . .. ,Act-6 0.018 0.007 0.992 0.008
 (0.007) (0.316) (0.478) (0.189)

 6 Ait-21 .... Ait-4 0.061 0.024 1.263 -0.021 (0.010) (0.105) (0.545) (0.918)

 7 Ait-2, .... Ait-6 0.102 0.028 1.213 -0.022 (0.002) (0.119) (0.445) (0.700)

 8 rt-2, . . rt-4, 0.062 0.455 0.204 0.047

 dCt-2_ . . .,Act+4, (0.026) (0.000) (0.114) (0.033) 9 rt-2, ... ,rt-4, 0.103 0.476 0.150 0.100

 ACt-_2 ..., ACt-4, (0.006) (0.000) (0.111) (0.005)
 dit-2 .... Ait-4

 Note: See Table 1.

 ing the Hall IV regression. Table 4 shows the IV regression of the real
 interest rate on the change in consumption. We do not find that the
 estimates of 1/or are extremely large, as would be predicted by the Hall
 hypothesis; instead, they cluster around one.20

 Figure 3 shows graphically why the results are so sensitive to normal-
 ization. We regressed Ac and r on the instruments in row 9 of Table 3 and
 then plotted the fitted values as estimates of the expected change in
 consumption and the real interest rate. The figure shows that there is
 substantial variation in these two variables over time. Yet contrary to the
 predictions of the theory, the fitted values do not lie along a line. The
 two lines in this figure correspond to the two regressions estimated with
 the two normalizations. Because the fitted values are not highly corre-
 lated, the estimated regression is crucially dependent on which variable

 20. This cannot be explained by small-sample problems of the Nelson and Startz (1988)
 variety, since consumption growth is fairly well predicted by the instruments in Table
 3.
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 192 - CAMPBELL & MANKIW

 We obtain stronger results in row 4 and 5 of the table, where we use
 lagged consumption growth rates as instruments. It is striking that
 lagged consumption forecasts income growth more strongly than lagged
 income itself does, and this enables us to estimate the parameter A more
 precisely. This finding suggests that at least some consumers have better
 information on future income growth than is summarized in its past
 history and that they respond to this information by increasing their
 consumption. At the same time, however, the fraction of rule-of-thumb
 consumers is estimated at 0.523 in row 5 (and the estimate is significant
 at better than the 0.01% level). The OLS test also rejects the permanent
 income model in row 5.

 Table 1 UNITED STATES 1953-1986

 Acy = A + AAyt

 First-stage regressions estimate Test of
 Row Instruments Ac equation Ay equation (s.e.) restrictions

 1 None (OLS) - - 0.316
 (0.040)

 2 Ayt_2 .... Ayt-4 -0.005 0.009 0.417 -0.022 (0.500) (0.239) (0.235) (0.944)

 3 Ayt-2, ... fAyt-6 0.017 0.026 0.506 -0.034
 (0.209) (0.137) (0.176) (0.961)

 4 Act2, . .. ,Act-4 0.024 0.045 0.419 -0.009
 (0.101) (0.028) (0.161) (0.409)

 5 Act_-2, ... /At-6 0.081 0.079 0.523 -0.016
 (0.007) (0.007) (0.131) (0.572)

 6 Ait-2 .... Ait-4 0.061 0.028 0.698 -0.016 (0.010) (0.082) (0.235) (0.660)

 7 Ait-2 ... Ai-6 0.102 0.082 0.584 -0.025
 (0.002) (0.006) (0.137) (0.781)

 8 Ayt-2 ... ,Ayt-4, 0.007 0.068 0.351 -0.033 ACt-2, . .. f ACt-4, (0.341) (0.024) (0.119) (0.840)
 ct-2-Yt-2

 9 Ayt_2 .... IAyt-4 0.078 0.093 0.469 -0.029
 Act-2_ . . . Act-_4, (0.026) (0.013) (0.106) (0.705)
 Ait-2 .... Ait-4, Ct-2-Yt-2

 Note: The columns labeled "First-stage regressions" report the adjusted R2 for the OLS regressions of the
 two variables on the instruments; in parentheses is the p-value for the null that all the coefficients
 except the constant are zero. The column labeled "A estimate" reports the IV estimate of A and, in
 parentheses, its standard error. The column labeled "Test of restrictions" reports the adjusted R2 of the
 OLS regression of the residual on the instruments; in parenthesis is the p-value for the null that all the
 coefficients are zero.
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ESTIMATING THE IES

Hall (1988) ran similar specifications. He favored estimates close to

zero and interpreted them as estimates of the IES.

Campbell and Mankiw (1989) worry about misspecification
due to hand-to-mouth consumers

1. Consumption growth predictable. Should not be true if ψ = 0

2. Over-identifying restrictions rejected

3. Estimates very unstable

4. Reverse regression not consistent with ψ = 0
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REVERSE REGRESSION

Just as the consumption Euler equation implies that

∆ logCt+1 = µi + ψri,t+1 + ϵi,t+1

it also implies that

ri,t+1 = αi +
1
ψ
∆ logCt+1 + ηi,t+1

If ψ = 0, this “reverse regression” should yield a large estimate for 1/ψ

Under the maintained assumptions above, this “reverse regression”

can be estimated using IV with the same set of instruments

This is the specification used by Hansen and Singleton (1983)
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 200 . CAMPBELL & MANKIW

 is on the left-hand side. Hence, this scatterplot does not imply that the
 elasticity of substitution is small. Instead, it suggests that the model
 underlying the Euler equation (2.1) should be rejected.

 2.2. INCLUDING RULE-OF-THUMB CONSUMERS

 We now reintroduce our rule-of-thumb consumers into the model. That

 is, we consider a more general model in which a fraction A of income
 goes to individuals who consume their current income and the remain-
 der goes to individuals who satisfy the general Euler equation (2.1). We
 estimate by instrumental variables

 Act = 1p + AAyt + Or, + Et, (2.2)

 where 0 = (1 - A)o-. We thus include actual income growth and the ex
 post real interest rate in the equation, but instrument using twice lagged
 variables. The results are in Table 5.

 Table 4 UNITED STATES, 1953-1986

 rt = p + 1/0" Act

 First-stage regressions i/o- estimate Test of

 Row Instruments Ac equation r equation (s.e.) restrictions

 1 None (OLS) - - 0.304 -
 (0.087)

 2 rt-2 .. . ,rt-4 0.063 0.431 1.581 0.086
 (0.009) (0.000) (0.486) (0.001)

 3 rt-2 . , . 'rt-6 0.067 0.426 1.347 0.113
 (0.014) (0.000) (0.390) (0.001)

 4 Act-2 .... ,Act-4 0.024 -0.021 -0.342 -0.021 (0.101) (0.966) (0.428) (0.878)

 5 Act-2, . . . ,Act-6 0.018 0.007 0.419 -0.010
 (0.007) (0.316) (0.258) (0.440)

 6 Ait-2 . . . Ait-4 0.061 0.024 0.768 -0.021
 (0.010) (0.105) (0.334) (0.919)

 7 Ait-2 . . . Ait-6 0.102 0.028 0.638 -0.024
 (0.002) (0.119) (0.249) (0.747)

 8 rt-2 . . Irt-4, 0.062 0.455 1.034 0.236
 Act-2 ... dAct-4 (0.026) (0.000) (0.333) (0.000)

 9 rt-2 . .. ,rt-4, 0.103 0.476 0.521 0.455
 ACt-_2 .., ACt_4, (0.006) (0.000) (0.220) (0.000)
 Ait-2 .... 'Ait-4

 Note: See Table 1.
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IS IES BIG OR SMALL??

What is going on!!

It can’t both be true that:

ψ is close to zero

1/ψ is relatively small

Yogo (2004): Puzzle due to weak instruments

Consumption growth notoriously hard to predict!!

Employs first-stage F-stat for weak instruments

developed by Stock and Yogo (2003)

Concludes that reverse regression is unreliable due to weak instruments,

but regression with real Tbill rate as regressor is reliable
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somewhat relevant in predicting the interest rate. The LIML
t-test should lead to approximately correct inference, be-
cause the test for weak instruments rejects at the 10% level.

C. Estimates of the EIS Using the Interest Rate

In the first three columns of table 2, I report the point
estimate and standard error of 1/� with the interest rate as
the dependent variable in equation (3). I report results using

TSLS, Fuller-k, and LIML. The first fact to note is that the
three estimators give very different results. Under conven-
tional first-order asymptotics, the three estimators have the
same asymptotic distribution. Therefore, the fact that the
three estimators give very different results is indirect evi-
dence for weak instruments. In general, the magnitude of
both the coefficient and the standard error increases from
TSLS to Fuller-k and from Fuller-k to LIML. The 95%
confidence intervals for 1/� based on these estimators in-

TABLE 1.—TEST FOR WEAK INSTRUMENTS

Country Sample Period Variable F

p-Value

TSLS Bias TSLS Size Fuller-k LIML

USA 1947.3–1998.4 �c 2.93 0.93 1.00 0.53 0.37
rf 15.53 0.00 0.66 0.00 0.00
re 2.88 0.93 1.00 0.54 0.39

AUL 1970.3–1998.4 �c 1.79 0.99 1.00 0.81 0.69
rf 21.81 0.00 0.14 0.00 0.00
re 1.82 0.99 1.00 0.80 0.68

CAN 1970.3–1999.1 �c 3.03 0.92 1.00 0.50 0.35
rf 15.37 0.00 0.67 0.00 0.00
re 2.51 0.96 1.00 0.64 0.48

FR 1970.3–1998.3 �c 0.17 1.00 1.00 1.00 1.00
rf 38.43 0.00 0.00 0.00 0.00
re 3.09 0.91 1.00 0.49 0.34

GER 1979.1–1998.3 �c 0.83 1.00 1.00 0.97 0.93
rf 17.66 0.00 0.45 0.00 0.00
re 0.69 1.00 1.00 0.98 0.95

ITA 1971.4–1998.1 �c 0.73 1.00 1.00 0.98 0.95
rf 19.01 0.00 0.33 0.00 0.00
re 1.10 1.00 1.00 0.94 0.88

JAP 1970.3–1998.4 �c 1.18 1.00 1.00 0.93 0.86
rf 8.64 0.14 0.99 0.01 0.00
re 3.49 0.87 1.00 0.40 0.25

NTH 1977.3–1998.4 �c 0.89 1.00 1.00 0.96 0.92
rf 12.05 0.01 0.91 0.00 0.00
re 0.73 1.00 1.00 0.98 0.95

SWD 1970.3–1999.2 �c 0.48 1.00 1.00 0.99 0.98
rf 17.08 0.00 0.51 0.00 0.00
re 2.24 0.97 1.00 0.70 0.56

SWT 1976.2–1998.4 �c 0.97 1.00 1.00 0.95 0.90
rf 8.55 0.14 0.99 0.01 0.00
re 0.11 1.00 1.00 1.00 1.00

UK 1970.3–1999.1 �c 2.52 0.96 1.00 0.63 0.48
rf 17.04 0.00 0.51 0.00 0.00
re 2.62 0.95 1.00 0.61 0.45

USA 1970.3–1998.4 �c 3.53 0.86 1.00 0.39 0.25
rf 11.92 0.02 0.92 0.00 0.00
re 2.16 0.97 1.00 0.72 0.58

SWD 1921–1994 �c 1.02 1.00 1.00 0.95 0.89
rf 5.50 0.55 1.00 0.10 0.05
re 1.67 0.99 1.00 0.84 0.72

UK 1921–1994 �c 1.93 0.98 1.00 0.78 0.65
rf 4.87 0.66 1.00 0.16 0.08
re 4.18 0.77 1.00 0.26 0.15

USA 1891–1995 �c 1.55 0.99 1.00 0.86 0.76
rf 2.87 0.93 1.00 0.54 0.39
re 1.00 1.00 1.00 0.95 0.90

The table reports the first-stage F-statistic from a regression of the endogenous variable onto the instruments. The endogenous variables are consumption growth (�c), real interest rate (rf), and real stock return
(re). The instruments are twice lagged nominal interest rate, inflation, consumption growth, and log dividend-price ratio. The table also reports the p-value of the test for weak instruments. The null hypotheses are:
(1) the TSLS relative bias is greater than 10%, (2) the size of the 5% TSLS t-test can be greater than 10%, (3) the Fuller-k relative bias is greater than 10%, and (4) the size of 5% LIML t-test can be greater than 10%.
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clude rather large values of the EIS. In particular, one
cannot reject the null hypothesis � � 1, except for Canada
and Switzerland.

In the last three columns of table 2, I report estimates of
the EIS using equation (1) with the interest rate as the
endogenous regressor. In contrast to inference based on
equation (3), which requires that the instruments predict
consumption growth, weak instruments are not a problem,
because the interest rate is sufficiently predictable, as doc-
umented in table 1. Consequently, the three estimators give
very similar coefficients and standard errors. The point
estimates of � are small, although sometimes negative. The
95% confidence intervals based on these estimators reject
large values of the EIS, in particular 1.

To summarize the results in table 2, one would conclude
that the EIS is small and significantly less than 1 whereas its
inverse is not significantly different from 1. The hypothesis
� � 1 is of economic interest because with Epstein-Zin
preferences, an investor’s optimal consumption choice is a
constant fraction of wealth when the EIS is equal to 1.

Moreover, in the special case of power utility where the EIS
is equal to the reciprocal of the risk aversion, � � 1/� � 1
leads to myopic portfolio choice (see Campbell and Viceira,
2002, chapter 2). This apparent empirical puzzle, empha-
sized by Neely et al. (2001), can be accounted for by weak
instruments. The regression equation (3) leads to biased
estimates and confidence intervals with poor coverage be-
cause the instruments cannot predict consumption growth
adequately to identify 1/�. On the other hand, estimation by
equation (1) leads to valid inference, because the instru-
ments are not weak for the interest rate.

The sensitivity of inference to the particular normaliza-
tion of the moment restriction is an unattractive property of
k-class estimators.5 In contrast, confidence intervals based
on the similar tests (AR, LM, and conditional LR) are
invariant to this normalization. Moreover, because these
methods are fully robust to weak instruments, there is no

5 The point estimate of LIML is invariant to normalization, but its
confidence interval is not.

TABLE 2.—ESTIMATES OF THE EIS USING THE INTEREST RATE

Country Sample Period

1/� �

TSLS Fuller-k LIML TSLS Fuller-k LIML

USA 1947.3–1998.4 0.68 3.30 34.11 0.06 0.03 0.03
(0.48) (3.20) (112.50) (0.09) (0.10) (0.10)

AUL 1970.3–1998.4 0.50 2.37 30.03 0.05 0.04 0.03
(0.48) (2.45) (107.71) (0.11) (0.12) (0.12)

CAN 1970.3–1999.1 
1.04 
2.40 
2.98 
0.30 
0.33 
0.34
(0.39) (1.13) (1.54) (0.16) (0.17) (0.17)

FR 1970.3–1998.3 
3.12 
1.83 
12.38 
0.08 
0.08 
0.08
(3.75) (1.72) (29.61) (0.19) (0.19) (0.19)

GER 1979.1–1998.3 
1.05 
1.38 
2.29 
0.42 
0.43 
0.44
(0.62) (0.90) (1.87) (0.35) (0.35) (0.36)

ITA 1971.4–1998.1 
3.34 
5.82 
14.81 
0.07 
0.07 
0.07
(1.98) (4.47) (18.55) (0.08) (0.08) (0.08)

JAP 1970.3–1998.4 
0.18 
0.86 
21.56 
0.04 
0.04 
0.05
(0.43) (1.23) (106.53) (0.21) (0.23) (0.23)

NTH 1977.3–1998.4 
0.53 
1.41 
6.94 
0.15 
0.15 
0.14
(0.41) (1.33) (13.96) (0.28) (0.29) (0.29)

SWD 1970.3–1999.2 
0.10 
0.21 
399.86 0.00 0.00 0.00
(1.10) (1.54) (16075.06) (0.10) (0.10) (0.10)

SWT 1976.2–1998.4 
1.56 
1.51 
2.00 
0.49 
0.49 
0.50
(0.83) (0.79) (1.18) (0.29) (0.29) (0.29)

UK 1970.3–1999.1 1.06 3.76 6.21 0.17 0.16 0.16
(0.45) (2.42) (5.17) (0.13) (0.13) (0.13)

USA 1970.3–1998.4 0.53 2.19 47.66 0.06 0.02 0.02
(0.50) (2.60) (249.47) (0.09) (0.11) (0.11)

SWD 1921–1994 1.17 3.30 17.77 0.06 0.06 0.06
(1.13) (3.34) (38.67) (0.11) (0.12) (0.12)

UK 1921–1994 2.40 2.99 3.52 0.26 0.27 0.28
(1.01) (1.33) (1.65) (0.12) (0.13) (0.13)

USA 1891–1995 
0.38 
1.17 
39.71 
0.03 
0.03 
0.03
(1.12) (2.90) (257.54) (0.11) (0.15) (0.16)

The reciprocal of the EIS is estimated from rf,t�1 � �f � (1/�)�ct�1 � 	f,t�1, and the EIS is estimated from �ct�1 � �f � �rf,t�1 � �f,t�1. The instruments are the twice lagged nominal interest rate, inflation,
consumption growth, and log dividend-price ratio. Standard errors in parentheses.
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Source: Yogo (2004)

Nakamura-Steinsson (UC Berkeley) Estimation of IES 14 / 47



ESTIMATING THE IES

Weak instruments is not the only empirical challenge!

Above approach relies heavily on

∆ logCt+1 = µi + ψri,t+1 + ϵi,t+1 (1)

being a structural equation

In particular, heavy reliance on ϵi,t+1 being only an expectation error

But what if equation (1) is misspecified?

Nakamura-Steinsson (UC Berkeley) Estimation of IES 15 / 47



SLOW MOVING PREFERENCE SHOCKS

Suppose U ′(Ct , ηt) and ηt is persistent

ηt can be:

Preference shocks (e.g., sentiment, preference for borrowing)

Labor supply (i.e., non-separable utility)

If ηt is persistent, then ηt−j will affect both

Lagged variables being used as instruments

Current ηt

This will lead IV with lagged variables to be biased

Nakamura-Steinsson (UC Berkeley) Estimation of IES 16 / 47



PREFERENCES SHOCKS AND OLS

Suppose we are estimating

∆ logCt+1 = µi + ψri,t+1 + ϵi,t+1

by OLS in the presence of preference shocks

Increased desire to save drives down interest rates,

and raises consumption growth

Implies current interest rates negatively correlated with ϵi,t+1

Downward bias in OLS estimate of ψ

Nakamura-Steinsson (UC Berkeley) Estimation of IES 17 / 47



PREFERENCE SHOCKS AND LAGGED INSTRUMENTS

Suppose we are estimating

∆ logCt+1 = µi + ψri,t+1 + ϵi,t+1

by IV with lagged instruments and persistent preference shocks

Increase in desired savings in period t − j will affect instruments

at time t − j and also increase desire to save in period t

Part of correlation between instruments and ri,t+1 due to

lagged preference shock

Lagged preference shock lowers ri,t+1 and raises ∆ logCt+1 due to

affect on current preference shock

Same downward bias as OLS
Nakamura-Steinsson (UC Berkeley) Estimation of IES 18 / 47



OTHER SOURCES OF MISSPECIFICATION

1. Hand-to-mouth consumers (more generally: liquidity constraints)

(see Werning (2015))

2. Time-varying volatility:

Et∆ logCt+1 = ψEt ri,t+1 + ψ log β +
1
2
[ψσ2

i + ψ−1σ2
c − 2σic ]

We have been assuming that all the σ terms are constant

What if they are not?

Bansal and Yaron (2004): ψ will be downward biased

Persistent increase in σc lowers Et ri,t+1 and is part of error term

(see also Carrol, 1997; Blundell et al., 1994; Guvenen, 2000)

3. Consumption commitments (housing, cars) lead to more complicated

consumption Euler equation (Chetty and Szeidl, 2016)

Nakamura-Steinsson (UC Berkeley) Estimation of IES 19 / 47



COMMON IN MACRO

This lagged instrument strategy has been common in macro

E.g., Phillips curve estimation

Stems from taking simple structural model extremely literally

Applied micro approach very different:

Error term contains all sorts of things

We don’t know the true model

Want conclusions to be robust to many structural stories

Lagged instrument strategy becoming less common in macro

Nakamura-Steinsson (UC Berkeley) Estimation of IES 20 / 47



GRUBER (2013)

Most work estimates IES using time-series variation,

but hard to find exogenous variation in the time series

Gruber (2013) exploits variation in rates of return in the cross-section

to identify the IES

After-tax rates of return are influenced by capital tax rates

Exploits exogenous variation in capital tax rates

Nakamura-Steinsson (UC Berkeley) Estimation of IES 21 / 47



GRUBER (2013)

Most variation in tax rates potentially endogenous

(e.g., due to variation in income)

Constructs “simulated” tax rates based on predicted income from

exogenous characteristics (e.g., education, age, and sex)

Controls flexibly for these characteristics

Identification comes only from changes in the tax system

over the sample period

Nakamura-Steinsson (UC Berkeley) Estimation of IES 22 / 47



ESTIMATING THE IES

Specification:

GCi,t+1 = α+ βATRATEit + Xitδ +∆Zit,t+1η + ϵ

GC: Non-durable consumption growth for household i (from CEX)

ATRATE: Income specific after tax rate of return for household i

(SCF portfolio shares and NBER TAXSIM tax rates)

X: vector of baseline demographic characteristics

∆Z : vector of demographic changes

Includes time and state fixed effects

IV: Instrument for ATRATE using tax rate based on

predicted income for a given demographic group

Nakamura-Steinsson (UC Berkeley) Estimation of IES 23 / 47



consumption growth by lowering the degree of consumption uncertainty. As a

result, there will be an upward bias tomy estimate of the EIS: it will incorporate

both the e®ect of taxes on the rate of return and the e®ect of taxes on the

variance of consumption growth. With only one instrument, the tax rate, I

cannot identify both e®ects. I suggest an approach to addressing this issue

below.

Table 1 presents the means of the data. The mean level of non-durable

consumption in the data is $25,268, and consumption growth over a nine-

month period averages 1.1%.

4. Results

4.1. Basic results

Table 2 presents the results of estimating Eq. (1). The regression includes

all the control variables described above, but I show here only the coe±cient

of interest, that on the interest rate.

The ¯rst column, ¯rst row, shows the result of OLS estimation on the after-

tax T-bill rate. This model follows previous work in excluding year dummies

Table 1. Means of the CEX data.

Variable Mean Standard Deviation

Non-Durable Consumption 25,268 15,306
Consumption Growth 0.011 0.394
After-Tax Interest Rate (nine months) 0.039 0.049
Capital Income Marginal Tax Rate 0.236 0.094

Notes: Means and standard deviations of variables described in text.

Table 2. Base case estimates.

After-Tax T-Bill Rate After-Tax Rate of Return

OLS, no year dummies �0.551 0.105
(0.116) (0.032)

Lag IV, no year dummies 2.616 0.328
(0.490) (0.130)

Tax IV 2.032 2.239
(0.796) (0.894)

Number Obs. 66,314 66,208

Notes: Estimates from models such as Eq. (1) in text. Each cell represents the
estimated EIS from a separate model: ¯rst column uses after-tax T-bill rate, while
second column uses weighted average after-tax rate of return. Standard errors in
parentheses.

A Tax-Based Estimate of the Elasticity of Intertemporal Substitution
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IDENTIFICATION OF IES

No consensus in the literature!!

Macro people often use IES < 1, influenced by Hall (1988)

Asset pricing people often use IES > 1 because values < 1 yield
counter-intuitive responses of asset prices to shocks

With IES < 1, bad news about future growth increases stock prices

because of strong desire to save

Nakamura-Steinsson (UC Berkeley) Estimation of IES 25 / 47



REDUCED FORM VS. STRUCTURAL INFERENCE

Simplest form of inference:

Run regression in which one of the coefficients may be interpreted as

direct causal evidence of parameter in question (e.g., IES)

Often what we can measure is not directly what we are

interested in estimating

What we can measure, however, often yield powerful inference about

what we are interested in if viewed through the lens of a structural

model (provide tell-tale signs about parameter of interest)

(See Nakamura-Steinsson (2018) for more discussion of this idea.)

Nakamura-Steinsson (UC Berkeley) Estimation of IES 26 / 47



BEST-CLOYNE-ILZETZKI-KLEVEN (2019)

Use “mortgage notches” in the UK to shed light on IES

Statistics they calculate do not provide direct estimates of IES

But viewed through sensible structural models, they (arguably)

provide powerful inference about IES

How to make convincing inference through the lens of a structural
model is a complicated art

Which model to use?

How robust are the conclusions?

Best et al. paper is a good example of this

Nakamura-Steinsson (UC Berkeley) Estimation of IES 27 / 47



UK MORTGAGE MARKET

UK mortgages have low fixed rates for 2, 3, or 5 years

then much higher flexible rates

High penalty for refinancing early

Most people refinance at the time of interest rate reset

Authors focus on refinancers so as to abstract from the effect of

mortgage size on home size
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A Supplementary Figures and Tables

FIGURE A.1: REFINANCING HAPPENS WHEN THE RESET RATE KICKS IN

0

2.5

5

7.5

10

12.5

15

17.5

20

N
um

be
r o

f M
or

tg
ag

es
 (T

ho
us

an
ds

)

0 1 2 3 4 5 6 7 8 9 10
Time Between Mortgages (Years)

Remortgage When Should Remortgage After Should
Remortgage Before Should

Notes: The figure shows the distribution of the time to refinance, excluding individuals where the date on which the
reset rate kicks in is unobserved. The figure shows individuals individuals who refinance more than 6 months after their
reset rate kicks in in black, individuals who refinance more than 2 months before their reset rate kicks in in white, and
the remainder who refinance around their reset date in gray.
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Source: Best-Cloyne-Ilzetzki-Kleven (2019)
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UK MORTGAGE MARKET

Interest rate jumps by discrete amounts (features notches) at certain

loan-to-value (LTV) thresholds

Very salient: daily menu in newspapers, on bank websites, etc.

Estimate rate function:

ri = f (LTVi )+β1banki +β2variabilityi ⊗durationi ⊗monthi +β3repaymenti +β4termi +νi

No individual characteristics because UK mortgage market is like a

supermarket (no individual negotiation)

But adding age, income and family status has no effect on results
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Figure 3

Interest rate jumps at notches

Notes: This figure shows the conditional interest rate as a function of the LTV ratio from the non-parametric regression (2.1). In each LTV
bin, we plot the coefficient on the LTV bin dummy plus a constant given by the mean predicted value E

[
r̂i
]

from all the other covariates
(i.e. omitting the contribution of the LTV bin dummies). The figure shows that the mortgage interest rate evolves as a step function with
sharp notches at LTV ratios of 60%, 70%, 75%, 80%, and 85%.

implies that, conditional on product and bank characteristics, the mortgage interest rate is almost
fully determined by the LTV notches we exploit.

The flatness of the interest schedule between notches suggests that individual characteristics
(that vary by LTV) have no effect on the mortgage interest rate. Supplementary Appendix
Figure A.2 verifies this by controlling for the individual characteristics we observe (such as
age, income, and family status) in the estimation of the interest schedule. The figure shows that
the results are virtually unchanged. If observables such as age and income do not matter for
the interest notches, it is difficult to imagine any unobservables that would matter. These results
confirm the institutional context described earlier, namely that the U.K. mortgage market works as
a mortgage supermarket in which a given type of product is offered at a given price, independently
of who buys it.12

When estimating the interest jumps from the coefficients on the LTV bin dummies in equation
(2.1), we are holding all non-LTV mortgage characteristics constant on each side of the LTV
threshold. For example, if a household is observed in a 5-year fixed rate mortgage (in a particular
bank and month) just below the notch, we are asking how much higher the interest rate would
have been for that same product just above the notch. In practice, if the household did move
above the notch, it might decide to re-optimize in some of the non-LTV dimensions—say move
from a 5-year fixed to a 2-year fixed rate—and this would give a different interest rate change.
However, not only are such interest rate changes endogenous, they are conceptually misleading
due to the fact that the non-interest characteristics of the mortgage have value to the borrower and
are priced into the offered interest rate. Our approach of conditioning on non-LTV characteristics
when estimating the interest rate schedule is based on a no-arbitrage assumption: within a given

12. Moreover, the global interest estimations shown in Figure 3 and Supplementary Appendix Figure A.2 understate
flatness between notches compared to the more precise local estimations used later. The locally estimated interest schedules
are essentially completely flat. This implies that “donut hole” approaches in which we exclude observations in a range
around the threshold when estimating the interest rate jump give virtually unchanged results.
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Figure 1

Observed LTV distribution among U.K. refinancers

Notes: This figure shows the observed distribution of LTV ratios among refinancers in the U.K. between 2008–14. There are interest rate
notches at LTV ratios of 60%, 70%, 75%, 80%, 85%, and 90% (depicted by vertical lines).

cited estimates in the literature range between 0 and 2, which is an enormous range in terms of
its implications for intertemporal behaviour and policy.

A fundamental difficulty in addressing this question is how to find exogenous variation in
interest rates. Most studies rely on time series movements in interest rates, which are gradual
and almost certainly endogenous to unobserved factors that affect consumption. Our starting
point is a novel source of quasi-experimental variation in interest rates arising from the fact that
U.K. banks offer notched mortgage interest schedules. That is, the mortgage interest rate features
discrete jumps at critical thresholds for the loan-to-value (LTV) ratio. For example, the interest
rate increases by almost 0.5pp on the entire loan when crossing the 80% LTV threshold. This
creates very strong incentives to reduce borrowing to a level below the notch, thereby giving
up consumption today in order to get a lower interest rate and more consumption in the future.
Intuitively, the magnitude of such borrowing and consumption responses to interest rate notches
is governed by the value of the EIS.

Our study is based on administrative mortgage data from the Financial Conduct Authority
(FCA). The data cover the universe of household mortgages in the U.K. between 2008 and 2014,
including rich information on mortgage contracts and borrower characteristics. The majority
of U.K. mortgage products carry a relatively low interest rate for a period of 2–5 years after
which a much higher reset rate kicks in, creating strong incentives to refinance at the time the
reset rate starts to apply. This makes refinancing a common occurrence in the U.K. We focus
on the population of refinancers, because they allow for a clean assessment of borrowing and
intertemporal consumption choices. Specifically, because housing choices are pre-determined
for refinancers, estimating LTV responses in this sample allows us to isolate borrowing choices
from housing choices.

Figure 1 plots the LTV distribution for U.K. home refinancers around the different interest rate
notches, depicted by vertical lines. There is large and sharp bunching below every notch along
with missing mass above every notch, which provides direct evidence that borrowers respond to
interest rates. A recent literature in public economics has developed approaches to translate such
bunching moments into reduced-form price elasticities, mostly focusing on behavioural responses
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BUNCHING AND THE IES

Large amount of bunching below interest rate notches

Intuitively, this is informative about IES:

Households must cut consumption to get below notch

How willing are households to cut consumption now to raise

life-time consumption?
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BUNCHING AND THE IES

Two Challenges:

1. Need to translate bunching into IES estimate

What is counterfactual?

Is observed bunching a lot or a little?

2. Many other features of reality affect bunching

Patience

Demand for buffer stock savings (i.e., income risk and risk aversion)

Frictions to household optimization (inattention, inertia, myopia)
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BUNCHING AND THE IES

Authors write down a structural model

Ask: For what parameter values model can match bunching

in the data?

Bunching highly sensitive to the IES

Relatively insensitive to reasonable variation in other parameters
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GOOD EXAMPLE OF STRUCTURAL ESTIMATION

This is a good example of the use of structural estimation

The moments being used are shown to be highly informative about

something specific in the model and are used to estimate that thing

Often structural estimation is a big black box with lots of moments

estimating lots of parameters without a clear sense of what identifies

what
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A Passive LTV Distribution

Counterfactual LTV DistributionB

Figure 4

Constructing the counterfactual LTV distribution.

Notes: This figure shows the two steps in the construction of the counterfactual LTV distribution among refinancers. Each panel shows the
actual LTV distribution with dots (as in Figure 1). Panel A shows the distribution of passive LTVs with crosses, calculated based on the
LTV of the previous mortgage, amortization, and the house value at the time of refinancing. Panel B shows the distribution of counterfactual
LTVs with crosses, which adjusts passive LTVs for the average equity extraction of non-bunchers in the actual distribution.

Our estimate of the counterfactual LTV distribution is shown in Figure 4B. Comparing the
actual and counterfactual LTV distributions provides clear visual evidence of bunching and
missing mass around each notch. Notice that, except for the region below the bottom notch
at 60%, the actual and counterfactual distributions never line up. This is because the actual
distribution below each notch is affected by missing mass due to a notch further down. This
implies that the standard approach to obtaining the counterfactual—fitting a polynomial to the
observed distribution, excluding data right around the notch—would produce biased estimates in
our context.
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Based on “passive behavior”, i.e., what would LTV have been if no refinancing.
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SIMPLE STRUCTURAL MODEL

Two periods (0 and 1)

Households have decided to stay in current home

Face a refinancing decision

Utility:
σ

σ − 1

(
c(σ−1)/σ

0 + δc(σ−1)/σ
1

)
where δ is discount factor and σ is IES

Budget constraints:

c0 = y0 + W0 − (1 − λ)P0H

c1 = y1 − RλP0H + (1 − d)P1H

where λ is LTV on new mortgage, d is depreciation rate of houses,

and R is mortgate interest rate
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SIMULATION OF SIMPLE MODEL

Authors simulate model for different values of IES

Distribution of W0 is calibrated to replicate counterfactual LTV

distribution when R is constant

Other parameters are calibrated to “reasonable” values:

δ = 0.96

d = 0.025
P1

P0
= 1.026

y1 = y0
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Figure 6

Observed versus simulated LTV distributions when varying the EIS.

Notes: The figure shows simulations of a model introduced in Section 3 for a range of EIS values. The lighter lines show the predicted
LTV distribution if households choose leverage optimally according to the model. The black lines show the empirical LTV distribution.
The upper left hand corner has σ =0.06, which is the EIS that minimizes the MSE of the predicted bunching masses. Higher EIS values
predict far greater bunching masses than found in the data, with a large share of households jumping more than one notch in the LTV
distribution to exploit lower interest charges. The distribution largely hollows out between notches, in contrast to the data.

3.3. Identification of the EIS: numerical simulations

As discussed above, it is not immediately apparent how the EIS can be identified from bunching,
because the estimating indifference equation (3.8) contains other parameters: the discount factor,
future house prices, and future income. In this section, we present simulations of the global LTV
distribution under different parameter configurations, which illustrate that only the EIS can be
used to fit the observed distribution. While other parameters play some role, their impacts on
bunching responses are very minor.

Figure 6 compares the observed LTV distribution to simulated LTV distributions under four
different EIS scenarios. The other parameters of the model are assigned reasonable values that do
not vary across the different EIS scenarios.23 The distribution of initial wealth W0 is calibrated
using equation (3.5) in order to replicate the counterfactual LTV distribution shown in Figure 4.
In this counterfactual scenario, we assume that each borrower faces a flat interest rate R given by

23. Specifically, the discount factor is set at an annual rate of δ=0.96 (a common value in the literature), real house
price growth is set at an annual rate of P1/P0 =1.026 (the historical average in the U.K.), the depreciation rate is set at
d =0.025 (taken from the literature), while for simplicity real income is assumed to be constant over time y1 =y0.
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VARYING OTHER PARAMETERS

But could it be that other values of the other parameters could

justify a large IES?

Authors set IES = 1 and then vary other parameters to maximize

fit at notches

Varying other parameters cannot give good fit with IES = 1 even

allowing for very unreasonable values for other parameters
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FIGURE A.6: OBSERVED VS SIMULATED LTV DISTRIBUTIONS WHEN CALIBRATING NON-EIS
PARAMETERS

Panel A: σ = 0.06; Realistic δ, y,P
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Panel B: σ = 1; Calibrated δ, y,P
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Notes: The figure shows two simulations of a model introduced in Section 3. In the upper panel, the EIS is calibrated (to
σ = 0.06) to minimize the MSE of the bunching moments, while other parameters are externally calibrated to realistic
values. In the lower panel, the EIS is set to σ = 1 and remaining parameters are calibrated to minimize the MSE of
the bunching moments. The blue lines show the predicted LTV distribution if households choose leverage optimally
according to the model. The black lines show the empirical LTV distribution. The model can match the LTV distribution
when calibrating the EIS alone, but has difficulty in doing so when σ = 1, even if all other parameters are set for
this purpose. Further, the parameter values arising from this latter calibration are unrealistic, with a discount factor
of δ = 0.24, house price expectations of −12% annually and income growth expectations of −42% annually.
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Source: Best-Cloyne-Ilzetzki-Kleven (2019). Parameter values: δ = 0.24, P1/P0 = 0.88, y1 = 0.58y0
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PRECAUTIONARY SAVINGS

Adjustment to interest rate notches affected by demand for

buffer stock savings

Simple structural model doesn’t capture this (no risk)

But simple structural model provides an upper bound:

Makes extreme assumption of no liquid wealth

All adjustment borne by consumption

Addition of liquid wealth and precautionary savings would add an

adjustment margin

Even lower IES needed to justify small amount of bunching
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FRICTIONS TO HOUSEHOLD OPTIMIZATION

Most important “treat to identification” is frictions to

household optimization (inattention, inertia, myopia)

Estimate fraction of non-optimizers as those in dominated region

(right above notch) relative to counterfactual

Redoes model simulations assuming this fraction of non-optimizers
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A Passive LTV Distribution

Counterfactual LTV DistributionB

Figure 4

Constructing the counterfactual LTV distribution.

Notes: This figure shows the two steps in the construction of the counterfactual LTV distribution among refinancers. Each panel shows the
actual LTV distribution with dots (as in Figure 1). Panel A shows the distribution of passive LTVs with crosses, calculated based on the
LTV of the previous mortgage, amortization, and the house value at the time of refinancing. Panel B shows the distribution of counterfactual
LTVs with crosses, which adjusts passive LTVs for the average equity extraction of non-bunchers in the actual distribution.

Our estimate of the counterfactual LTV distribution is shown in Figure 4B. Comparing the
actual and counterfactual LTV distributions provides clear visual evidence of bunching and
missing mass around each notch. Notice that, except for the region below the bottom notch
at 60%, the actual and counterfactual distributions never line up. This is because the actual
distribution below each notch is affected by missing mass due to a notch further down. This
implies that the standard approach to obtaining the counterfactual—fitting a polynomial to the
observed distribution, excluding data right around the notch—would produce biased estimates in
our context.
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FIGURE A.7: OBSERVED VS SIMULATED LTV DISTRIBUTIONS WITH FRICTION ADJUSTMENT

Panel A: σ = 0.12 Panel B: σ = 0.5
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Panel C: σ = 1 Panel D: σ = 2
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Notes: The figure shows simulations of a model introduced in Section 3 for a range of EIS values. The simulations include
a friction adjustment so that a fraction a∗of non-bunching households are assumed to be “non-optimizers”, who behave
as though they face the counterfactual interest rate schedule (and thus choose the corresponding counterfactual LTV). The
blue lines show the predicted LTV distribution from the model. The black lines show the empirical LTV distribution. The
upper left hand corner has σ = 0.12, which is the EIS that minimizes the MSE of the predicted bunching masses. Higher
EIS values predict far greater bunching masses than found in the data, with a large share of households jumping more
than one notch in the LTV distribution to exploit lower interest charges. The distribution largely hollows out between
notches, in contrast to the data.
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Source: Best-Cloyne-Ilzetzki-Kleven (2019)
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TABLE 3
Bounding optimization frictions and the EIS

Notch

70 75 80 85 Pooled

Panel A: Adjustment factor a

(1) Notched banks only
0.11 0.15 0.15 0.03 0.12

(0.02) (0.02) (0.03) (0.01) (0.01)

(2) Dominated region
0.21 0.30 0.15 0.08 0.22

(0.02) (0.03) (0.02) (0.03) (0.01)

(3) Entire hole
0.67 0.60 0.57 0.40 0.61

(0.05) (0.02) (0.04) (0.09) (0.02)

Panel B: Elasticity of intertemporal substitution σ

(4) Unadjusted
0.02 0.08 0.06 0.11 0.05

(0.00) (0.01) (0.01) (0.04) (0.01)

(5) Dominated region: notched banks only
0.02 0.11 0.08 0.11 0.07

(0.00) (0.01) (0.02) (0.04) (0.01)

(6) Dominated region: all banks
0.03 0.17 0.08 0.13 0.09

(0.00) (0.02) (0.02) (0.05) (0.01)

(7) All mass in the hole is friction
0.16 0.50 0.31 0.30 0.30

(0.05) (0.07) (0.08) (8.53) (0.03)

Notes: The table shows how the estimated EIS is affected by assumptions on optimization frictions. The top panel of
the table shows the friction adjustment factor a estimated in three different cases. Row (1) shows the friction adjustment
based on mass in the dominated region using only notched banks, row (2) shows the friction adjustment based on mass
the dominated region using all banks (our baseline estimates), while row (3) shows the friction adjustment assuming that
all mass in the hole is due to friction. The bottom panel of the table shows the estimated EIS when not adjusting for
optimization friction (in row (4)), and when adjusting for friction using each of the three measures provided in the top
panel (in rows (5)–(7)). As explained in the main text of the article, the EIS estimates provided in rows (4) or (5) are in
general lower bounds, whereas the EIS estimate provided in row (7) is an upper bound. The upper bound is based on the
extreme assumption that all density mass in the hole—not just the mass in the much narrower dominated region—can be
explained by friction rather than by heterogeneity in true preferences (i.e. true preferences are assumed to be homogeneous
in the population).

TABLE 4
Heterogeneity in the EIS

Covariate
Quartile

1 2 3 4

Age
0.05 0.09 0.10 0.15

(0.01) (0.02) (0.02) (0.08)

Household income
0.09 0.08 0.07 0.05

(0.02) (0.01) (0.01) (0.01)

Loan-to-income
0.02 0.05 0.08 0.07

(0.01) (0.01) (0.01) (0.02)

Income growth
0.05 0.06 0.07 0.07

(0.01) (0.02) (0.01) (0.02)

House price growth rate
0.06 0.05 0.04 0.13

(0.02) (0.01) (0.01) (0.03)

Interest rate change (passive)
0.02 0.06 0.11 0.11

(0.01) (0.02) (0.03) (0.03)

Notes: The table shows the heterogeneity in our estimated EIS σ (using the pooled average notch) by age, income, loan
to income (LTI), income growth, house price growth, interest rate change since the previous mortgage (assuming passive
borrower behaviour). For each covariate, we partition the refinancer panel into four quartiles and separately estimate σ in
each quartile. The standard errors, shown in parentheses, are obtained by bootstrapping the estimation routine, stratifying
by notch, 100 times.
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