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“One of the most remarkable facts about G3 exchange rates is that

they are so seemingly immune to systematic empirical explanation.”

– Kenneth Rogoff
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1970’S MONETARY MODEL OF EXCHANGE RATES

Purchasing Power Parity

et = pt − p∗t

Money demand

mt − pt = φyyt − φi it

m∗t − p∗t = φyy∗t − φi i∗t

Combining money demand

pt − p∗t = (mt − m∗t ) − φy (yt − y∗t ) + φi(it − i∗t )

Exchange rate and “fundamentals”:

et = (mt − m∗t ) − φy (yt − y∗t ) + φi(it − i∗t )
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FRENKEL (1976)

Sample: German Mark, February 1920 - November 1923.

Hyperinflation: Ignore a bunch of terms.

et = (mt − m∗t ) − φy (yt − y∗t ) + φi(it − i∗t )

et = mt − φi(it − i∗t )
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218 J. A. Frenkel 

Table 3. Exchange rate and prices. Monthly data: February 1921-August 1923 

Estimated equation: log S = a + b log P + u 

Independent 
variable Constant log P s.e. R2 D.W. e au 

LWPI 0.146 1.006 0.124 0.998 2.01 0.356 0.135 
(0.114) (0.010) 

LWIG -0.219 1.058 0.208 0.996 2.01 0.269 0.216 
(0.177) (0.017) 

LWHG -0.383 1.031 0.215 0.995 2.09 0.471 0.241 
(0.244) (0.022) 

LCOL 0.115 1.076 0.273 0.993 1.97 0.499 0.325 
(0.311) (0.030) 

LWAG 4.415 0.887 0.350 0.988 1.94 0.889 0.767 
(0.788) (0.070) 

LWAG 2.682 1.074 0.360 0.987 1.66 0.471 0.414 
2SLS (0.310) (0.038) 

Note: LWPI = log wholesale price index, LWIG = log imported-goods price index, LWHG = 
log home-goods price index, LCOL =log cost of living index, LWAG =log wage index. 
Standard errors are in parentheses below each coefficient. e is the final value of the auto- 
correlation coefficient. An iterative Cochran-Orcutt transformation was employed to 
account for first order serial correlation in the residuals. s.e. is the standard error of the 
equation and au is the standard error of the regression when the autoregressive component 
of the error is included. To allow for a possible simultaneous equation bias due to the endo- 
geneity of the various prices the above equations were also estimated using a two-stage 
least squares procedure with the percentage change in the money supply and the money- 
bond ratio as instruments. None of the coefficients was significantly affected except for 
the equation using LWAG as the independent variable. The 2SLS estimates are reported 
in the last line of the Table. 

1.6. The Determinants of the Exchange Rate 

The two building blocks analyzed in the previous sections provide the in- 
gredients to the estimation of the determinants of the exchange rate. Given 
the foreign price level the purchasing power parity determines the ratio P/S. 
Given the nominal money stock and the state of expectations, the price level 
is determined so as to clear the money market. These two relationships imply 
the equilibrium exchange rate. We turn now to the estimation of the emprical 
counterpart of eq. (4). Log-linearizing and adding an error term yields 

log S = a' +b[ log M +b2 log n +u (4') 

where as before, = 1 +z*. The estimates are reported in eq. (4") with standard 
errors below the coefficients: 

logS = -5.135 +0.975 log M +0.591 log g (4") 
(0.731) (0.050) (0.073) 

R2 = 0.994; s.e. = 0.241; D.W. = 1.91. 

As is evident these results are fully consistent with the prior expectations. 

Scand. J. of Economics 1976 

Source: Frenkel (1976).
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206 J. A. Frenkel 

(German) influences on the exchange rate dominate those occurring in the 
rest of the world. It is therefore possible to examine the relationship between 

monetary variables and the exchange rate in isolation from other factors, at 
home and abroad, which in a more normal period would have to be considered. 

II.1. Money and the Exchange Rate 

Prior to a more elaborate analysis it may be instructive to examine the as- 
sociation between the German money stock and its relative price in terms of 
foreign exchange (i.e., the exchange rate). This association is shown in Figure 
1 which describes the time series of the monthly logarithms of the German 
money supply and the mark/dollar exchange rate for the period February 
1920-November 1923 (data sources are outlined in the Appendix). As evident 
from Fig. 1 the two time series are closely related. A high supply of German 
marks is associated with its depreciation in terms of foreign exchange. 

This relationship can be examined further by estimating a polynomial dis- 
tributed lag of the effects of the money supply on the exchange rate. The 
estimates reported in Table 1 pertain to (i) the effects of current and lagged 
values of the money supply on the current level of the exchange rate and 
(ii) the effects of current and lagged values of the rates of change of the money 
supply on the current rate of change of the exchange rate. The estimates of 
the distributed lags for the equation of the rates of change reveal that the cur- 
rent rate of change of the exchange rate depends only on the current rate of 

DATE 

2002 - 

2005- 

2008 - 

20 - 

2102 - 
_- ._. LOG MONEY 

2105- - 

2108- - 

2111 - 

2202- - 

2205 - 

2208 - 

2211 - 
Z_ < LOG EXCHANGE RATE 

2302- 

2305 - 

2308- 

2311 - 

Fig. 1. 

Scand. J. of Economics 1976 
Source: Frenkel (1976).
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FRANKEL (1979)

Sample: DEM/USD, July 1974 - February 1978.

et = φ0 + φm(mt − m∗t ) − φy (yt − y∗t )

+φi(it − i∗t ) + φπ(πe
t − πe∗

t ) + εt

Nakamura-Steinsson FX and Spurious Regressions 8 / 50



616 THE AMERICAN ECONOMIC REVIEW SEPTEMBER 1979 

\\ lx \_NXl \^4a~~~f itted 

\>g ~~~~actua l \ 

\\ \E l 
V~~~~~~~~~~~~~~~~~~~~I 

1-1974 1 1975 19761 1977 1 

FIGURE 1. PLOT OF (log OF) MARK/DOLLAR RATE, 
OLS REGRESSION FROM TABLE 1 

the (negative) coefficient on the nominal 
interest differential and the coefficient on the 
expected inflation differential is an estimate 
of the semielasticity of money demand with 
respect to the interest rate; when converted to 
a per annum basis, the estimate is 6.0, which 
provides another favorable cross-check.'7 

The point estimate of a is - 5.4. This 
implies that when a disturbance creates a 
deviation from purchasing power parity, 
(1 - 1/5.4 =) 81.5 percent of the deviation is 
expected to remain after one quarter, and 
(.8154 =) 44.1 percent is expected to remain 
after one year. The estimate of 0 on a per 
annum basis is (-log.441 =) .819. Previous 
work on the speed of adjustment to purchas- 
ing power parity is less definitive than esti- 
mates of money demand elasticities, but the 
present estimates of the expected speed of 
adjustment appear reasonable.'8 

As a final indication of the support Table 1 
provides for the real interest differential 
hypothesis, the R2s are high. Figure 1 shows a 
plot of the equation's predicted values and the 
actual exchange rate values. The equation 
tracks the mark's 1974 appreciation, 1975 
depreciation, and 1976-77 appreciation.'9 

To apply the estimated equation, let us 
convert it to the form: 

e = 1.39 + (m - m*) - .52(y - y*) 
- 1.35(r - r*) + 7.35(ir - *) 

where a and d have been divided by four for 
use with per annum interest rates and the 
coefficient on the relative money supply has 
been set to 1.0. The expression can be decom- 
posed into the equilibrium exchange rate 

e = 1.39 + (m - m*) - .52(y - y*) 

+ 6.00(r - 7r*) 
'7The semielasticity estimate and an average interest 

rate of around 6 percent imply an interest elasticity of 
around (6.0 x .06 =) .36, which is in the range of 
estimates of the long-run elasticity made by Stephen 
Goldfeld and others. 

'8Hans Genberg estimates for Germany that 37 
percent of an initial divergence from purchasing power 
parity disappears after one year. 

'9The equation fails to track the continued sharp 
depreciation of the dollar in January and February of 
1978. The regressions that were reported in earlier 
versions of this paper did not include this period, and 
consequently appeared more favorable to the real interest 
differential model. 

Source: Frankel (1979).
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TABLE I-TEST OF REAL INTEREST DIFFERENTIAL HYPOTHESIS 

(Sample: July 1974-February 1978) 

Number of 
Technique Constant m - ml* y - y r - r - * R2 D. W. Observations 

OLS 1.33 .87 -.72 -1.55 28.65 .80 .76 44 
(.10) (.17) (.22) (1.94) (2.70) 

CORC .80 .31 -.33 -.259 7.72 .91 .98 43 
(.19) (.25) (.20) (1.96) (4.47) 

INST 1.39 .96 -.54 -4.75 27.42 1.00 42 
(.08) (.14) (.18) (1.69) (2.26) 

FAIR 1.39 .97 -.52 -5.40 29.40 .46 41 
(.12) (.21) (.22) (2.04) (3.33) 

Note: Standard errors are shown in parentheses. 
Definitions: Dependent Variable (log of) Mark/Dollar Rate. 

CORC = Iterated Cochrane-Orcutt. 
INST = Instrumental variables for expected inflation differential are Consumer Price Index (CPI) inflation 

differential (average for past year), industrial Wholesale Price Index (WPI) inflation differential (average for past 
year), and long-term commercial bond rate differential. 

FAIR = Instrumental variables are industrial WPI inflation differential and lagged values of the following: exchange 
rate, relative industrial production, short-term interest differential, and expected inflation differential. The method of 
including among the instruments lagged values of all endogenous and included exogenous variables, in order to insure 
consistency while correcting for first-order serial correlation, is attributed to Ray Fair. 

m -m* = log of German M,/U.S. M, 
y - y* = log of German production/U.S. production 
r-r* = Short-term German-U.S. interest differential 

(r - r*), = Short-term German-U.S. interest differential lagged 
7r - 7r* = Expected German-U.S. inflation differential, proxied by long-term government bond differential. 

of the long-term interest differential is that it 
is capable of reflecting instantly the impact of 
new information such as the announcement of 
monetary growth targets. The long-term 
government bond rate differential is the proxy 
used in the reported regressions, though other 
proxies are used as instrumental variables. 
Details on the data are given in 
Appendix B. 

In each regression the signs of all coeffi- 
cients are as hypothesized under the real 
interest differential model. When the single 
equation estimation techniques are used, the 
significance levels are weak, especially when 
iterated Cochrane-Orcutt is used to correct 
for high first-order autocorrelation. 

But when instrumental variables are used 
to correct for the shortcomings of the 
expected inflation proxy, the results improve 
markedly. The coefficient on the nominal 
interest differential is significantly less than 

zero. This result is all the more striking when 
it is kept in mind that the null hypothesis of a 
zero or positive coefficient is a plausible and 
seriously maintained hypothesis; the Chicago 
(Frenkel-Bilson) hypothesis is rejected in this 
data sample. The coefficient on the expected 
long-run inflation differential is significantly 
greater than zero. Thus the unmodified 
Keynesian (Dornbusch) hypothesis is also 
rejected. Furthermore, as predicted by the 
real interest differential model the coefficient 
on the expected long-run inflation differential 
is significantly greater than the absolute value 
of the coefficient on the nominal interest 
differential. 

Several other points are also notably 
supportive of the theory. (I concentrate on the 
last regression in Table 1.) The coefficient of 
the relative money supply is not only signifi- 
cantly positive, but is also insignificantly less 
than 1.0. The coefficient of relative pro- 
duction is significantly negative, and its point 
estimate of approximately -.5 suits well its 
interpretation as the elasticity of money 
demand with respect to income. The sum of 

rational term structure that the long-term real interest 
differential be the average of the expected short-term real 
interest differentials. 

Source: Frankel (1979).
Nakamura-Steinsson FX and Spurious Regressions 10 / 50



MEESE AND ROGOFF (1983)

Do the monetary models of exchange rates fit out of sample?

Generalized monetary model:

et = φ0 + φm(mt − m∗t ) + φy (yt − y∗t ) + φi(it − i∗t )

+φπ(πe
t − πe∗

t ) + φTBTBt + φTB∗TB∗t + εt
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MEESE AND ROGOFF (1983)

Auto-regressive model

et = φ0 +
J∑

j=1

φjet−j + εt

Vector auto-regressive model

et = φ0 +
J∑

j=1

φjet−j +
J∑

j=1

ΦjXt−j + εt

Random Walk model

Etet+j = et
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MEESE AND ROGOFF (1983)

Sample period: March 1973 - June 1981

Forecasts based on rolling regression starting November 1976

Forecast horizons: 1, 6 and 12 months

Measure of out-of-sample accuracy: RMSE
Nk−1∑
s=0

[F (t + s + k) − A(t + s + k)]2/Nk


1/2
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MEESE AND ROGOFF (1983)

In structural models:

Use actual realized future values of explanatory variables

(as opposed to also forecasting explanatory variables)

Two possible stories:

Hard to predict exchange rate because it is hard to predict

variables that it depends on

Hard to find any systematic relantionship between exchange

rates and other variables
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($/Mark 1-month number should be 3.17 not 3.72, see Table 3)

Source: Meese and Rogoff (1983).
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MEESE AND ROGOFF (1983)

Nothing beats random walk out of sample

Stronger than just lack of predictability

(since they use realized future values of explanatory variables)

Nothing even explains exchange rates!!!
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MEESE AND ROGOFF (1983)

Rogoff (2001) recounts:

For a long time, no one did believe us. The editor of

the American Economic Reivew (Robert Clower) sent our

manuscript back in return mail with a scathing letter saying

that the results are obviously garbage and if we wish to re-

main in the economics profession, we had better develop

a more positive attitude. ... One then young and now pre-

eminent MIT macroeconomist, when told the findings, force-

fully commented (with a French accent) “You just cannot pos-

sibly have done it right.”

As of April 2019: 4776 Google scholar citations
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TWO LESSONS

1. Economics lesson:

Exchange rate dominated by unpredicatable shocks

(unpredictable capital flows?)

Exchange rate very forward looking variable

2. Econometric lesson:

Beware regressing very persistent variable on

another very persistent variable
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SIMPLIFIED ENGEL AND WEST (2005)

Uncovered interest rate parity:

it = i∗t + Etet+1 − et

Returns should be equalized across countries

If interest rate is higher abroad, exchange rate should

fall enough on average to equalize returns

(et is domestic currency price of foreign currency)
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SIMPLIFIED ENGEL AND WEST (2005)

Rearranging and solving forward:

it = i∗t + Etet+1 − et

et = (i∗t − it ) + Etet+1

et = (i∗t − it ) +
∞∑

j=1

Et (i∗t+j − it+j) + lim
j→∞

Etet+j

Nakamura-Steinsson FX and Spurious Regressions 20 / 50



SIMPLIFIED ENGEL AND WEST (2005)

What determines the change in the exchange rate:

et+1 − et = −(i∗t − it ) +
∞∑

j=1

∆Et+1(i∗t+j − it+j) + lim
j→∞

∆Et+1et+j

where ∆Et+1xt+j = Et+1xt+j − Etxt+j (time t + 1 news about xt+j )

Two components:

Current interest rate differencial

News about all future interest rate differentials

Not so implausible that the variance of the latter is huge

compared to the former
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SIMPLIFIED ENGEL AND WEST (2005)

et+1 − et = −(i∗t − it ) +
∞∑

j=1

∆Et+1(i∗t+j − it+j) + lim
j→∞

∆Et+1et+j

But (i∗t − it ) not only thing observed

Movements in longer-term bonds allow one to back out

estimates of
∞∑

j=1

∆Et+1(i∗t+j − it+j)

at least up to j = 40 quarters (and assuming EHTS)

limj→∞∆Et+1et+j still a potential problem

But in real terms PPP should hold in the very long run

(Clarida-Luo 14; Engel 15)
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IN-SAMPLE VERSUS OUT-OF-SAMPLE

Why was Frankel’s in-sample inference so much stronger

than Meese-Rogoff’s out-of-sample inference?

Suggests that something is wrong with in-sample inference

(This is a general concern)
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SPURIOUS REGRESSIONS

Monetary model of exchange rate:

et = φ0 + φf ft + εt

Both et and ft have a unit-root.

Granger and Newbold (1974):

Usual methods massively understate standard errors
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C. W.J. Granger, P. Newbold, Regressions in econometrics 115 

4. Some simulation results 

As a preliminary, we looked at the regression 

Y, = PO+&X*9 

where Y, and X, were, in fact, generated as independent random walks each of 
length 50. Table 1 shows values of 

the customary statistic for testing the significance of fil, for 100 simulations. 

Table 1 
Regressing two independent random walks. 

s: o-1 l-2 2-3 3-4 4-5 5-6 6-7 7-8 
Frequency : 13 10 11 13 18 a 8 5 

s: 8-9 9-10 10-11 11-12 12-13 13-14 14-15 15-16 
Frequency : 3 3 1 5 0 1 0 1 

Using the traditional t test at the 5 % level, the null hypothesis of no relation- 
ship between the two series would be-rejected (wrongly) on approximately three- 
quarters of all occasions. If fll/S.E.(i$) were distributed as N(0, l), then the 
expected value of S would be 1/2/n N 0.8. In fact, the observed average value 
of S was 4.5, suggesting that the standard deviation of & is being underestimated 
by the multiple factor 5.6. Thus, instead of using a t-value of approximately 2.0, 
one should use a value of 11.2, when attributing a coefficient value to be 
‘significant’ at the 5 % level. 

To put these results in context, they may be compared with results reported 
by Malinvaud (1966). Suppose that X, follows the process (10) and the error 
series obeys the model 

Et = &-l+a,, 

so that, under the null hypothesis, Yt will also follow this process, where a, and 
~1, are independent white noise series. In the case C$ = 4* = 0.8, it is shown that 
the estimated variance of 8, should be multiplied by a factor 5.8, when the length 
of the series is T = 50. The approximations on which this result is based break 
down as both 4 and c$* tend to unity, but our simulation indicates that the 
estimated variance of fll should be multiplied by (5.6)” N 3 1.4 when T = 50 and 
random walks are involved. 

Our second simulation was more comprehensive. A series Yt was regressed 
on m independent series Xj,t; j = 1,2, . . ., m, with m taking values from one to 

Source: Granger and Newbold (1974).
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five. Each of the series involved obey the same model, the models being 

(i) random walks, 
(ii) white noises, 

(iii) A.R.I.M.A. (0, 1, I), 
(iv) changes in A.R.I.M.A. (0, 1, I), i.e., first order moving average. 

Table 2 
Regressions of a series on m independent ‘explanatory’ series. 

Series either all random walks or all A.R.I.M.A. (0, 1, 1) series, or changes in these. Y, = 100, 
Y, = Y,_l+a,, Y,’ = Y,+kb,; X,., = 100, XL,= X~.,_l+aj.~ Xj.,‘=XJ,t+kbJ,r;a,,r,a,,b,,bJ,r 
sets of independent N(0, 1) white noises. k = 0 gives random walks, k = 1 gives A.R.I.M.A. 
(0, 1, 1) series. Ho = no relationship, is true. Series length = 50, number of simulations = 100, 

R’ = corrected RZ. 

Per cent times Average Average Per cent 
Ho rejected’ Durbin-Watson d R2 Rf > 0.1 

Levels m=l 76 
m=2 78 
m=3 93 
m=4 95 
m=5 96 

Random walks 
0.32 
0.46 
0.55 
0.74 
0.88 

0.26 5 
0.34 8 
0.46 25 
0.55 34 
0.59 37 

Changes m = 1 8 2.00 0.004 
m=2 4 1.99 0.001 
m=3 2 1.91 - 0.007 
m=4 10 2.01 0.006 
m=5 6 1.99 0.012 

Levels m=l 64 
m=2 81 
m=3 82 
m=4 90 
m=5 90 

Changes m = 1 
m=2 
m=3 
m=4 
m=5 

8 
12 
7 
9 

13 

A.R.I.M.A. (0, 1, I) 
0.73 
0.96 
1.09 
1.14 
1.26 

0.20 
0.30 
0.37 
0.44 
0.45 

2.58 0.003 
2.57 0.01 
2.53 0.005 
2.53 0.025 
2.54 0.027 

3 
7 

11 
9 

19 

0 
0 
0 
0 
0 

‘Test at 5% level, using an overall test on RZ. 

All error terms were distributed as N(0, 1) and the A.R.I.M.A. (0, 1, 1) series 
was derived as the sum of a random walk and independent white noise. The 
results of the simulations, with 100 replications and series of length 50 are shown 
in table 2. 

It is seen that the probability of accepting H, , the hypothesis of no relation- 
ship, becomes very small indeed for m > 3 when regressions involve indepen- 

Source: Granger and Newbold (1974).
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SPURIOUS REGRESSIONS

Two common responses:

Use HAC standard errors (e.g., Newey-West, 1987)

Series are persistent but don’t have a unit root.

Granger, Hyung, and Jeon (2001)

Xt = α + βYt + ut

Xt = θxXt−1 + εx ,t

Yt = θyYt−1 + εy ,t

Nakamura-Steinsson FX and Spurious Regressions 27 / 50



SPURIOUS REGRESSIONS

Two common responses:

Use HAC standard errors (e.g., Newey-West, 1987)

Series are persistent but don’t have a unit root.

Granger, Hyung, and Jeon (2001)

Xt = α + βYt + ut

Xt = θxXt−1 + εx ,t

Yt = θyYt−1 + εy ,t

Nakamura-Steinsson FX and Spurious Regressions 27 / 50



From Equation 1 the ordinary least squares estimate of ­
is de® ned by:

­̂­ ˆ

T

tˆ1

…Xt ¡ ·XX†…Yt ¡ ·YY†

T

tˆ1

…Xt ¡ ·XX†2

…4†

where ·XX ˆ T¡1 T
tˆ1 Xt and ·YY ˆ T¡1 T

tˆ1 Yt. Then

~tt
­̂­

ˆ ­̂­

~¼¼­̂­

ˆ ­̂­

¼̂¼u

T

tˆ1

…Xt ¡ ·XX†2

1=2
…5†

where ~¼¼2
­̂­

ˆ ¼̂¼2
u=

T
tˆ1…Xt ¡ ·XX†2, ûut ˆ Yt ¡ ¬̂¬ ¡ ­̂­ Xt, ¬̂¬; ­̂­ are

the least squares estimators and ¼̂¼2
u ˆ …1=T† T

tˆ1 ûu2
t !p ¼2

u,

as T ! 1 and ¼2
u ˆ limT!1…1=T† T

tˆ1 E…u2
t †. Table 1

summarizes the results of a simulation using 1000 iterations

in all cases, for which ³x ˆ ³y ˆ ³. Thus here Xt; Yt are

generated by the same autoressive model. Sample sizes
from 100 to 10 000 are shown plus an asymptotic value

derived in the theory presented below. Values are for the

percentage of jt­ j values using both ordinary least squares

(OLS) and with the consistent estimator ¼2
­ described

below. Table 2 shows similar results with a variety of values

of ³x; ³y that need not be the same.
The obvious feature of the simulations in Table 1 are:

(a) Spurious relationships occur quite frequently for

³x ˆ ³y < 1. For example, if ³ ˆ 0:75 about 30% of

regressions would lead to spurious relationships

being found if standard OLS inference is used.
(b) The percentage of spurious relationships does not

depend on the sample size.

(c) The use of consistent estimator of ¼2
­̂­

reduces the prob-

lem, and is thus clearly helpful, except for ³ ˆ 0:9 or

larger.

The results in Table 2 illustrate the situation further. An

interesting symmetry is seen to occur

(d) The percentages of jtj > 1:96 are similar for (³x ˆ a;
³y ˆ b) and (³x ˆ b; ³y ˆ a) with a 6ˆ b, although

only the cases where either a or b equals either
zero or 0.5 are shown.

Because of the use of an incorrect standard error estima-

tor of ­̂­ , the t-statistic in Equation 5 will not converge to a

standard normal distribution as T increases. Serial correla-

tion in disturbances requires a diŒerent form of consistent
estimator for the standard error ­̂­ as follows:

¼2
­̂­

ˆ M¡1VM¡1

where M ² Eb…Xt ¡ ·XX†2c, V ² var ‰T¡1=2 T
tˆ1…Xt ¡ ·XX†utŠ.

Its consistent estimator is

¼̂¼2
­̂­

ˆ M̂M¡1V̂VM̂M¡1 !p ¼2
­̂­
; as T ! 1

where

V̂V ˆ 1

T

T

tˆ1

…Xt ¡ ·XX†
2

ûu2
t ‡ 2

T

l

sˆ1

w…s; l†

£
T

tˆs‡1

…Xt ¡ ·XX†ûutûut¡s…Xt¡s ¡ ·XX† !p
V

M̂M ˆ T¡1
T

tˆ1

…Xt ¡ ·XX† !p
M; as T ! 1

Here w…s; l† is an optimal weighting function that corre-

sponds to the choice of a spectral window. In this case

900 C. W. J. Granger et al.

Table 1. Regressing between two independent AR series …³ ˆ ³x ˆ ³y†, percentage of jtj > 1:96

Method NOBS ³ ˆ 0 ³ ˆ 0:25 ³ ˆ 0:5 ³ ˆ 0:75 ³ ˆ 0:9 ³ ˆ 1:0

OLS 100 5.3 7.6 13.3 29.1 51.5 77.0
500 5.8 7.5 16.3 31.5 51.6 90.0

2 000 5.8 7.1 13.5 29.4 52.5 94.5
10 000 4.3 6.6 12.2 30.6 52.3 97.6

1 5.0 7.0 13.0 30.0 53.0 100.0
BART 100 7.6 7.7 9.9 16.5 30.6 62.0

500 6.4 6.8 9.0 14.1 23.9 79.6
2 000 6.0 5.9 6.1 10.3 16.3 86.4

10 000 4.6 5.2 5.5 7.7 12.8 92.5
1 5.0 5.0 5.0 5.0 5.0 100.0

Notes: 1. The number of iteration 5 1000.
2. % of rejection, i.e., absolute value of t-value > 1:96.
3. 1 means asymptotic case.
4. To avoid the problem of ® xing X0 and Y0, 100 pre-samples are generated and let
X¡100 ˆ Y¡100 ˆ 0.
5. The number of rejections (BART) depends on the number of lags (l) used to calculate v̂v.
l ˆ integer ‰4…T=100†1=4Š is set.

Source: Granger, Hyung, and Jeon (2001).
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SPURIOUS REGRESSIONS

Big problem even if series are stationary if they are

pretty persistent and sample is small

Newey-West standard errors have very bad

small sample properties

Accurate standard errors require more sophisticated methods

Lazarus-Lewis-Stock 18 suggest improvements

Even this not so good. No really satisfactory methods exist
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SPURIOUS REGRESSIONS

Why does this problem occur, intuitively?

Observations are not independent!!

Observations that are close in time are very correlated

Intuitively, the key question is:

How many independent observations do I have?

(With unit root, all observations are correlated)

Is higher frequency data useful?

It does increase the number of data points

But the correlation between data points goes up

Intuitively: No new information about low frequency stuff
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SPURIOUS REGRESSIONS

Whether a sample is “small” or “large” is not so simple a question

Depends on how correlated observations are

You can have hundreds of thousands of observations but a “small

sample” problem if correlation between observations is very high

Cross-sections correlation can also be a problem

(hence importance of “clustering” in constructing standard errors)
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RISING EMPIRICAL STANDARDS

1. “Revolution of identification”

More serious attention to credible identification of causal effects

2. Accurate standard errors

Clustering

Accounting for persistence
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HAS MEESE-ROGOFF 83 STOOD THE TEST OF TIME?

Mostly yes!

Rossi 13 provides comprehensive survey

Mark 95 long-run predictability results most serious challenge

See also more recent work on Taylor rule fundamentals

(Molodtsova-Papell JIE 09)
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MARK (1995)

Simple monetary model:

et = ft + c

ft = (mt − m∗t ) − λ(yt − y∗t )

Even if monetary model doesn’t work in the short run,

it may work in the long run

Estimates partial adjustment model:

et+k − et = αk + βk (ft − et ) + νt+k ,t
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MARK (1995)

et+k − et = αk + βk (ft − et ) + νt+k ,t

Sample period: 1973:2 - 1991:4

Pseudo-out-of-sample period: 1981:4 - 1991:4

Currencies: Canada, Germany, Switzerland, Japan

Horizons: k = 1, 4, 8, 12, 16 (quarters)
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MARK (1995): ECONOMETRIC ISSUES

et+k − et = αk + βk (ft − et ) + νt+k ,t

Multiperiod forecasts induce correlation in error terms

Stambaugh 86/99 bias

ft − et predetermined but not strictly exogenous

Past values of et+k − et correlated with ft − et

Causes finite sample bias in βk

Standard errors produced using bootstrap that assumes
ft − et follows AR(p)

But et and ft may not be cointegrated

Small sample bias in estimating AR(p)
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MARK (1995): ROBUSTNESS

Why not use UK pound?

Mark calibrates λ = 1:

ft = (mt − m∗t ) − (yt − y∗t )

also no interest rate term. Why not estimate?

GNP for US, GDP for all other countries. Why?

M3 for Canada, M1 for all other countries. Why?
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TABLE 2-REGRESSION ESTIMATES AND BOOTSTRAP DISTRIBUTIONS 

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix) (x) (xi) (xii) (xiii) (xiv) 

k Pk Adj-p Adj-n R2 Adj-p Adj-n tk(20) MSL-p MSL-n tk(A) A MSL-p MSL-n 

Canadian dollar: 
1 0.040 0.027 0.028 0.059 0.050 0.051 3.051 0.076 0.077 2.172 1 0.065 0.066 
4 0.155 0.109 0.114 0.179 0.144 0.146 2.389 0.186 0.195 2.168 12 0.172 0.175 
8 0.349 0.264 0.264 0.351 0.287 0.285 2.539 0.222 0.230 2.527 19 0.201 0.216 

12 0.438 0.320 0.315 0.336 0.251 0.235 1.961 0.317 0.343 1.936 29 0.323 0.343 
16 0.450 0.295 0.287 0.254 0.146 0.121 1.542 0.420 0.447 1.512 33 0.436 0.456 

Deutsche mark: 
1 0.035 0.012 0.016 0.015 0.005 0.006 1.836 0.280 0.252 0.929 2 0.408 0.391 
4 0.205 0.114 0.126 0.104 0.065 0.068 2.902 0.169 0.157 2.290 15 0.206 0.193 
8 0.554 0.380 0.410 0.265 0.196 0.190 3.487 0.174 0.159 3.558 26 0.147 0.143 

12 0.966 0.733 0.759 0.527 0.432 0.410 6.329 0.059 0.057 6.510 29 0.047 0.048 
16 1.324 1.015 1.046 0.762 0.638 0.603 9.256 0.027 0.033 9.124 23 0.024 0.025 

Swiss franc: 
1 0.074 0.046 0.046 0.051 0.042 0.042 2.681 0.109 0.119 2.073 2 0.084 0.086 
4 0.285 0.171 0.171 0.180 0.147 0.145 3.248 0.121 0.126 3.196 14 0.096 0.102 
8 0.568 0.356 0.350 0.336 0.278 0.276 4.770 0.080 0.085 4.696 21 0.078 0.073 

12 0.837 0.527 0.519 0.538 0.458 0.452 8.013 0.026 0.024 8.013 20 0.026 0.021 
16 1.086 0.706 0.671 0.771 0.673 0.655 17.406 0.001 0.002 12.665 14 0.005 0.006 

Yen: 
1 0.047 0.014 0.016 0.020 0.010 0.011 1.396 0.388 0.365 1.331 3 0.285 0.259 
4 0.263 0.136 0.138 0.125 0.088 0.090 2.254 0.271 0.262 2.153 14 0.247 0.231 
8 0.575 0.328 0.329 0.301 0.233 0.232 3.516 0.199 0.189 3.496 19 0.188 0.177 

12 0.945 0.592 0.579 0.532 0.432 0.427 4.889 0.129 0.143 4.735 17 0.153 0.156 
16 1.273 0.819 0.802 0.694 0.565 0.548 4.919 0.154 0.156 4.901 16 0.174 0.177 

Notes: The table presents OLS estimates of the regression et+k - et= ak + k(ft - et)+ 1t+k,k, where ft 
(mi - m*)- (yt - Y*). The (Gaussian) parametric and nonparametric bootstrap distributions are generated under 
the null hypothesis that the regressor follows an AR(4) for the Canadian dollar, the Swiss franc, and the yen, and an 
AR(5) for the deutsche mark. Exchange rates are dollars per unit of foreign currency. Adj-p and Adj-n are 
bias-adjusted values obtained by subtracting median values generated by the parametric and nonparametric 
bootstrap distributions, respectively, from the estimates. MSL-p and MSL-n are, respectively, the parametric and 
nonparametric bootstrap marginal significance levels for a one-tail test. A is the truncation lag determined by 
Andrews's (1991) univariate AR(1) rule used for constructing the t ratios with the data. 

B. Regression Estimates 

Table 2 contains the estimated slope co- 
efficients, R2's, asymptotic t ratios, and as- 
pects of their bootstrap distributions. At a 
given horizon, the slope coefficient is posi- 
tive under the alternative hypothesis, and 
simple tests of the null hypothesis can be 
performed with one-tail tests on the t ra- 
tios. 

From columns (ii) and (v) of the table, 
one sees that for k = 1 the slope coefficients 
and the R2's for all four currencies are 
small in magnitude. Lengthening the fore- 
cast horizon, however, results in rising val- 
ues of /3k and Rk and rising values of the 

asymptotic t ratios for the deutsche mark, 
the Swiss franc, and the yen. In the case of 
the deutsche mark, at the 1-quarter horizon, 

A 

= 0.04, R2 = 0.02, tj(20) = 1.84, and 
t1(A) = 0.93, while at the 16-quarter hori- 
zon, p16 = 1.32, R1 = 0.76, t1(20) = 9.26, and 
t1(A) = 9.12. This value of 316 implies that a 
40-percent overvaluation of the dollar rela- 
tive to the deutsche mark (which the esti- 
mates suggest was the case in 1985) predicts 
a depreciation of the dollar by 13.6 percent 
per annum over the next four years. The 
improved fit attained as k increases sug- 
gests that the noise that dominates quarter- 
to-quarter changes in et averages out over 
long horizons. 

Source: Mark (1995). Note: Big β, big R2, large tk (20) for DM, CHF, JPY
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FIGURE 2. FOUR-QUARTER CHANGES IN THE LoG 
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Figures 1 through 5 plot the actual and 
fitted log exchange-rate changes for the 
deutsche mark at each of the five horizons 
(plots for the Swiss franc and the yen are 
qualitatively similar and are suppressed to 
save on space). The fitted values are indi- 
cated by solid circles, and the actual 
k-period log exchange-rate changes are in- 
dicated by open circles. These figures illus- 
trate the striking improvement in fit that 
occurs as the forecast horizon is lengthened. 

Columns (iii) and (iv) of Table 2 display 
the bias-adjusted slope coefficients, and 
columns (vi) and (vii) display the bias- 
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Source: Mark (1995)
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Figures 1 through 5 plot the actual and 
fitted log exchange-rate changes for the 
deutsche mark at each of the five horizons 
(plots for the Swiss franc and the yen are 
qualitatively similar and are suppressed to 
save on space). The fitted values are indi- 
cated by solid circles, and the actual 
k-period log exchange-rate changes are in- 
dicated by open circles. These figures illus- 
trate the striking improvement in fit that 
occurs as the forecast horizon is lengthened. 

Columns (iii) and (iv) of Table 2 display 
the bias-adjusted slope coefficients, and 
columns (vi) and (vii) display the bias- 
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TABLE 4-OUT-OF-SAMPLE FORECAST EVALUATION 

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix) (x) (xi) (xii) (xiii) 

k IN/RW OUT/IN OUT/RW MSL-p MSL-n 2DM(20) MSL-p MSL-n 2DM(A) A MSL-p MSL-n 

Canadian dollar: 
1 0.960 1.040 0.998 0.209 0.194 0.061 0.215 0.202 0.036 1 0.218 0.201 
4 0.889 1.258 1.119 0.571 0.538 - 1.270 0.526 0.487 -0.925 8 0.494 0.468 
8 0.675 1.695 1.145 0.447 0.397 - 1.036 0.427 0.377 -0.890 17 0.420 0.390 

12 0.654 2.197 1.436 0.613 0.578 - 1.916 0.574 0.556 - 1.661 18 0.587 0.579 
16 0.799 2.128 1.699 0.654 0.636 -2.596 0.578 0.542 - 1.857 15 0.567 0.555 

Deutsche mark: 
1 0.988 1.027 1.015 0.397 0.339 -0.932 0.458 0.393 -0.846 4 0.536 0.493 
4 0.927 1.120 1.037 0.345 0.288 - 1.345 0.563 0.511 -0.852 9 0.478 0.427 
8 0.833 1.203 1.002 0.268 0.217 -0.027 0.270 0.220 -0.020 18 0.270 0.221 

12 0.670 1.188 0.796 0.127 0.092 4.246 0.068 0.059 0.094 16 0.151 0.136 
16 0.431 1.216 0.524 0.040 0.025 8.719a 0.061 0.047 8.719 18 0.021 0.011 

Swiss franc: 
1 0.972 1.026 0.997 0.305 0.266 0.066 0.320 0.278 0.064 3 0.315 0.271 
4 0.886 1.108 0.981 0.291 0.263 0.218 0.304 0.272 0.162 12 0.298 0.274 
8 0.780 1.176 0.917 0.256 0.219 0.703 0.260 0.236 0.560 17 0.253 0.227 

12 0.625 1.181 0.738 0.152 0.132 2.933 0.161 0.137 0.938 13 0.255 0.211 
16 0.335 1.229 0.411 0.033 0.023 9.650b 0.080 0.058 1.996 8 0.192 0.159 

Yen: 
1 0.962 1.027 0.988 0.304 0.257 1.571 0.168 0.132 0.836 3 0.177 0.134 
4 0.822 1.129 0.928 0.257 0.207 2.302 0.151 0.118 1.487 10 0.134 0.105 
8 0.688 1.191 0.819 0.214 0.162 3.096 0.142 0.117 1.803 13 0.152 0.117 

12 0.536 1.329 0.712 0.196 0.148 3.319 0.174 0.148 1.147 17 0.164 0.135 
16 0.363 1.579 0.574 0.152 0.119 5.126 0.178 0.160 3.096 16 0.151 0.131 

Notes: The table presents ratios of root-mean-squared errors for the regression's out-of-sample forecasts (OUT), 
the driftless random walk (RW), and the in-sample regression residual during the forecast period (IN). The first 
forecast is made on 1981:4. D9M(20) and D9M(A) are the Diebold-Mariano statistics constructed using the method of 
Newey and West (1987) with the truncation lag of the Bartlett window set to 20 and set by Andrews's (1991) AR(1) 
rule, respectively. In instances where the estimated spectral density at frequency zero of the squared error 
differential is nonpositive (see footnote 8), the Bartlett-window truncation lag is decreased by 1. MSL-p and MSL-n 
are marginal significance levels, generated by the parametric and nonparametric bootstrap distributions, respec- 
tively, for one-tail tests. 

aBartlett-window truncation lag = 18. 
bBartlett-window truncation lag = 17. 

RMSE ratio across the five horizons. Table 
5 displays bias-adjusted values of the ex- 
treme values and bootstrapped marginal 
significance levels. Here, the null hypothesis 
can be rejected for the deutsche mark with 
DM7I(A) at the 5-percent level (MSL-p = 
0.03, MSL-n = 0.02), and for the Swiss franc 
using DM7i(20) near the 10-percent level 
(MSL-p = 0.10, MSL-n = 0.08). The evi- 
dence against the null hypothesis for the 
yen is less forcible [MSL-n = 0.16 for 
DM7I(A)]. Finally, using the bootstrapped 
(OUT/RW) RMSE ratios, the null hypothe- 
sis is rejected at the 5-percent level 
for both the deutsche mark (MSL-p = 

0.042, MSL-n = 0.026) and the Swiss franc 
(MSL-p = 0.04, MSL-n = 0.02), with slightly 
weaker evidence for the yen (MSL-p = 0.16 
and MSL-n = 0.13). 

V. Concluding Remarks 

This paper has presented evidence that 
there is an economically significant pre- 
dictable component in long-horizon changes 
in log exchange rates. The evidence comes 
from regressions of long-horizon changes in 
log exchange rates on the current log ex- 
change rate's deviation from a linear combi- 
nation of log relative money stocks and log 

Source: Mark (1995). Note: OUT/RW much smaller than 1.
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TRUE OUT-OF-SAMPLE TEST

Jon wrote a class paper on this for Jim Stock’s Time Series

class in 2003

True out-of-sample period: 1992:1-2000:4

Used slightly different data:

M2 as opposed to M3 for Canada

GDP as opposed to GNP for US

Results sensitive to this (not comforting)

Main results do not survive in 1990s
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Mark's RMSE 
results

RMSE ratios 
for 1990's

beta R2 beta R2 beta R2 OUT/RW OUT/RW
(ii) (iii) (iv) (v) (vi) (vii) (viii) (ix)

Canadian dollar vs. U.S. dollar
1 0.040 0.059 0.041 0.061 -0.005 0.002 0.998 0.963
4 0.155 0.179 0.157 0.182 -0.041 0.022 1.119 0.933
8 0.349 0.351 0.350 0.354 -0.073 0.020 1.145 0.932

12 0.438 0.336 0.442 0.342 -0.187 0.061 1.436 1.037
16 0.450 0.254 0.456 0.262 -0.305 0.107 1.699 1.208

Deutsche mark vs. U.S. dollar
1 0.035 0.015 0.037 0.016 0.036 0.016 1.015 1.029
4 0.205 0.104 0.204 0.104 0.181 0.087 1.037 0.987
8 0.554 0.265 0.552 0.264 0.503 0.231 1.002 0.992

12 0.966 0.527 0.961 0.524 0.911 0.485 0.796 1.511
16 1.324 0.762 1.318 0.758 1.274 0.715 0.524 1.957

Swiss franc vs. U.S. dollar
1 0.074 0.051 0.073 0.050 0.087 0.073 0.997 0.984
4 0.285 0.180 0.284 0.178 0.314 0.227 0.981 0.937
8 0.568 0.336 0.566 0.335 0.571 0.351 0.917 0.786

12 0.837 0.538 0.834 0.536 0.804 0.511 0.738 0.763
16 1.086 0.771 1.085 0.770 1.064 0.751 0.411 0.980

Japanese Yen vs. U.S. dollar
1 0.047 0.020 0.047 0.020 0.030 0.011 0.988 1.014
4 0.263 0.125 0.264 0.126 0.195 0.085 0.928 1.117
8 0.575 0.301 0.576 0.302 0.452 0.227 0.819 1.177

12 0.945 0.532 0.948 0.534 0.769 0.421 0.712 1.139
16 1.273 0.694 1.274 0.696 1.063 0.557 0.574 1.185

Table 1 -- Replication, Extentions and Out of Sample Performance
Mark's published 

results
Mark's data -- My 

replication
Current Data -- 

Mark's sample period

Source: Steinsson (2003)
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FOLLOW UP ON MARK (1995)

Killian 99 makes same point as I did. Also critiques bootstrap.

Faust-Rogers-Wright 03: Doesn’t work with other vintages of

data

Berkowitz-Giorgianni 01:

Mark’s bootstrap assumes et and ft are cointegrated

(It assume AR(p) for zt = ft − et )

Standard errors much larger under null of no-cointegration

(also standard diagnostic test stats fail in this case)
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50 J. Faust et al. / Journal of International Economics 60 (2003) 35–59

Fig. 6. Out-of-sample relative RMSE using different data vintages (Mark’s sample period).

this model posits that the nominal exchange rate is determined by home–foreign
differentials in the monetary fundamentals used above as well as short-term
interest rates, expected inflation rates, and cumulated current account balances.

Source: Faust-Rogers-Wright (2003)
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J. Faust et al. / Journal of International Economics 60 (2003) 35–59 51

Fig. 7. BootstrapP-values for out-of-sample relative RMSE using different data vintages (Mark’s
sample period).

Source: Faust-Rogers-Wright (2003)
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LONG-HORIZON EXCHANGE RATE PREDICTABILITY? 83 

ical critical values. Relative to the more conservative null, 
bootstrapped empirical distributions that assume stationarity 
will produce critical values that are too small, and will bias 
results on the side of significance. 

Of course, if the true DGP is nonlinear, it is at least 
possible that long-horizon regressions might detect predict- 
ability even though a one-step ahead model does not. Both 
the theoretical results of Berben and Van Dijk (1998) and 
the simulation results of the present paper are based on the 
assumption of linearity. 

However, out-of-sample statistics do not rely on any such 
assumption. That is, Diebold-Mariano statistics should de- 
tect predictability if long-horizon regressions capture non- 
linear dynamics. If fA and s3 were independent, the spurious 
regression problem would bias the Ik away from zero, and 
the model forecasts will underperform random-walk fore- 
casts out of sample. On the other hand, if the tk are nonzero 
for large k because of a true nonlinear relationship, then the 
model outperforms the random-walk forecast.4 

In the present paper, we do not attempt to model the true 
data-generating process, as fundamentals and exchange 
rates are not likely to be literally independent. Rather, our 
goal is to point out that, if no relationship between f and s, 
exists, in-sample statistics appear to support long-horizon 
predictability. True long-horizon predictability and total 
independence lead to observationally (qualitatively) equiv- 
alent in-sample results. 

III. Monte Carlo Evidence 

Existing empirical evidence is not supportive of the 
hypothesis of cointegration between exchange rates and the 
simple monetary fundamentals. Therefore, we emphasize 
that an equally interesting and more conservative null hy- 
pothesis associated with the estimation of equation (2) is of 
no cointegration between the two time series. To investigate 
the small sample distribution of conventional diagnostic 
statistics associated with long-horizon regressions, we con- 
struct two simulation experiments. In the first experiment, 
the two series are statistically unrelated (cointegration does 
not hold) under the null. In the second, we fit an unrestricted 
VAR model to s, and f, and use this model under the null 
hypothesis to generate critical values. For each null, we 
consider the sample statistics considered by Mark (1995) for 
comparability. 

In the first experiment, we begin by generating indepen- 
dent Gaussian random variables, s, and f,, with the relative 
variances of the innovations of the two processes calibrated 
to quarterly U.S. and German data. We model the exchange 
rate as a random walk, and the monetary fundamental as an 
AR(3) with persistence parameters 1.328, -0.159, and 
-0.223. This choice for the fundamental was made by 

fitting ARMA models to the U.S.-German data, with the 
BIC selecting the lag orders. We generate 2,000 Monte 
Carlo iterations. For each Monte Carlo data set, we run the 
long-horizon regressions (equation (2)) and compute the 
associated diagnostic statistics for k = 1, 4, 8, 12, and 16. 
The results are presented in table 1, panel A. Column 3 
displays the median, the 90th percentile, and the 95th 
percentile of the estimated slope coefficients across Monte 
Carlo trials for each horizon of interest. Despite indepen- 
dence between exchange rates and fundamentals, the me- 
dian k rises with k to a maximum of 0.635 for k = 16. As 
expected, the associated naive LS t-statistics displayed in 
coluin 4 also increase with the horizon. Column 5 and 6 
display t-statistics corrected for autocorrelation with a trun- 
cation lag of 20 and with Andrews' (1991) rule (labeled 
t(20) and t(A), respectively). Again, as the horizon in- 
creases, so do median values of the slope coefficient's 
t-statistics. The right shift of the empirical distribution of 
the t-statistics inflates the empirical critical values. For 
example, when k = 16, the one-sided empirical 95th 
percentile for t(A) is 9.49 instead of 1.64 (that is, the 
corresponding asymptotic critical value from a Gaussian 
distribution). Figure 1 depicts the Monte Carlo distribution 
of t(A) for each horizon. Clearly, the empirical density 
becomes more right-skewed and kurtotic as k increases. 

Column 8 of table 1, panel A, displays the ratio of 
root-mean-squared error for out-of-sample regression fore- 
casts over root-mean-squared error implied by the random- 
walk model. Thus, for values below 1, the regression deliv- 
ers more-accurate forecasts than does the benchmark 
random walk. The first out-of-sample forecast is for 1981:1 
(the first quarter of 1981), which results in forty one-step 

FIGURE 1.-MONTE CARLO DISTRIBUTIONS OF NEWEY-WEST T-STATISTICS 
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For each horizon of interest, k = 1, 4, 8, 12, and 16, we plot the histogram of the Newey-West 
t-statistic with a bandwidth of 20. The solid line corresponds to the density of a t-distributed random 
variable with degrees of freedom equal to 85 - (k + 1). 

4 We estirnated the Kaplan (1994) test statistic for nonlinearities for each 
of the four exchange rates (in differences). We were unable to reject the 
null hypothesis of a linear process for any exchange rate at a 90%- 
confidence level. 
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TABLE 1 -LONG-HORIZON MONTE CARLO ESIIMATES NULL HYPOTHESIS: INDEPENDENCE 

(SPOT RATES FOLLOW A RANDOM WALK AND FUNDAMENTALS AN AR(2) PROCESS) 

k %-ile Ik t(LS) t(20) t(A) Ri OUT/RW DM(20) DM(A) 

Panel A: sample size = 85 

1 50 0.046 1.479 2.028 1.525 0.026 1.008 -0.377 -0.300 
90 0.112 2.517 3.941 2.740 0.072 0.969 2.222 1.341 
95 0.143 2.827 4.502 3.132 0.088 0.957 3.197 1.758 

4 50 0.183 2.982 2.359 2.092 0.101 1.032 -0.441 -0.372 
90 0.403 5.220 4.823 4.180 0.256 0.881 2.458 1.816 
95 0.495 6.012 5.666 4.947 0.314 0.840 3.430 2.400 

8 50 0.354 4.270 2.769 2.635 0.195 1.050 -0.420 -0.366 
90 0.711 7.741 6.079 5.689 0.444 0.768 2.752 2.230 
95 0.839 9.004 7.442 6.813 0.519 0.699 4.058 3.015 

12 50 0.507 5.333 3.200 3.203 0.286 1.045 -0.320 -0.301 
90 0.958 9.798 7.173 6.839 0.574 0.678 3.108 2.574 
95 1.067 11.267 8.928 8.112 0.641 0.605 4.552 3.524 

16 50 0.635 6.132 3.465 3.585 0.359 1.029 -0.223 -0.194 
90 1.122 11.505 8.292 7.976 0.663 0.601 3.796 2.956 
95 1.244 13.360 9.790 9.488 0.727 0.516 5.089 4.122 

Panel B: sample size = 1085 

1 50 0.004 1.559 1.593 1.572 0.002 0.999 0.198 0.134 
90 0.011 2.565 2.734 2.595 0.006 0.991 2.495 1.559 
95 0.013 2.834 2.991 2.854 0.007 0.987 3.107 1.943 

4 50 0.016 3.102 1.651 1.646 0.009 0.997 0.212 0.150 
90 0.041 5.145 2.805 2.853 0.024 0.962 2.562 2.014 
95 0.050 5.683 3.142 3.160 0.029 0.946 3.423 2.571 

8 50 0.031 4.433 1.728 1.723 0.017 0.995 0.181 0.164 
90 0.082 7.385 2.976 3.053 0.048 0.920 2.908 2.452 
95 0.100 8.088 3.321 3.391 0.057 0.890 3.915 3.157 

12 50 0.046 5.449 1.815 1.791 0.026 0.992 0.208 0.189 
90 0.121 9.098 3.146 3.191 0.072 0.874 3.509 3.007 
95 0.149 9.982 3.520 3.614 0.085 0.831 4.884 3.951 

16 50 0.062 6.260 1.911 1.835 0.035 0.992 0.173 0.149 
90 0.158 10.505 3.292 3.374 0.093 0.826 4.433 3.807 
95 0.198 11.504 3.715 3.815 0.110 0.773 6.308 5.278 

The table presents estimated slope coefficients, iik, for equation (2) with the LS t-statistics, heteroskedasticity, and autocorrelation-corrected t-statistics using a Bartlett kernel and a truncation lag of 20 and 
Andrews' (1991) rule: respectively, t(LS), t(20), and t(A). OUT/RW denotes the ratio of regression mean-squared out-of-sample forecast error to the random-walk, mean-squared, out-of-sample forecast error. 
DM(20) and DM(A) denote the Diebold-Mariano statistics with a Bartlett kernel and truncation lags of 20 and via Andrews' (1991) rule, respectively. 

ahead forecasts and 25 sixteen-step ahead forecasts. As k 
increases, the finite sample distribution of this statistic 
becomes more fat-tailed. This is due in good measure to the 
fact that, as k increases and for a fixed sample size, the 
number of forecast observations decreases. As a result, 
empirical critical values decrease dramatically with k. 

Column 9 and 10 display the Monte Carlo Diebold- 
Mariano (1995) predictability statistics, again with either a 
truncation lag of 20 or using Andrews' (1991) rule (labeled 
DM(20) and DM(A), respectively). For both truncation 
rules, the median values of the Diebold-Mariano statistics 
are negative, implying that the random-walk forecast beats 
the regression. Again, the empirical distribution of the DM 
statistics are fat-tailed for large k. The 95th percentile of the 
DM(A) increases from 1.76 for k = 1 to 4.12 for k = 16. 

These findings result from the combination of problems 
that arise with long-horizon regressions, when the two series 
fail to cointegrate. For example, although we argue that 
explanatory power appears to increase with k (for example, 
high median R2' s and high empirical critical values of the 
t-statistics), there are sizeable distortions even for k = 1. 
These biases arise because of the presence of stochastic and 
highly persistent regressors. To further complicate matters, 

the distribution of the estimated slope coefficient would be 
different if the regression were estimated without a constant 
term (as in Dickey and Fuller (1979)).5 

Such stark results obtain in sample sizes typical of avail- 
able data. To investigate the behavior in larger samples, we 
report the results of an identical simulation experiment with 
a sample size of 1,085 in panel B. Now, the median k' S are 
all lower, but the bias is still sizable for large k; for example, 
the median of 1k iS 0.062 for k = 16. Rk are low and the 
ratios of RMSE of regression to random-walk forecasts are 
very close to 1 for all horizons. However, the presence of 
small bias in the LS slope parameters introduces large 
distortions at all horizons in the empirical critical values of 
the t-statistics, corroborating Berben and Van Dijk's 1998 
finding that the asymptotic distribution of Ik is not Gauss- 
ian. 

Finally, we suggest that even the graphical evidence of 
predictability has its pitfalls. In figure 2, we plot the actual 
k-period changes in the log U.S. dollar/German mark rate 
(dash-dot lines). Each graph also contains a confidence 

S Additional simulation results for the no-intercept case can be obtained 
from the authors. 
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TABLE 4.-LONG-HORIZON REGRESSION ESTIMATES NULL HYpoTHEsis: No COINTEGRATION (1973:2-1991:4) 

k fk t(20) p-val t(A) p-val Ri OUT/RW p-val DM(20) p-val DM(A) p-val 

Canadian Dollar 1 0.040 3.051 0.095 2.172 0.086 0.059 0.998 0.405 0.061 0.441 0.036 0.443 
4 0.155 2.398 0.217 2.168 0.190 0.179 1.119 0.412 -1.270 0.849 -0.925 0.975 
8 0.349 2.539 0.225 2.527 0.212 0.351 1.145 0.712 -1.036 0.958 0.890 0.901 

12 0.438 1.961 0.352 1.936 0.350 0.336 1.436 0.317 -1.916 0.592 -1.661 0.695 
16 0.450 1.542 0.458 1.512 0.465 0.254 1.699 0.196 -2.596 0.466 --1.857 0.620 

Gernman Mark 1 0.035 1.836 0.510 0.929 0.668 0.015 1.015 0.969 -0.932 0.724 -0.846 0.669 
4 0.205 2.902 0.354 2.290 0.406 0.104 1.037 0.914 -1.345 0.522 -0.852 0.780 
8 0.554 3.487 0.354 3.558 0.313 0.265 1.002 0.809 -0.027 0.814 -0.020 0.814 

12 0.966 6.329 *0.165 6.510 *0.135 0.527 0.796 *0.406 4.246 0.093 0.094 0.563 
16 1.324 9.256 0.096 9.124 0.082 0.762 0.524 *0. 113 8.719 0.030 8.719 0.016 

Japanese Yen 1 0.047 1.396 0.516 1.331 0.423 0.020 0.988 0.477 1.571 0.286 0.836 0.322 
4 0.263 2.254 0.353 2.153 0.341 0.125 0.928 0.396 2.302 0.215 1.487 0.310 
8 0.575 3.516 0.228 3.496 0.227 0.301 0.819 0.304 3.096 0.172 1.803 0.309 

12 0.945 4.889 0.166 4.735 0.190 0.532 0.712 0.233 3.319 0.173 1.147 0.276 
16 1.273 4.919 0.216 4.901 0.199 0.694 0.574 0.142 5.126 0.109 3.096 0.241 

Swiss Franc 1 0.074 2.681 0.210 2073 *0.166 0.051 0.997 0.642 0.066 0.704 0.064 0.693 
4 0.285 3.248 0.181 3.196 *0.131 0.180 0.981 0.596 0.218 0.676 0.162 0.686 
8 0.568 4.770 0.095 4.696 0.081 0.336 0.917 0.458 0.703 0.621 0.560 0.635 

12 0.837 8.013 0.032 8.013 0.023 0.538 0.738 0.214 2.933 0.203 0.938 0.624 
16 1.086 17.41 0.006 12.66 0.010 0.771 0.411 0.026 9.650 #0.019 1.996 0.411 

P1 P2 P3 P4 &2 

Canadian Dollar 1.227 0.028 -0.045 -0.233 0.011 
German Mark 1.253 -0.305 0.016 
Japanese Yen 1.267 -0.062 -0.204 0.013 
Swiss Franc 1.916 -1.154 0.236 0.014 

Data were kindly supplied by Nelson Mark (originally taken from the OECD AMaini Economic Indicators). For detailed descriptions of the statistics, see the notes to table 1. 
* indicates p-values that are no longer significant at a 90% level, but were under the null of cointegration. 
# indicates the reverse. 
The table presenits least-squares estimates of equation (2) over horizons of k = 1, 4, 8, 12, and 16 quarters and Monte Carlo p-values, tabulated under the null hypothesis that s, is a random walk, independent 

of f,. The f, are generated using the following AR models with lag order selected by the BIC criterioni. 

three null hypotheses studied in the simulation experiments 
of section III. That is, we consider the null of cointegration, 
the null of no cointegration, and the null of [fe, sj]' 
following an unrestricted VAR. The empirical investigation 
covers Canada, Germany, Japan, and Switzerland. 

A. Does the Null Hypothesis AMatter? Mark's 1995 Results 
Revisited 

To assess the importance of the cointegration assumption, 
we first replicate the estimation results in Mark (1995) with 
precisely the same data, but with critical values tabulated 
under our null of no cointegration. The data-generating 
processes in the simulations are calibrated to the individual 
exchange rates and monetary fundamentals of the four 
countries under study. 

Table 4, column 2, reports LS estimates of the slope 
coefficients; column 3 and 5 report Newey-West corrected 
t-statistics estimated with a truncation lag of 20, or trunca- 
tion lag estimated with the Andrews' (1991) rule; and 
column 4 and 6, labeled "p-val," show the associated Monte 
Carlo p-values. As in the simulation experiment, the slope 
coefficients rise as the horizon increases. The t-statistics rise 
as the horizon increases for three of four currencies, as do 
the R2' s shown in column 7. However, our Monte Carlo 
p-values indicate that, for three of the four exchange rates in 
our sample (the exception being the U.S. dollar/Swiss franc 
exchange rate), none of the slope coefficients are signifi- 
cantly different from 0 at a 95%-significance level. In 

several cases (marked with asterisks), statistics that were 
significant under Mark's null are no longer significant using 
our p-values and a 90%-confidence level. 

Column 8, labeled "OUT/RW," displays the ratio of 
root-mean-squared error for out-of-sample regression fore- 
casts over root-mean-squared error implied by the random- 
walk model over the period 1985:1 to 1991:4. Again, 
column 9 displays the p-values that are implied by Monte 
Carlo critical values. In agreement with the t-statistics, only 
the U.S. dollar/Swiss franc exchange rate, one of four, 
yields a p-value significant at the 95% level. 

Columns 10 through 13 display the Monte Carlo Diebold 
and Mariano (1995) statistics and p-values, again with 
either a truncation lag of 20 or using Andrews' rule. As 
stressed above, the conventional finding is that models 
underperform the random walk (Meese & Rogoff, 1988). 
Therefore, it would be more appropriate to base p-values on 
a two-sided alternative that allows either forecast to domi- 
nate. To make this correction, we multiply p-values that are 
less than 0.50 by 2. When this is done, only one test statistic, 
at one horizon, is significant for U.S. dollar/German mark 
rates. 

The Diebold-Mariano statistics in table 4 suggest that the 
model improves out-of-sample forecasts for two of four 
exchange rates. Indeed, the evidence of U.S. dollar/Swiss 
franc predictability is strengthened under our null. The 
reason for this is clear: if cointegration does not hold, the 
model should grossly underperform the random-walk fore- 
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