IDEAS AND ECONOMIC GROWTH

Jón Steinsson

University of California, Berkeley

Fall 2024

- What sustains growth at the frontier? (Will it continue in the future?)
- Why are some countries so far behind the frontier? (What might help them close the gap?)

This lecture focuses on the first of these questions

- Solow model: Capital accumulation not a source of long-run growth
 - Reason: Diminishing returns
- What about knowledge?
- If knowledge succeeds where capital fails, there must be something fundamentally different about knowledge than capital

- To drive home the importance of diminishing returns, let's consider a model without diminishing returns
- Suppose

$$Y(t) = AK(t)$$

and

$$\dot{K}(t) = sY(t) - \delta K(t)$$

where

- s is the exogenous savings rate (as in Solow model)
- Labor is assumed constant and normalized to one (which implies that Y(t) is output per person)

Combining these two equations yields

$$\dot{Y}(t) = sAY(t) - \delta Y(t)$$
 $g_Y = \frac{\dot{Y}_t}{Y_t} = sA - \delta$

- We get long-run growth from capital accumulation
- The long-run growth rate of output (per person) is governed by *s*, *A*, and δ
- Long-run growth is endogenous to the extent that *s*, *A*, and δ can be influenced by policy / behavior

GROWTH FROM EXTERNALITIES

- But why might we think *Y* = *AK* makes sense?
- One "micro-foundation" is learning-by-doing externalities
 - Productivity gains coming from investment and production
 - Empirical evidence from airframe manufacturing, shipbuilding, etc. (Wright 36, Searle 46, Asher 56, Rapping 65)
- Several early endogenous growth models followed this path (e.g., Frankel 62, Griliches 79, Romer 86, Lucas 88)
- We consider Romer (1986) version here (see Romer 19, p. 119-121; Barro and Sala-i-Martin 04, sec. 4.3; Acemoglu 09, sec. 11.4)

Suppose there is a continuum of firms with production function

$$Y_i(t) = F(K_i(t), A_i(t)L_i(t))$$

- Two assumptions:
 - Strong learning-by-doing (investing): Knowledge grows proportionally with firm's capital stock
 - Knowledge spillovers are perfect across firms (all firms benefit from each firm's learning)
- These assumptions imply:

$$A_i(t) = BK(t)$$

• Combining prior two equations:

 $Y_i(t) = F(K_i(t), BK(t)L_i(t))$

• Suppose further that all firms are identical:

Y(t) = F(K(t), BK(t)L(t))

• If F is homogeneous of degree one, we have

Y(t) = F(1, BL(t))K(t)

• This model therefore yields a production function of the Y = AK form

GROWTH AND KNOWLEDGE SPILLOVERS

- Romer (1986) model yields endogenous growth
- But arguably makes unrealistic assumptions:
 - Assumes very large amounts of learning-by-doing
 - Doesn't work if knowledge grows less than proportionally with K
- Lucas (1988) builds similar model with human capital externalities.
 - Arguably also makes unrealistic assumptions (see Jones 21, section 2.2)
- Doesn't seem to capture what is "special" about knowledge

- Knowledge is non-rival
- This is the fundamental difference versus capital
- Implies that knowledge can be a source of long-run growth

- Ideas: a design, a blueprint, or a set of instructions
 - How to make fire using sticks, calculus, the design of the incandescent light bulb, oral rehydration therapy, Beethoven's 3th symphony, etc.
- Objects: Goods, capital, labor, land, highways, barrels of oil, etc.
 - A particular incandescent light bulb, a particular oral rehydration pill, etc.

- Objects are rival:
 - If I use a particular lawn mower, you can't use that same lawn mower at the same time
- Ideas are non-rival:
 - My use of calculus, does not negatively affect your ability to use calculus at the same time
 - Once invented, calculus can be used by any number of people simultaneously (ideas are "infinitely usable")

NON-RIVALRY AND RETURNS TO SCALE

Consider production function

$$Y = F(A, X)$$

- A is index of the stock of knowledge
- X is all rival inputs (vector)
- Replication implies constant returns to objects:

$$\lambda Y = F(A, \lambda X)$$

- This argument implicitly uses non-rivalry of ideas
- We can use same A to build second factory as first factory.
- Implies that if we increase A as well we get increasing returns:

$$F(\lambda A, \lambda X) > F(A, \lambda X) = \lambda Y$$

Steinsson

 Since ideas are non-rival, per capita output depends on the overall stock of knowledge, NOT knowledge per capita

$$Y(t) = A(t)^{\sigma} K(t)^{\alpha} L(t)^{1-\alpha}$$

$$y(t) = A(t)^{\sigma} k(t)^{\alpha}$$

- Output per person depends on:
 - Total stock of knowledge (A(t)^σ)
 - Capital per capita (k(t)^α)
- Solow model: Capital per capita can't grow forever (if A is constant)
- If stock of knowledge can grow forever, y(t) can growth forever

- Romer (1990) is the paper that crystallized these ideas
- See Jones (2019) for role of this paper in relation to earlier and subsequent literature
- But Romer (1990) made some extreme assumptions that we will want to move away from

KNOWLEDGE PRODUCTION

- Key new feature: Knowledge is produced
- Workers do one of two things:
 - Produce goods and services
 - Produce knowledge (R&D)
- Key choice: How are workers allocated between these activities?
- Simplifying assumption: A fraction s of workers work on R&D
 - · Similar to Solow assumption about savings rate
 - Workers choose optimally in Romer (1990)
 - We will consider a model where workers choose optimally later on
 - For now:

$$L_A(t) = sL(t) \qquad \qquad L_Y(t) = (1-s)L(t)$$

• Knowledge production function in Romer (1990):

$$\dot{A}(t) = \theta L_A(t) A(t)$$

- Knowledge production depends on two inputs:
 - Research effort: $L_A(t)$ denotes labor devoted to research
 - Existing knowledge: A(t)
- Importantly, exponent on A(t) is one
- Implies that

$$g_A(t) = \frac{\dot{A}(t)}{A(t)} = \theta L_A(t)$$

KNOWLEDGE PRODUCTION IN ROMER (1990)

- Suppose for simplicity that $L_A(t) = L_A$ (i.e., a constant)
- Then growth rate of knowledge is constant

$$g_A = \frac{\dot{A}(t)}{A(t)} = \theta L_A$$

Suppose for simplicity that goods production function is

$$Y(t) = A(t)^{\sigma}L_Y \qquad => \qquad y(t) = A(t)^{\sigma}(1-s)$$

where 1 - s is (constant) share of pop. working on goods production, σ is importance of ideas for production (degree of increasing returns)

• This implies

$$g_y = \sigma g_A = \sigma \theta L_A$$

Steinsson

- But why would knowledge production be linear in A(t) and L(t)?
- More generally:

$$\dot{A}(t) = \theta L_{A}(t)^{\lambda} A(t)^{\phi}$$

- Not necessarily constant returns to objects ($\lambda = 1$):
 - Twice as much research effort may not generate twice as much knowledge
 - There may be congestion / duplication / diminishing returns
 - This would yield $\lambda < 1$
 - We assume however that $\lambda > 0$

$$\dot{A}(t) = \theta L_{A}(t)^{\lambda} A(t)^{\phi}$$

- Not necessarily constant returns to existing knowledge ($\phi = 1$)
- $\phi > 0$: Standing on the shoulders of giants
 - Having more knowledge lets a researcher create knowledge faster
 - E.g., printed books, internet, computers, microscopes, etc.
- $\phi < 0$: No more low hanging fruit
 - Suppose you are fishing in a pond with 100 fish
 - As you catch more, harder to catch the rest
- Nothing particularly natural about $\phi = 1$

- 1. Goods production: $Y(t) = A(t)^{\sigma} L_Y(t)$
- 2. Ideas production: $\dot{A}(t) = \theta L_A(t)^{\lambda} A(t)^{\phi}$
- 3. Allocation: $L_A(t) = sL(t)$
- 4. Resource constraint: $L(t) = L_A(t) + L_Y(t)$
- 5. Population growth: $L(t) = L(0)e^{nt}$

Notable features:

- Constant fraction of labor force s conducts research
 - Simple short cut
 - Similar to constant savings rate in Solow model
 - We will endogenize later
- Constant population growth at rate n
- σ captures degree to which increase in knowledge increases productivity in production of goods and services
 - How much does 1% increase in knowledge increase productivity?
 - But what is a 1% increase in knowledge? How is this measured?

• Combining (1), (3) and (4) and dividing by L(t) we get:

$$y(t) = A(t)^{\sigma}(1-s)$$

Taking logs and time derivatives yields

$$g_{y}(t) = \sigma g_{A}(t)$$

Suppose there is a balanced growth path with constant growth:

$$g_y(t) = g_y$$
 and $g_A(t) = g_A$

• Then we have

$$g_y = \sigma g_A$$

• Combining (2) and (3) and dividing by A(t):

$$g_{A}(t) = \theta s^{\lambda} L(t)^{\lambda} A(t)^{\phi-1}$$

Taking logs and time derivatives yields

$$\mathbf{0} = \lambda g_L + (\phi - \mathbf{1})g_A$$

where we use $g_A(t) = g_A$ on BGP

• Rearranging and using $g_L = n$ we get

$$g_{y} = \sigma g_{A} = \frac{\sigma \lambda}{1 - \phi} n$$

$$g_{y} = \sigma g_{A} = \frac{\sigma \lambda}{1 - \phi} n$$

- Long-run growth proportional to population growth rate
- If $L_A(t)$ were constant at L_A (which implies n = 0):

$$\frac{\dot{A}(t)}{A(t)} = \theta L_{A}^{\lambda} A(t)^{\phi-1} = \frac{\theta L_{A}^{\lambda}}{A(t)^{1-\phi}}$$

• If $1 - \phi > 0$, or equivalently $\phi < 1$:

$$g_A(t) = rac{\dot{A}(t)}{A(t)}
ightarrow 0$$

Growth can't keep up with the level and thus goes to zero

$$g_{y} = \sigma g_{A} = \frac{\sigma \lambda}{1 - \phi} n$$

- With φ < 1, research effort must grow exponentially for knowledge to grow exponentially
- Exponential population growth and constant share of labor force working on research (*s*) does the trick

Three ways to get sustained growth:

1. AK Model: Capital accumulation linear differential eq.

$$\dot{K}(t) = \mathbf{s}\mathbf{A}K(t) - \delta K(t) = > \dot{K}(t) = (\mathbf{s}\mathbf{A} - \delta)K(t)$$

2. Romer (1990) / $\phi = 1$: Knowledge prod. linear differential eq.

$$\dot{A}(t) = \theta L_{A}(t) A(t)$$

- "Fully-endogenous" growth model
- Also true of Aghion-Howitt 92, Grossman-Helpman 91
- 3. Jones (1995) / ϕ < 1: Pop. growth linear differential eq.

$$\dot{A}(t) = \theta L_A(t) A(t)^{\phi}$$
 $\dot{L}(t) = nL(t)$

• "Semi-endogenous" growth model

Growth of knowledge is generally (even outside BGP):

$$g_{A}(t) = \theta s^{\lambda} L(t)^{\lambda} A(t)^{\phi-1}$$

Taking logs and differentiating by time yields

$$\frac{\dot{g}_{A}(t)}{g_{A}(t)} = \lambda n - (1 - \phi)g_{A}(t)$$

• Multiplying through by $g_A(t)$ yields

$$\dot{g}_A(t) = \lambda n g_A(t) - (1 - \phi) g_A(t)^2$$

$$g_{\mathcal{A}}(t) = \theta s^{\lambda} L(t)^{\lambda} \mathcal{A}(t)^{\phi-1}$$
(1)

$$\dot{g}_{A}(t) = \lambda n g_{A}(t) - (1 - \phi) g_{A}(t)^{2}$$
⁽²⁾

- Equation (1) determines initial level of $g_A(t)$
 - Depends, e.g., on *s* (and therefore innovation policy)
- Equation (2) determines subsequent evolution of $g_A(t)$
 - Independent of s
- With $\phi < 1$ a change in *s* only has a "level effect", not a "growth effect"

FIGURE 3.1 The dynamics of the growth rate of knowledge when $\theta < 1$

Source: Romer (2019). In Romer's notation $\theta < 1$ is what I have called $\phi < 1$.

Source: Romer (2019). In Romer's notation $\theta < 1$ is what I have called $\phi < 1$ and a_L is what I have called s

FIGURE 3.3 The impact of an increase in a_L on the path of A when $\theta < 1$

Source: Romer (2019). In Romer's notation $\theta < 1$ is what I have called $\phi < 1$ and a_L is what I have called s

$$g_{\mathcal{A}}(t) = rac{\dot{\mathcal{A}}(t)}{\mathcal{A}(t)} = heta L^{\lambda}_{\mathcal{A}} \mathcal{A}(t)^{\phi-1} = rac{ heta s^{\lambda} \mathcal{L}(t)^{\lambda}}{\mathcal{A}(t)^{1-\phi}}$$

• Models with $\phi = 1$: *s* affects long run growth rate

$$g_A(t) = \frac{\dot{A}(t)}{A(t)} = \theta s^{\lambda} L(t)^{\lambda}$$

• Models with $\phi < 1$: *s* does not affect long run growth rate

$$g_y = \sigma g_A = \frac{\sigma \lambda}{1 - \phi} n$$

- Models with $\phi = 1$ have "strong" scale effects
 - Growth rate is increasing in level of population:

$$g_A(t) = \frac{\dot{A}(t)}{A(t)} = \theta s^{\lambda} L(t)^{\lambda}$$

- Models with $\phi < 1$ have "weak" scale effects
 - Growth rate is increasing in growth rate of population:

$$g_y = \sigma g_A = \frac{\sigma \lambda}{1 - \phi} n$$

These are interesting testable implications of these model classes

- One reading of scale effects is that large countries or countries with fast population growth should have high TFP growth
- Obviously counterfactual (Luxembourg, Iceland, Singapore)
- But ideas flow between countries
- Scale effects likely to operate largely at the world level (although flow of ideas is not perfect or instantaneous)

- There is arguably very strong evidence against strong scale effects:
 - Frontier growth has been quite stable for a long time
 - Research effort has increased very substantially
- With strong scale effects, increased research effort should increase TFP growth at frontier

Per Capita GDP in the United States, 1880–1987 (Natural logarithm) Source. The data are from Maddison [1982, 1989] as compiled by Bernard [1991]. The solid trend line represents the time trend calculated using data only from 1880 to 1929. The dashed line is the trend for the entire sample.

Source: Jones (1995).

Source: Jones (1995).

Source. OECD Department of Economics and Statistics Analytic Database. Data provided by Steven Englander.

Source: Jones (1995).

Figure 2. Researchers and employment in the G-5 countries (index). *Note*. From calculations in Jones (2002b). Data on researchers before 1950 in countries other than the United States is backcasted using the 1965 research share of employment. The G-5 countries are France, Germany, Japan, the United Kingdom and the United States.

Source: Jones (2005).

$$g_A(t) = rac{\dot{A}(t)}{A(t)} = heta s L(t)$$

- Research effort has risen by a factor of 8
- Models with φ = 1 imply that growth should have increased by a factor of 8
- Clearly way off!

- This evidence suggests that ideas are harder to find
- By ideas, we mean "proportional increases in productivity"
- Research productivity is falling. It takes more research effort to produce the same growth rate
- This means $\phi < 1$ ($\beta > 0$ using Jones (2021) notation)
- But by how much?
 - If φ = 0.95 growth effects of change in s on transition path would last for a long time

BLOOM, JONES, VAN REENEN, WEBB (2020)

- Estimate extent to which ideas are getting harder to find at both macro and micro level
- Ideas production function

$$\frac{\dot{A}(t)}{A(t)} = \alpha A(t)^{-\beta} S(t)$$

- S(t) denotes "scientists" (i.e., research effort)
- Notice that $\beta = 1 \phi$
- If g_A is constant:

$$\beta = \frac{g_S}{g_A}$$

Define:

Research Productivity =
$$\frac{\dot{A}(t)/A(t)}{S(t)}$$

AGGREGATE EVIDENCE

FIGURE 1. AGGREGATE DATA ON GROWTH AND RESEARCH EFFORT

Source: Bloom, Jones, Van Reenen, Webb (2020).

Steinsson

Ideas and Growth

FIGURE 3. THE STEADY EXPONENTIAL GROWTH OF MOORE'S LAW

Source: Bloom, Jones, Van Reenen, Webb (2020).

Steinsson

Ideas and Growth

FIGURE 4. DATA ON MOORE'S LAW

Source: Bloom, Jones, Van Reenen, Webb (2020).

<u> </u>			
		~	

Scope	Time period	Average annual growth rate $(\%)$	Half-life (years)	Dynamic diminishing returns, β
Aggregate economy	1930-2015	-5.1	14	3.1
Moore's Law	1971-2014	-6.8	10	0.2
Semiconductor TFP growth	1975-2011	-5.6	12	0.4
Agriculture, US R&D	1970-2007	-3.7	19	2.2
Agriculture, global R&D	1980-2010	-5.5	13	3.3
Corn, version 1	1969-2009	-9.9	7	7.2
Corn, version 2	1969-2009	-6.2	11	4.5
Soybeans, version 1	1969-2009	-7.3	9	6.3
Soybeans, version 2	1969-2009	-4.4	16	3.8
Cotton, version 1	1969-2009	-3.4	21	2.5
Cotton, version 2	1969-2009	+1.3	-55	-0.9
Wheat, version 1	1969-2009	-6.1	11	6.8
Wheat, version 2	1969–2009	-3.3	21	3.7
New molecular entities	1970-2015	-3.5	20	
Cancer (all), publications	1975-2006	-0.6	116	
Cancer (all), trials	1975-2006	-5.7	12	
Breast cancer, publications	1975-2006	-6.1	11	
Breast cancer, trials	1975-2006	-10.1	7	
Heart disease, publications	1968-2011	-3.7	19	
Heart disease, trials	1968-2011	-7.2	10	
Compustat, sales	3 decades	-11.1	6	1.1
Compustat, market cap	3 decades	-9.2	8	0.9
Compustat, employment	3 decades	-14.5	5	1.8
Compustat, sales/employment	3 decades	-4.5	15	1.1
Census of Manufacturing	1992-2012	-7.8	9	

TABLE 7—SUMMARY OF THE EVIDENCE ON RESEARCH PRODUCTIVITY

Source: Bloom, Jones, Van Reenen, Webb (2020).

Steinsson	Ideas and Growth	47

GROWTH IN THE PAST AND FUTURE

- Semi-endogenous growth model imply that long-run growth is governed by population growth
- Many other factors have "level effects" (e.g., increases in education, R&D share, misallocation)
- But level effects can be large
- How much of recent growth is due to such level effects?
- What does this suggest about the future of growth?

Goods production:

$$Y_t = K_t^{lpha} (Z_t h_t L_{Yt})^{1-lpha}$$

- *h*_t is human capital per person
- Productivity:

$$Z_t = A_t M_t$$

- At is knowledge
- Mt is misallocation
- Some manipulation:

$$y_t = \left(\frac{K_t}{Y_t}\right)^{\alpha/(1-\alpha)} A_t M_t h_t l_t (1-s_t)$$

Ideas Production function:

$$\dot{A}(t) = heta L_{A}(t)^{\lambda} A(t)^{\phi}$$
 $rac{\dot{A}(t)}{A(t)} = heta s(t)^{\lambda} L(t)^{\lambda} A(t)^{\phi-1}$

With constant growth of A(t):

$$egin{aligned} 0 &= \lambda g_{s} + \lambda g_{L} - (1-\phi) g_{A} \ g_{A} &= rac{\lambda}{1-\phi} (g_{s} + g_{L}) \end{aligned}$$

 Jones (2021) assumes λ/(1 - φ) = λ/β = γ = 1/3 (Results that follow are sensitive to this!)

where

$$\text{TFP growth} \equiv \underbrace{d \log M_t}_{\text{Misallocation}} + \underbrace{d \log A_t}_{\text{Ideas}} = \underbrace{d \log M_t}_{\text{Misallocation}} + \underbrace{\gamma d \log s_t}_{\text{Research intensity}} + \underbrace{\gamma d \log L_t}_{\text{LF growth}}$$
(16)

Source: Jones (2021).

Figure 2: Historical Growth Accounting

Components of 2% Growth in GDP per Person

Components of 1.3% TFP Growth

Note: The figure shows a growth accounting exercise for the United States since the 1950s using equations (15) and (16). See the main text for details.

Source: Jones (2021).

- In the long run:
 - All terms are zero except population growth
 - 100% of growth due to population growth
- Historically:
 - 80% of growth due to other factors
 - Only 20% of growth due to population growth (Sensitive to assumption on *γ*.)

WILL GROWTH SLOW?

• Many sources of growth are temporary:

- Increased education
- Higher Emp-Pop ratio
- Falling misallocation
- Rising research intensity
- But some of these might continue for a very long time (e.g., increased research intensity)
- Population growth is slowing (Population likely to start shrinking soon!)

Figure 4: Population Growth around the World

Note: Average annual rates of population growth for countries classified according to their 2018 World Bank income grouping. Each data point corresponds to a five-year period. Source: United Nations (2019).

Source: Jones (2021).

Figure 5: The Total Fertility Rate around the World

Note: The total fertility rate is the average number of live births a hypothetical cohort of women would have over their reproductive life if they were subject during their whole lives to the fertility rates of a given period and if they were not subject to mortality. Each data point corresponds to the five-year period 2015–2020. Source: United Nations (2019).

Source: Jones (2021).

MIGHT GROWTH SPEED UP?

Finding Einsteins

- Traditionally most people not able to reach their potential as producers of ideas/knowledge
- Extreme poverty, cast/class restrictions, discrimination
- How many Einsteins and Doudnas have we missed
- Automation and Artificial Intelligence
 - Interesting discussion in Jones (2021, sec. 6)
 - Automation of ideas production could even imply a "singularity" (explosive growth driven by AGI)