Lecture 12: Business Cycles

Macroeconomics (Quantitative) Economics 101B

Jón Steinsson University of California, Berkeley

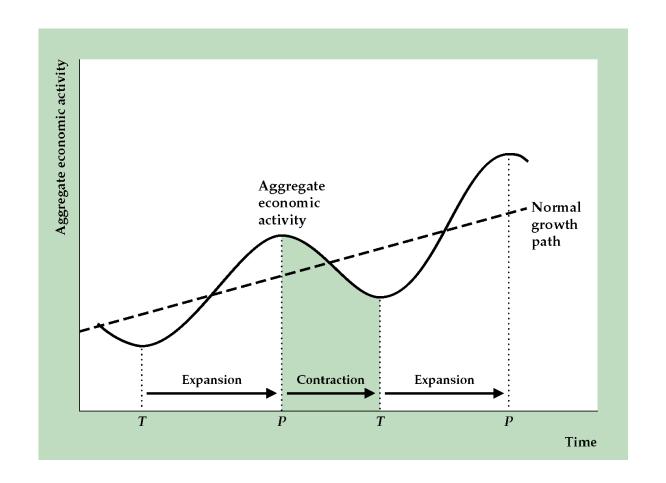
Long Run Versus Short Run

- Classical economics:
 - Emphasizes self-equilibrating forces
 (supply=demand, long-run monetary neutrality)
 - In the long run, these forces bring about good outcomes
- But economies are buffeted by shocks that result in serious pathologies such as high inflation and high unemployment
 - Great Depression, Early 1980s recession, 2007-2009 financial crisis

Long Run Versus Short Run

But this "long run" is a misleading guide to current affairs. "In the long run" we are all dead.

Economists set themselves too easy, too useless a task if in tempestuous seasons they can only tell us that when the storm is long past the ocean is flat again.

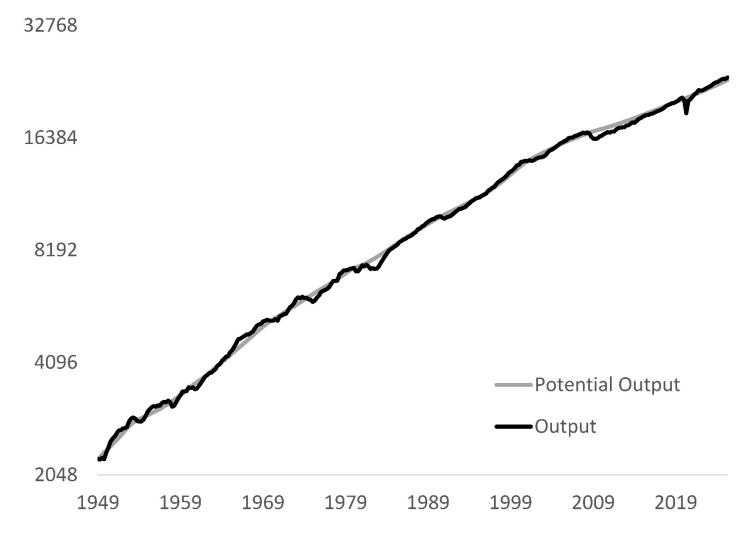

- John Maynard Keynes

Long Run Versus Short Run

- (Keynesian) Macroeconomics:
 - Born as separate sub-discipline in the Great Depression
 - Obvious that long-run forces not working well
 - Increased focus on workings of the economy in the short run
 - Increased focus on "business cycles" and crises

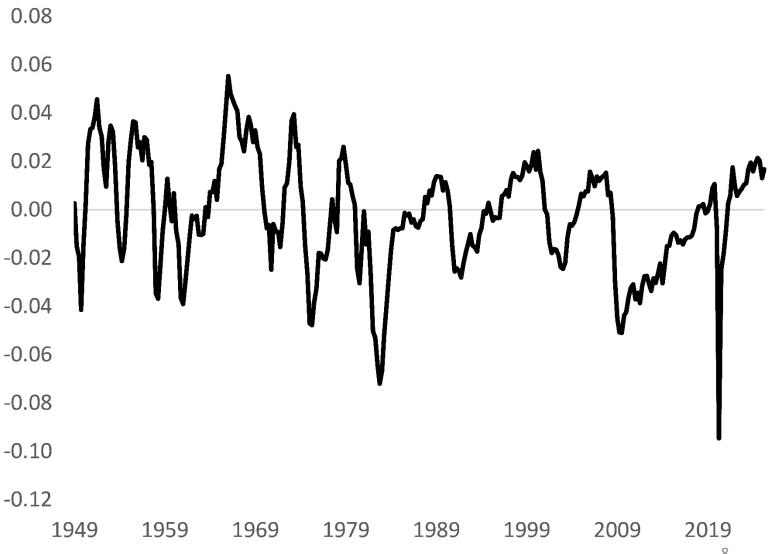
Business Cycles

- Output fluctuates around a trend
- Fluctuations called business cycles
- Recurrent but not periodic
 - Last approximately from 2 to 10 years
- Phases:
 - Expansion phase (trough to peak)
 - Contraction phase (peak to trough)
- "Official" arbiter:
 - Business Cycle Dating Committee of the National Bureau of Economic Research


Trend and Cycle

- Useful to decompose output into trend and cycle
- We think of trend output as "potential output" or the "natural rate of output". Let's denote this as \overline{Y}_t .
- We define the output gap as percentage deviations of output from potential output

$$\tilde{Y}_t = \frac{Y_t - \bar{Y}_t}{\bar{Y}_t} \approx \log\left(\frac{Y_t}{\bar{Y}_t}\right)$$


The Trend: Potential Output

- Here I plot output (real GDP) and potential output as estimated by the Congressional Budget Office
- Difference looks small relative to growth in output
- These differences are recessions and booms

The Business Cycle

- Here I plot the output gap measured as the difference between log output and log potential output (from CBO)
- Recessions cause up to 10% fall in output relative to potential

Our First "Business Cycle" Model

- Medieval Economy:
 - Money market equilibrium:

$$M_t \overline{V} = P_t Y_t$$

– Price Adjustment:

$$\frac{P_{t+1}}{P_t} = \left(\frac{Y_t}{Y^*}\right)^{\theta}$$

- Many things missing:
 - No trend growth
 - No steady state inflation
 - No unemployment
 - No interest rate
 - No monetary policy
 - No fiscal policy
 - Etc.

Add Trend Growth

- Let's add trend growth to medieval economy
- Steady state becomes "trend growth path"
- We assume that TFP has a positive trend growth rate. So we have A_t rather than A. (A_t is still exogenous.)
- Actual output: $Y_t = A_t L_t$
- Potential output (natural rate of output): $\overline{Y}_t = A_t L^*$
- Employment is at desired level L^* when output is at potential

Medieval Economy with Trend Growth

Medieval economy without trend growth

$$M_t \overline{V} = P_t Y_t$$

$$\frac{P_{t+1}}{P_t} = \left(\frac{Y_t}{Y^*}\right)^{\theta}$$

Medieval economy with trend growth

$$M_t \overline{V} = P_t Y_t \qquad \qquad \frac{P_{t+1}}{P_t} = \left(\frac{Y_t}{Y_t^*}\right)^{\sigma}$$

• Only difference is that Y^* becomes Y_t^*

Business Cycle Model

- Can we use concepts of supply and demand to think about the Medieval economy model?
- Let's start with the money market equilibrium condition:

$$M_t \bar{V} = P_t Y_t$$

Take logs and time differences:

$$\Delta \log M_t = \Delta \log P_t + \Delta \log Y_t$$

Money Market Equilibrium

$$\Delta \log M_t = \Delta \log P_t + \Delta \log Y_t$$

• Inflation:

$$\Delta \log P_t = \log \left(\frac{P_t}{P_{t-1}}\right) = \log(1 + \pi_t) \approx \pi_t$$

Output gap:

$$\Delta \log Y_t = \log Y_t - \log Y_{t-1} + \log \overline{Y}_t - \log \overline{Y}_t + \log \overline{Y}_{t-1} - \log \overline{Y}_{t-1}$$

$$= \log(Y_t/\overline{Y}_t) - \log(Y_{t-1}/\overline{Y}_{t-1}) + \log(\overline{Y}_t/\overline{Y}_{t-1})$$

$$\approx \widetilde{Y}_t - \widetilde{Y}_{t-1}$$

$$\geq \widetilde{Y}_t - \widetilde{Y}_{t-1}$$

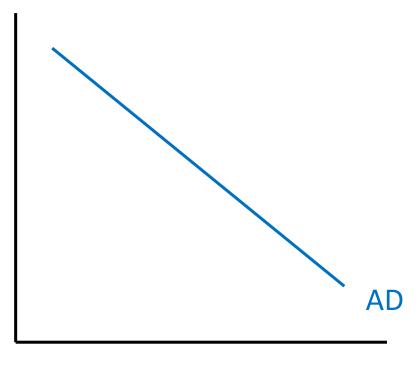
$$\leq \widetilde{Y}_t - \widetilde{Y}_{t-1}$$

• This yields:

$$\Delta \log M_t = \pi_t + \tilde{Y}_t - \tilde{Y}_{t-1}$$

of it as a constant that doesn't contribute anything interesting to the analysis

Money Market Equilibrium as Aggregate Demand


Inflation

$$\Delta \log M_t = \pi_t + \tilde{Y}_t - \tilde{Y}_{t-1}$$

We can rewrite this as

$$\pi_t = -\tilde{Y}_t + \tilde{Y}_{t-1} + \Delta \log M_t$$

- Plot this relationship in (π_t, \tilde{Y}_t) space
- Downward sloping locus of points
- We call this the aggregate demand curve

Output gap

Price Setting Equation

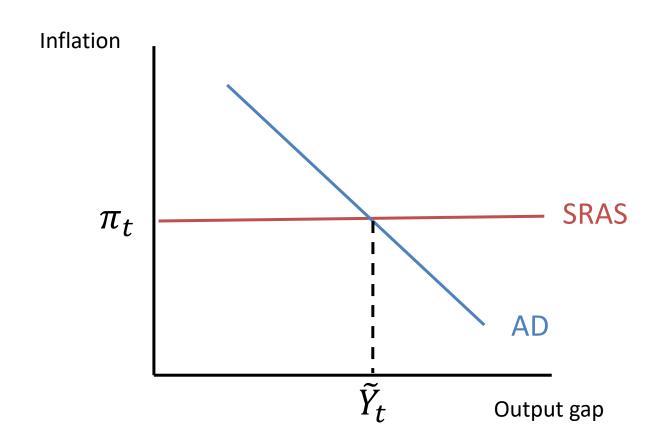
$$\frac{P_{t+1}}{P_t} = \left(\frac{Y_t}{Y_t^*}\right)^{\theta} \rightarrow \frac{P_t}{P_{t-1}} = \left(\frac{Y_{t-1}}{Y_{t-1}^*}\right)^{\theta}$$

- Replace: Y_t^* with \overline{Y}_t (i.e., assume desired output is same as potential output)
- Take logs:

$$\log\left(\frac{P_t}{P_{t-1}}\right) = \theta \log\left(\frac{Y_{t-1}}{\overline{Y}_{t-1}}\right)$$

$$\pi_t = \theta \tilde{Y}_{t-1}$$

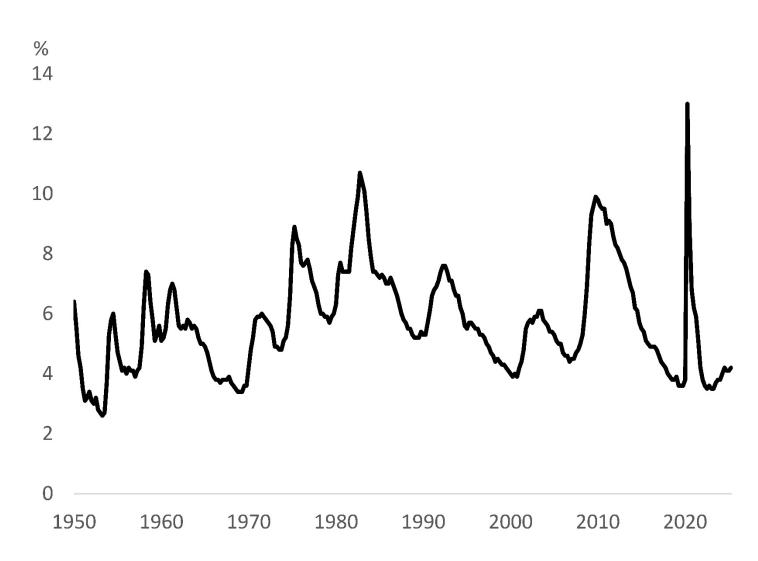
Short Run Aggregate Supply


Inflation

$$\pi_t = \theta \tilde{Y}_{t-1}$$

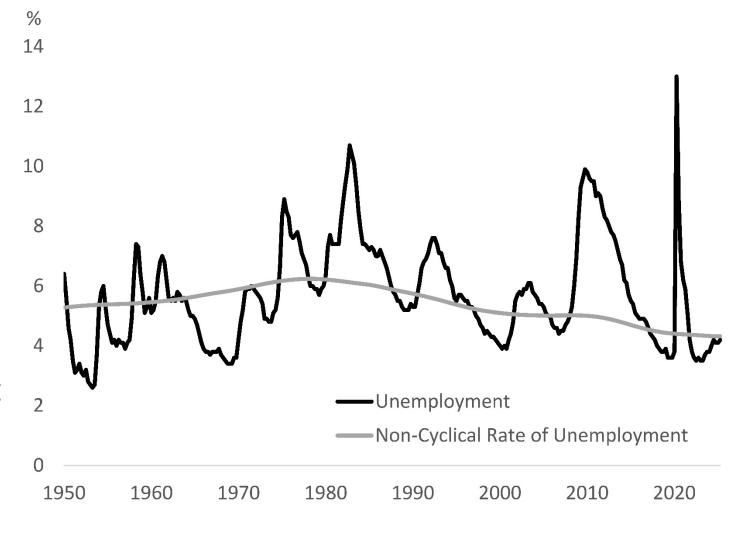
- Very simple short-run aggregate supply relation
- What is its slope?
- Short run:
 - Inflation is fixed
 - Predetermined one period in advance
 - Horizontal short-run aggregate supply curve (SRAS)

Short Run Equilibrium


Output Gap and Unemployment

- Measuring output gap is tricky!
- Trend productivity growth varies over time
 - Productivity slowdown in 1970s
 - Productivity speedup between 1995-2004
- Hard to know exactly how to draw a trend line for output
- Alternative: Look at unemployment

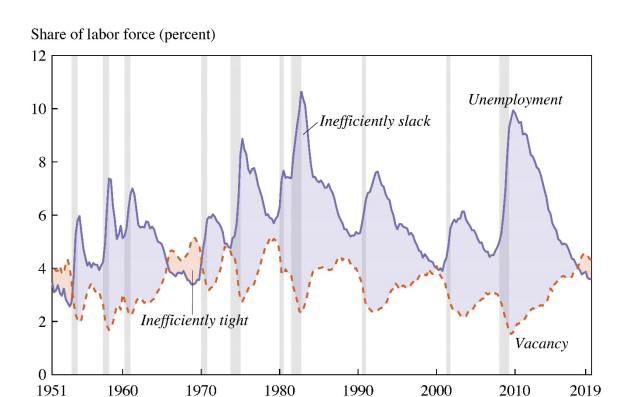
Unemployment Rate

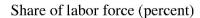

- Unemployment rate rises during recessions and falls during expansions
- No trend

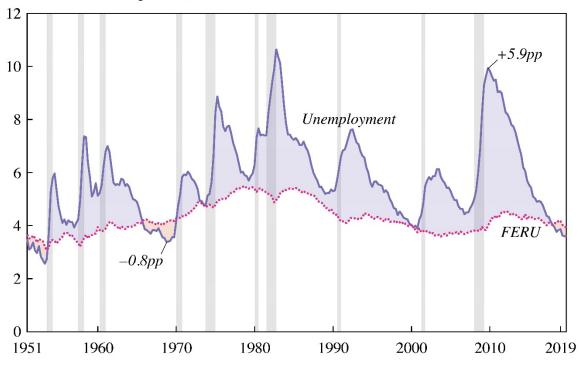
- But what is the "natural rate" of unemployment?
- Should we aim for zero unemployment?

Natural Rate of Unemployment

- People quit and are fired
- Takes time for them to search for new jobs
- Natural rate of unemployment reflects this "frictional" unemployment
- Here I plot CBO estimate of "non-cyclical" unemployment
- Is natural rate really that high?



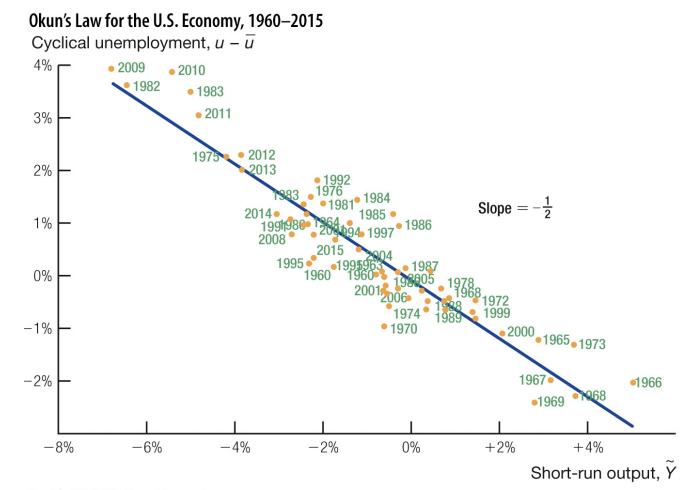

Full Employment Rate of Unemployment


- Michaillat and Saez: Want to minimize nonproductive use of labor
- Two types of "nonproductive" use of labor
 - -1) Unemployment (u) 2) Recruitment (v)
- These are necessary, but don't produce output
- When u > v labor market is too slack
- When u < v labor market is too tight
- Productive labor is maximized when u=v which implies

$$u^* = \sqrt{uv}$$

Full Employment Rate of Unemployment

Source: Unemployment rate u and vacancy rate v come from figure 1.


Note: The FERU is $u^* = \sqrt{uv}$. The vertical gray areas are NBER-dated recessions.

Okun's Law

- Useful to be able to go back and forth between output and unemployment
- During recessions output is low and the unemployment rate is high
- "Stable" empirical relationship:

$$u_t - u^n = -\frac{1}{2}\tilde{Y}_t$$

This is called "Okun's Law"

Copyright @ 2018 W. W. Norton & Company, Inc.