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TABLE 4

ANCHORED VS. BACKWARD-LOOKING EXPECTATIONS

πe
t = λ2.5 + (1 − λ) 1

1−γ 40 [(1 − γ )πt−1 + γ (1 − γ )πt−2 + . . . + γ 39(1 − γ )πt−40] + εt

1985Q1–2015Q4 (with 1998Q1 Break in λ)

λprebreak 0.067 0
(0.046)

λpostbreak 0.773 1
(0.066)

γ 0.875 0.859
(0.018) (0.017)

DW 0.357 0.312
SE of Reg. 0.189 0.203
R

2
0.940 0.930

NOTE: NLLS with Newey–West (1987) standard errors in parentheses. πe
t is the average forecast of long-term CPI inflation from the Survey

of Professional Forecasters, and πt is median CPI inflation. The break date of 1998Q1 is the quarter that produces the largest Wald statistic
for the hypothesis that λprebreak=λpostbreak .

fully backward looking to fully anchored. These restrictions do not substantially

reduce the fit of the equation: the R
2

falls by only 0.01, from 0.94 to 0.93.6

The estimate of the exponential parameter γ , which determines the adjustment
speed of expectations in the backward-looking model, is 0.88, or 0.86 when we
assume that λ switches from zero to one. These high values of γ support Gordon’s
view that long lags of inflation can influence expectations. With γ = 0.88, the sum
of coefficients on the first four lags is only 0.41, and the sum of the coefficients on
the remaining lags is 0.59.

Figure 6 illustrates the fit of our model of expectations. We show fitted values
based on our estimates of λ before and after 1998Q1 (Table 4, first column), and
when we assume that λ shifted from zero to one (Table 4, second column). The fitted
values in both cases are consistently close to the actual path of SPF expectations.

Figure 7 illustrates the shift in expectations in a different way. We estimate equation
(7), the pure backward-looking model, for the subsample 1985–97; the estimated γ is

6. The error term in our equation for π e is highly serially correlated, as indicated by the very low
Durbin–Watson statistics. The Newey–West (1987) standard errors reported in Table 4 are consistent, but
may have significant small-sample bias. As a robustness check, we address serial correlation by modeling
the error term as an AR-1 process and estimating the AR coefficient along with the parameters of the
π e equation by nonlinear least squares. The results are qualitatively similar to those in Table 4, except
the standard errors are larger. The sup-Wald test again identifies a change in λ in 1998Q1. The estimate
of λ prebreak is 0.115 (standard error of 0.075) and the estimate of λ postbreak is 0.799 (standard error
of 0.129). With OLS and a Newey–West (1987) covariance matrix, we reject the joint hypothesis that
λprebreak=0 and λpostbreak=1 (p = 0.002). When we assume an AR-1 error, the evidence against the joint
hypothesis is considerably weaker (p = 0.095). For the other equations in this paper, with π rather than
π e on the left side, serial correlation is less severe and modeling the errors as AR-1 has little effect on
our results. The only exception is in Table 3, where we examine short subsamples and small-sample bias
is presumably worse. In the horserace between short-term and total unemployment (Table 3, Line (3)),
OLS and Newey–West (1987) standard errors suggest that short-term unemployment wins in the second
as well as third subsample. In the second subsample, 1998–2007, total unemployment is insignificant and
short-term unemployment is borderline significant (t = 1.96). With an AR-1 error, both slack measures
are insignificant in the second subsample (t = 1.31 for short-term unemployment).


