Advanced Microeconomics (Economics 104) Spring 2011 Evolutionary stable strategy (ESS)

Consider a payoff symmetric game

$$G = \langle \{1, 2\}, (A, A), (u_i) \rangle$$

where

$$u_1(a) = u_2(a')$$

when a' is obtained from a by exchanging a_1 and a_2 .

 $-a^* \in A$ is $ESS \ iff$ for any $a \in A, a \neq a^*$ and $\varepsilon > 0$ sufficiently small

 $(1-\varepsilon)u(a^*,a^*) + \varepsilon u(a^*,a) > (1-\varepsilon)u(a,a^*) + \varepsilon u(a,a)$

which is satisfied iff for any $a \neq a^*$ either

 $u(a^*, a^*) > u(a, a^*)$

or

$$u(a^*, a^*) = u(a, a^*)$$
 and $u(a^*, a) > u(a, a)$

If a^* is an ESS then (a^*, a^*) is a NE.

– Suppose not. Then there exists a strategy $a \in A$ such that

$$u(a, a^*) > u(a^*, a^*)$$

But for ε small enough

$$(1-\varepsilon)u(a^*,a^*) + \varepsilon u(a^*,a) < (1-\varepsilon)u(a,a^*) + \varepsilon u(a,a)$$

- A strategy a^* is an ESS if (a^*, a^*) is a NE, and $\forall a \neq a^*$ if $u(a^*, a^*) = u(a, a^*)$ then $u(a^*, a) > u(a, a)$ (any strict NE strategy is ESS).

Existence of ESS in 2×2 game

A game $G = \langle \{1, 2\}, (A, A), (u_i) \rangle$ where $u_i(a) \neq u_i(a')$ for any a, a' has a mixed strategy which is ESS.

	a	a'
a	w, w	x, y
a'	y, x	z, z

- If w > y or z > x then (a, a) or (a', a') are strict NE, and thus a or a' are ESS.
- If w < y and z < x then the game has a symmetric mixed strategy $NE \ (\alpha^*, \alpha^*)$ in which

$$\alpha^*(a) = (z - x)/(w - y + z - x)$$

To verify that α^* is *ESS*, we need to show that $u(\alpha^*, \alpha) > u(\alpha, \alpha)$ for any $\alpha \neq \alpha^*$.