Advanced Microeconomics

(Economics 104)
Spring 2011

Evolutionary stable strategy ($E S S$)

Consider a payoff symmetric game

$$
G=\left\langle\{1,2\},(A, A),\left(u_{i}\right)\right\rangle
$$

where

$$
u_{1}(a)=u_{2}\left(a^{\prime}\right)
$$

when a^{\prime} is obtained from a by exchanging a_{1} and a_{2}.

- $a^{*} \in A$ is $E S S$ iff for any $a \in A, a \neq a^{*}$ and $\varepsilon>0$ sufficiently small

$$
(1-\varepsilon) u\left(a^{*}, a^{*}\right)+\varepsilon u\left(a^{*}, a\right)>(1-\varepsilon) u\left(a, a^{*}\right)+\varepsilon u(a, a)
$$

which is satisfied iff for any $a \neq a^{*}$ either

$$
u\left(a^{*}, a^{*}\right)>u\left(a, a^{*}\right)
$$

or

$$
u\left(a^{*}, a^{*}\right)=u\left(a, a^{*}\right) \text { and } u\left(a^{*}, a\right)>u(a, a)
$$

If a^{*} is an $E S S$ then $\left(a^{*}, a^{*}\right)$ is a $N E$.

- Suppose not. Then there exists a strategy $a \in A$ such that

$$
u\left(a, a^{*}\right)>u\left(a^{*}, a^{*}\right)
$$

But for ε small enough

$$
(1-\varepsilon) u\left(a^{*}, a^{*}\right)+\varepsilon u\left(a^{*}, a\right)<(1-\varepsilon) u\left(a, a^{*}\right)+\varepsilon u(a, a)
$$

- A strategy a^{*} is an $E S S$ if $\left(a^{*}, a^{*}\right)$ is a $N E$, and $\forall a \neq a^{*}$ if $u\left(a^{*}, a^{*}\right)=$ $u\left(a, a^{*}\right)$ then $u\left(a^{*}, a\right)>u(a, a)$ (any strict $N E$ strategy is $E S S$).

Existence of $E S S$ in 2×2 game

A game $G=\left\langle\{1,2\},(A, A),\left(u_{i}\right)\right\rangle$ where $u_{i}(a) \neq u_{i}\left(a^{\prime}\right)$ for any a, a^{\prime} has a mixed strategy which is $E S S$.

	a	a^{\prime}
a	w, w	x, y
a^{\prime}	y, x	z, z

- If $w>y$ or $z>x$ then (a, a) or $\left(a^{\prime}, a^{\prime}\right)$ are strict $N E$, and thus a or a^{\prime} are $E S S$.
- If $w<y$ and $z<x$ then the game has a symmetric mixed strategy $N E\left(\alpha^{*}, \alpha^{*}\right)$ in which

$$
\alpha^{*}(a)=(z-x) /(w-y+z-x)
$$

To verify that α^{*} is $E S S$, we need to show that $u\left(\alpha^{*}, \alpha\right)>u(\alpha, \alpha)$ for any $\alpha \neq \alpha^{*}$.

