Advanced Microeconomics

(Economics 104)
Spring 2011
Introduction

Topics

- Terminology and notations:
functions,
preferences,
utility representation, and profiles.
- Games and solutions:
strategic vs. extensive games, and perfect vs. imperfect information.
- Rationality:
a rational agent, and
boundedly rational agent.
- Formalities:
a strategic game of perfect information.

Terminology and notations (OR 1.7)

Sets

$-\mathbb{R}$ is the set of real numbers.
$-\mathbb{R}_{+}$is the set of nonnegative real numbers.
$-\mathbb{R}^{n}$ is set of vectors on n real numbers.

- \mathbb{R}_{+}^{n} is set of vectors of n nonnegative real numbers.

For $x, y \in \mathbb{R}^{n}$,

$$
x \geq y \Longleftrightarrow x_{i} \geq y_{i}
$$

for all i.

$$
x>y \Longleftrightarrow x_{i} \geq y_{i} \text { and } x_{j}>y_{j}
$$

for all i and some j.

$$
x \gg y \Longleftrightarrow x_{i}>y_{i}
$$

for all i.

Functions

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is

- increasing if $f(x)>f(y)$ whenever $x>y$,
- non decreasing if $f(x) \geq f(y)$ whenever $x>y$, and
- concave if

$$
f\left(\alpha x+(1-\alpha) x^{\prime}\right) \geq \alpha f(x)+(1-\alpha) f\left(x^{\prime}\right)
$$

$$
\forall x, x^{\prime} \in \mathbb{R} \text { and } \forall \alpha \in[0,1]
$$

Let X be a set. The set of maximizers of a function $f: X \rightarrow \mathbb{R}$ is given by $\arg \max _{x \in X} f(x)$.

Preferences

\succsim - a binary relation on some set of alternatives $A \subseteq \mathbb{R}^{n}$. From \succsim we derive two other relations on A :

- strict performance relation

$$
a \succ b \Longleftrightarrow a \succsim b \text { and not } b \succsim a
$$

- indifference relation $a^{\sim} b \Longleftrightarrow a \succsim b$ and $b \succsim a$
\succsim is said to be
- complete if

$$
a \succsim b \text { or } b \succsim a
$$

$\forall a, b \in A$.

- transitive if
$a \succsim b$ and $b \succsim c$ then $a \succsim c$
$\forall a, b, c \in A$.

Utility representation

A function $u: A \rightarrow \mathbb{R}$ is a utility function representing \succsim if for all $a, b \in A$

$$
a \succsim b \Longleftrightarrow u(a) \geq u(b)
$$

\succsim can be presented by a utility function only if it is complete and transitive (rational).
\succsim is said to be

- continuous (preferences cannot jump...) if
for any sequence of pairs $\left\{\left(a^{k}, b^{k}\right)\right\}_{k=1}^{\infty}$ with $a^{k} \succsim b^{k}$, and $a^{k} \rightarrow a$ and $b^{k} \rightarrow b, a \succsim b$.
- (strictly) quasi-concave if
for any $b \in A$ the upper counter set $\{a \in A: a \succsim b\}$ is (strictly) convex.

These guarantee the existence of continuous well-behaved utility function representation.

Profiles

Let N be a the set of players.
$\left(x_{i}\right)_{i \in N}$ or simply $\left(x_{i}\right)$

- a profile, i.e., a collection of values of some variable, one for each player.
$\left(x_{j}\right)_{j \in N /\{i\}}$ or simply x_{-i}
- the list of elements of the profile $x=\left(x_{j}\right)_{j \in N}$ for all players except i.
$\left(x_{-i}, x_{i}\right)$
- a list x_{-i} and an element x_{i}, which is the profile $\left(x_{i}\right)_{i \in N}$.

Games and solutions (O 1.1; OR 1.1-1.3)

A game is a model of interactive (multi-person) decision-making. We distinguish between:

- noncooperative and cooperative games - the units of analysis are individuals or (sub) groups,
- strategic (normal) form games and extensive form games - players move simultaneously or precede one another, and
- Gams with perfect and imperfect information - players are perfectly or imperfectly informed about characteristics, events and actions.

A solution is a systematic description of outcomes in a family of games.

- Nash equilibrium.
- Subgame perfect equilibrium - extensive games with perfect information.
- Perfect Bayesian equilibrium - games with observable actions.
- Sequential equilibrium (and refinements) - extensive games with imperfect information.

The classic references are von Neumann and Morgenstern (1944), Luca and Raiffa (1957) and Schelling (1960) (see R and OR).

Rational behavior and bounded rationality (O 1.2; OR 1.4, 1.6)

Consider

- a A set of actions,
- a C set of consequences,
- a consequence function $g: A \rightarrow C$, and
- a preference relation \succsim on the set C.

Given any set $B \subseteq A$ of actions, a rational agent chooses an action $a^{*} \in B$ such that

$$
g\left(a^{*}\right) \succsim g(a)
$$

for all $a \in B$.
And when \succsim are specified by a utility function $U: C \rightarrow \mathbb{R}$

$$
a^{*} \in \arg \max _{a \in B} U(g(a))
$$

With uncertainty about

- the environment,
- events in the game, or
- actions of other players and their reasoning,

A rational agent is assumed to have in mind

- a state space Ω,
- a (subjective) probability measure over Ω, and
- a consequence function $g: A \times \Omega \rightarrow C$

A rational agent is an expected $(v N M)$ utility $u(g(a, \omega))$ maximizer.

Formalities (O 2.1; OR 2.1)

A strategic game of perfect information:
a finite set N of players, and for each player $i \in N$

- a non-empty set A_{i} of actions
- a preference relation \succsim_{i} on the set $A=\times_{j \in N} A_{j}$ of possible outcomes.

We will denote a strategic game by

$$
\left\langle N,\left(A_{i}\right),\left(\succsim_{i}\right)\right\rangle
$$

or by

$$
\left\langle N,\left(A_{i}\right),\left(u_{i}\right)\right\rangle
$$

when \succsim_{i} can be represented by a utility function $u_{i}: A \rightarrow \mathbb{R}$.
A two-player finite strategic game can be described conveniently in a bimatrix. For example, consider the 2×2 game

	L	R
T	A_{1}, A_{2}	B_{1}, B_{2}
B	C_{1}, C_{2}	D_{1}, D_{2}

