Advanced Microeconomics (Economics 104) Spring 2011 Introduction

Topics

– Terminology and notations:

functions, preferences, utility representation, and profiles.

– Games and solutions:

strategic vs. extensive games, and perfect vs. imperfect information.

- Rationality:

a rational agent, and boundedly rational agent.

- Formalities:

a strategic game of perfect information.

Terminology and notations (OR 1.7)

 \mathbf{Sets}

- $-\mathbb{R}$ is the set of real numbers.
- $\ \mathbb{R}_+$ is the set of nonnegative real numbers.
- $-\mathbb{R}^n$ is set of vectors on n real numbers.
- \mathbb{R}^n_+ is set of vectors of *n* nonnegative real numbers.

For $x, y \in \mathbb{R}^n$,

$$x \ge y \iff x_i \ge y_i$$

for all i.

 $x > y \iff x_i \ge y_i \text{ and } x_j > y_j$

for all i and some j.

 $x >> y \iff x_i > y_i$

for all i.

Functions

A function $f : \mathbb{R} \to \mathbb{R}$ is

- increasing if f(x) > f(y) whenever x > y,
- non decreasing if $f(x) \ge f(y)$ whenever x > y, and
- concave if

$$f(\alpha x + (1 - \alpha)x') \ge \alpha f(x) + (1 - \alpha)f(x')$$

 $\forall x, x' \in \mathbb{R} \text{ and } \forall \alpha \in [0, 1].$

Let X be a set. The set of maximizers of a function $f: X \to \mathbb{R}$ is given by $\arg \max_{x \in X} f(x)$.

Preferences

≿ - a binary relation on some set of alternatives $A \subseteq \mathbb{R}^n$. From ≿ we derive two other relations on A:

- strict performance relation

 $a \succ b \iff a \succsim b \text{ and not } b \succeq a$

– in difference relation $a \ b \iff a \succeq b$ and $b \succeq a$

 \succsim is said to be

- complete if

$$a \succeq b \text{ or } b \succeq a$$

 $\forall a, b \in A.$

- transitive if

 $a \succeq b$ and $b \succeq c$ then $a \succeq c$

 $\forall a,b,c\in A.$

Utility representation

A function $u:A\to \mathbb{R}$ is a utility function representing \succsim if for all $a,b\in A$

$$a \succeq b \iff u(a) \ge u(b)$$

 \succeq can be presented by a utility function only if it is complete and transitive (rational).

- \succsim is said to be
 - continuous (preferences cannot jump...) if for any sequence of pairs $\{(a^k, b^k)\}_{k=1}^{\infty}$ with $a^k \succeq b^k$, and $a^k \to a$ and $b^k \to b, a \succeq b$.
 - (strictly) quasi-concave if for any $b \in A$ the upper counter set $\{a \in A : a \succeq b\}$ is (strictly) convex.

These guarantee the existence of continuous well-behaved utility function representation.

Profiles

Let N be a the set of players.

- $(x_i)_{i \in N}$ or simply (x_i)
 - a profile, i.e., a collection of values of some variable, one for each player.
- $(x_j)_{j \in N/\{i\}}$ or simply x_{-i}
 - the list of elements of the profile $x = (x_j)_{j \in N}$ for all players except *i*.

 (x_{-i}, x_i)

- a list x_{-i} and an element x_i , which is the profile $(x_i)_{i \in N}$.

Games and solutions (O 1.1; OR 1.1-1.3)

A game is a model of interactive (multi-person) decision-making. We distinguish between:

- noncooperative and cooperative games the units of analysis are individuals or (sub) groups,
- strategic (normal) form games and extensive form games players move simultaneously or precede one another, and
- Gams with perfect and imperfect information players are perfectly or imperfectly informed about characteristics, events and actions.

A solution is a systematic description of outcomes in a family of games.

- Nash equilibrium.
- Subgame perfect equilibrium extensive games with perfect information.
- Perfect Bayesian equilibrium games with observable actions.
- Sequential equilibrium (and refinements) extensive games with imperfect information.

The classic references are von Neumann and Morgenstern (1944), Luca and Raiffa (1957) and Schelling (1960) (see R and OR).

Rational behavior and bounded rationality (O 1.2; OR 1.4, 1.6)

Consider

- a A set of actions,
- a C set of consequences,
- a consequence function $g: A \to C$, and
- a preference relation \succeq on the set C.

Given any set $B\subseteq A$ of actions, a $rational \; agent$ chooses an action $a^*\in B$ such that

$$g(a^*) \succeq g(a)$$

for all $a \in B$.

And when \succsim are specified by a utility function $U:C\to \mathbb{R}$

$$a^* \in \arg \max_{a \in B} U(g(a))$$

With uncertainty about

- the environment,
- events in the game, or
- actions of other players and their reasoning,

A rational agent is assumed to have in mind

- a state space Ω ,
- a (subjective) probability measure over Ω , and
- a consequence function $g: A \times \Omega \to C$

A rational agent is an expected (vNM) utility $u(g(a, \omega))$ maximizer.

Formalities (O 2.1; OR 2.1)

A strategic game of perfect information:

a finite set N of players, and for each player $i \in N$

- a non-empty set A_i of actions

− a preference relation \succeq_i on the set $A = \times_{j \in N} A_j$ of possible outcomes.

We will denote a strategic game by

$$\langle N, (A_i), (\succeq_i) \rangle$$

or by

$$\langle N, (A_i), (u_i) \rangle$$

when \succeq_i can be represented by a utility function $u_i : A \to \mathbb{R}$.

A two-player finite strategic game can be described conveniently in a bimatrix. For example, consider the 2×2 game