Advanced Microeconomics

(Economics 104)
Fall 2008

Maxminimization and strictly competitive games

A two-player strategic game $\left\langle\{1,2\},\left(A_{i}\right),\left(\gtrsim_{i}\right)\right\rangle$ is strictly competitive if preferences are diametrically opposes. That is, for any $a, a^{\prime} \in A$,

$$
a \gtrsim_{1} a^{\prime} \text { if and only if } a^{\prime} \gtrsim_{2} a .
$$

When \gtrsim_{i} is represented by a utility function u_{i} then for any $a \in A$ we have

$$
u_{1}(a)=-u_{2}(a)
$$

Thus, a strictly competitive game is sometimes called zero-sum.
An interesting character of a zero-sum game is that a strategy profile is a $N E$ if and only if the action of each player is a max min strategy.

This is an important result and it helps us understand the decision-making basis for $N E$.

Maxminimization (O 11.1-11.2, OR 2.5)

Consider a strategic game $\left\langle N,\left(A_{i}\right),\left(u_{i}\right)\right\rangle(v N M$ preference $)$.
A max min mixed strategy of player i is a mixed strategy that solves the problem

$$
\max _{\alpha_{i} \in \Delta A_{i}} \min _{\alpha_{-i} \in \Delta A_{-i}} U_{i}\left(\alpha_{i}, \alpha_{-i}\right)
$$

where $U_{i}(\alpha)$ is player i 's expected payoff to the profile of mixed strategies α.

Equivalently, α_{i}^{*} is a max min for player i if and only if

$$
\min _{\alpha_{-i} \in \Delta A_{-i}} U_{i}\left(\alpha_{i}^{*}, \alpha_{-i}\right)=\max _{\alpha_{i} \in \Delta A_{i}} \min _{\alpha_{-i} \in \Delta A_{-i}} U_{i}\left(\alpha_{i}, \alpha_{-i}\right)
$$

In words, player i chooses a mixed strategy that is best for him under the assumption that whatever he does, all other players will choose their actions to hurt him as much as possible.

For example, in the $B o S$ player 1's max min strategy is $(1 / 3,2 / 3)$ while player 2's is $(1 / 3,2 / 3)$ (you should verify this).

Note that a player's payoff in a mixed strategy $N E$ is at least her max min payoff.

To see this suppose that α^{*} is a mixed strategy $N E$. Then, for any player i and for all α_{i}

$$
\begin{aligned}
U_{i}\left(\alpha^{*}\right) & \geq U_{i}\left(\alpha_{i}, \alpha_{-i}^{*}\right) \\
& \geq \min _{\alpha_{-i} \in \Delta A_{-i}} U_{i}\left(\alpha_{i}, \alpha_{-i}\right) \\
& \geq \max _{\alpha_{i} \in \Delta A_{i}} \min _{\alpha_{-i} \in \Delta A_{-i}} U_{i}\left(\alpha_{i}, \alpha_{-i}\right)
\end{aligned}
$$

and the last step follows since the above holds for all α_{i}.

Two min max propositions (O 11.3-11.4, OR 2.5)
We next prove two min max propositions.
Proposition 1 In any strategic game $G=\left\langle N,\left(A_{i}\right),\left(u_{i}\right)\right\rangle$,

$$
\max _{\alpha_{i} \in \Delta A_{i}} \min _{\alpha_{-i} \in \Delta A_{-i}} U_{i}\left(\alpha_{i}, \alpha_{-i}\right) \leq \min _{\alpha_{-i} \in \Delta A_{-i}} \max _{\alpha_{i} \in \Delta A_{i}} U_{i}\left(\alpha_{i}, \alpha_{-i}\right)
$$

Proof.
For every α_{i}^{\prime} and α_{-i}^{\prime}

$$
\min _{\alpha_{-i}} U_{i}\left(\alpha_{i}^{\prime}, \alpha_{-i}\right) \leq U_{i}\left(\alpha_{i}^{\prime}, \alpha_{-i}^{\prime}\right)
$$

and thus

$$
\min _{\alpha_{-i}} U_{i}\left(\alpha_{i}^{\prime}, \alpha_{-i}\right) \leq \max _{\alpha_{i}} U_{i}\left(\alpha_{i}, \alpha_{-i}^{\prime}\right)
$$

However, since the above holds for every α_{i}^{\prime} and α_{-i}^{\prime} it must hold for the "best" and "worst" such choices

$$
\max _{\alpha_{i}} \min _{\alpha_{-i}} U_{i}\left(\alpha_{i}, \alpha_{-i}\right) \leq \min _{\alpha_{-i}} \max _{\alpha_{i}} U_{i}\left(\alpha_{i}, \alpha_{-i}\right)
$$

More precisely, the above result follows from the following Lemma (you can skip that part).

Lemma Let X_{1} and X_{2} be arbitrary sets then for any function $f: X \times X \rightarrow$ \mathbb{R}

$$
\inf _{x_{2}}\left(\sup _{x_{1}} f\left(x_{1}, x_{2}\right)\right) \geq \sup _{x_{1}}\left(\inf _{x_{2}} f\left(x_{1}, x_{2}\right)\right)
$$

Proof. Fix $\varepsilon>0$. For each $x_{1} \in X_{1}$ define

$$
f_{1}\left(x_{1}\right) \equiv \inf _{x_{2}} f\left(x_{1}, x_{2}\right)
$$

and for each $x_{2} \in X_{2}$ define

$$
f_{2}\left(x_{2}\right) \equiv \sup _{x_{1}} f\left(x_{1}, x_{2}\right)
$$

Choose x_{1}^{\prime} and x_{2}^{\prime} such that

$$
\sup _{x_{1}} f_{1}\left(x_{1}\right)<f_{1}\left(x_{1}^{\prime}\right)+\varepsilon
$$

and

$$
\inf _{x_{2}} f_{2}\left(x_{2}\right)>f_{2}\left(x_{2}^{\prime}\right)-\varepsilon
$$

Then,

$$
\sup _{x_{1}}\left(\inf _{x_{2}} f\left(x_{1}, x_{2}\right)\right) \equiv \sup _{x_{1}} f_{1}\left(x_{1}\right)<f_{1}\left(x_{1}^{\prime}\right)+\varepsilon \leq f\left(x_{1}^{\prime}, x_{2}^{\prime}\right)+\varepsilon
$$

and

$$
\inf _{x_{2}}\left(\sup _{x_{1}} f\left(x_{1}, x_{2}\right)\right) \equiv \inf _{x_{2}} f_{2}\left(x_{2}\right)>f_{2}\left(x_{2}^{\prime}\right)-\varepsilon \geq f\left(x_{1}^{\prime}, x_{2}^{\prime}\right)-\varepsilon
$$

By combining the two inequalities

$$
\inf _{x_{2}}\left(\sup _{x_{1}} f\left(x_{1}, x_{2}\right)\right)>\sup _{x_{1}}\left(\inf _{x_{2}} f\left(x_{1}, x_{2}\right)\right)+2 \epsilon
$$

and letting $\epsilon \rightarrow 0$ gives the desired result.

Interchangeability in zero-sum games

Before proving the second min max proposition, we prove a result about the interchangeability of $N E$ in zero-sum games.

If $\left(\alpha_{1}, \alpha_{2}\right)$ and $\left(\alpha_{1}^{\prime}, \alpha_{2}^{\prime}\right)$ are $N E$ in a zero-sum game, then so are $\left(\alpha_{1}, \alpha_{2}^{\prime}\right)$ and $\left(\alpha_{1}^{\prime}, \alpha_{2}\right)$.

- Let $\left(\alpha_{1}, \alpha_{2}\right)$ and $\left(\alpha_{1}^{\prime}, \alpha_{2}^{\prime}\right)$ be $N E$ in a zero-sum game.
- Since $\left(\alpha_{1}, \alpha_{2}\right)$ is an equilibrium

$$
U_{1}\left(\alpha_{1}, \alpha_{2}\right) \geq U_{1}\left(\alpha_{1}^{\prime}, \alpha_{2}\right)
$$

and since $\left(\alpha_{1}^{\prime}, \alpha_{2}^{\prime}\right)$ is an equilibrium

$$
U_{2}\left(\alpha_{1}^{\prime}, \alpha_{2}^{\prime}\right) \geq U_{2}\left(\alpha_{1}^{\prime}, \alpha_{2}\right)
$$

and because $U_{1}=-U_{2}$ (zero-sum game)

$$
U_{1}\left(\alpha_{1}^{\prime}, \alpha_{2}^{\prime}\right) \leq U_{1}\left(\alpha_{1}^{\prime}, \alpha_{2}\right)
$$

Therefore,

$$
\begin{equation*}
U_{1}\left(\alpha_{1}, \alpha_{2}\right) \geq U_{1}\left(\alpha_{1}^{\prime}, \alpha_{2}\right) \geq U_{1}\left(\alpha_{1}^{\prime}, \alpha_{2}^{\prime}\right) \tag{1}
\end{equation*}
$$

and similar analysis gives that

$$
\begin{equation*}
U_{1}\left(\alpha_{1}, \alpha_{2}\right) \leq U_{1}\left(\alpha_{1}, \alpha_{2}^{\prime}\right) \leq U_{1}\left(\alpha_{1}^{\prime}, \alpha_{2}^{\prime}\right) \tag{2}
\end{equation*}
$$

(1) and (2) yield

$$
U_{1}\left(\alpha_{1}, \alpha_{2}\right)=U_{1}\left(\alpha_{1}^{\prime}, \alpha_{2}\right)=U_{1}\left(\alpha_{1}, \alpha_{2}^{\prime}\right)=U_{1}\left(\alpha_{1}^{\prime}, \alpha_{2}^{\prime}\right)
$$

- Since $\left(\alpha_{1}, \alpha_{2}\right)$ is an equilibrium

$$
U_{2}\left(\alpha_{1}, \alpha_{2}^{\prime \prime}\right) \leq U_{2}\left(\alpha_{1}, \alpha_{2}\right)=U_{2}\left(\alpha_{1}, \alpha_{2}^{\prime}\right)
$$

for any $\alpha_{2}^{\prime \prime} \in \Delta A_{2}$, and since $\left(\alpha_{1}^{\prime}, \alpha_{2}^{\prime}\right)$ is an equilibrium

$$
U_{1}\left(\alpha_{1}^{\prime \prime}, \alpha_{2}^{\prime}\right) \leq U_{1}\left(\alpha_{1}^{\prime}, \alpha_{2}^{\prime}\right)=U_{1}\left(\alpha_{1}, \alpha_{2}^{\prime}\right)
$$

for any $\alpha_{1}^{\prime \prime} \in \Delta A_{1}$. Therefore, $\left(\alpha_{1}, \alpha_{2}^{\prime}\right)$ is an equilibrium and similarly also $\left(\alpha_{1}, \alpha_{2}^{\prime}\right)$.

- Note that equilibrium strategies do not in general have this property (consider, for example, a coordination game).

Proposition 2 In a two-player aero-sum game,

$$
\max _{\alpha_{1} \in \Delta A_{1}} \min _{\alpha_{2} \in \Delta A_{2}} U_{1}\left(\alpha_{1}, \alpha_{2}\right)=\min _{\alpha_{2} \in \Delta A_{2}} \max _{\alpha_{1} \in \Delta A_{1}} U_{1}\left(\alpha_{1}, \alpha_{2}\right)=U_{1}\left(\alpha_{1}^{*}, \alpha_{2}^{*}\right)
$$

where $\left(\alpha_{1}^{*}, \alpha_{2}^{*}\right)$ is a mixed strategy $N E$.
Proof.
\Leftarrow Suppose that $\left(\alpha_{1}^{*}, \alpha_{2}^{*}\right)$ is a $N E$. Then, by definition of an equilibrium

$$
\begin{aligned}
U_{1}\left(\alpha_{1}^{*}, \alpha_{2}^{*}\right) & =\max _{\alpha_{1} \in \Delta A_{1}} U_{1}\left(\alpha_{1}, \alpha_{2}^{*}\right) \\
& \geq \min _{\alpha_{2} \in \Delta A_{2}} \max _{\alpha_{1} \in \Delta A_{1}} U_{1}\left(\alpha_{1}, \alpha_{2}\right)
\end{aligned}
$$

and since $U_{1}=-U_{2}$ at the same time

$$
\begin{aligned}
U_{1}\left(\alpha_{1}^{*}, \alpha_{2}^{*}\right) & =\min _{\alpha_{2} \in \Delta A_{2}} U_{1}\left(\alpha_{1}^{*}, \alpha_{2}\right) \\
& \leq \max _{\alpha_{1} \in \Delta A_{1}} \min _{2} \in \Delta A_{2}
\end{aligned} U_{1}\left(\alpha_{1}, \alpha_{2}\right)
$$

Hence,

$$
\max _{\alpha_{1} \in \Delta A_{1}} \min _{\alpha_{2} \in \Delta A_{2}} U_{1}\left(\alpha_{1}, \alpha_{2}\right) \geq \min _{\alpha_{2} \in \Delta A_{2}} \max _{\alpha_{1} \in \Delta A_{1}} U_{1}\left(\alpha_{1}, \alpha_{2}\right)
$$

which together with Proposition 1 gives the desired conclusion.
\Rightarrow Suppose that

$$
\max _{\alpha_{1} \in \Delta A_{1}} \min _{\alpha_{2} \in \Delta A_{2}} U_{1}\left(\alpha_{1}, \alpha_{2}\right)=\min _{\alpha_{2} \in \Delta A_{2}} \max _{\alpha_{1} \in \Delta A_{1}} U_{1}\left(\alpha_{1}, \alpha_{2}\right)
$$

and let $\alpha_{1}^{\max }$ be player 1's max min strategy and $\alpha_{2}^{\min }$ be player 2's $\min \max$ strategy. Then,

$$
\begin{aligned}
\max _{\alpha_{1} \in \Delta A_{1}} \min _{\alpha_{2} \in \Delta A_{2}} U_{1}\left(\alpha_{1}, \alpha_{2}\right) & =\min _{\alpha_{2} \in \Delta A_{2}} U_{1}\left(\alpha_{1}^{\max }, \alpha_{2}\right) \\
& \leq U_{1}\left(\alpha_{1}^{\max }, \alpha_{2}\right) \forall \alpha_{2} \in \Delta A_{2}
\end{aligned}
$$

and

$$
\begin{aligned}
\min _{\alpha_{2} \in \Delta A_{2}} \max _{\alpha_{1} \in \Delta A_{1}} U_{1}\left(\alpha_{1}, \alpha_{2}\right) & =\max _{\alpha_{1} \in \Delta A_{1}} U_{1}\left(\alpha_{1}, \alpha_{2}^{\min }\right) \\
& \geq U_{1}\left(\alpha_{1}, \alpha_{2}^{\min }\right) \forall \alpha_{1} \in \Delta A_{1}
\end{aligned}
$$

But

$$
\begin{aligned}
\max _{\alpha_{1} \in \Delta A_{1}} \min _{\alpha_{2} \in \Delta A_{2}} U_{1}\left(\alpha_{1}, \alpha_{2}\right) & =\min _{\alpha_{2} \in \Delta A_{2}} \max _{\alpha_{1} \in \Delta A_{1}} U_{1}\left(\alpha_{1}, \alpha_{2}\right) \\
& =U_{1}\left(\alpha_{1}^{\max }, \alpha_{2}^{\min }\right)
\end{aligned}
$$

implies that

$$
U_{1}\left(\alpha_{1}, \alpha_{2}^{\min }\right) \leq U_{1}\left(\alpha_{1}^{\max }, \alpha_{2}^{\min }\right) \leq U_{1}\left(\alpha_{1}^{\max }, \alpha_{2}\right)
$$

$\forall \alpha_{2} \in \Delta A_{2}$ and $\forall \alpha_{1} \in \Delta A_{1}$. Hence, $\left(\alpha_{1}^{\max }, \alpha_{2}^{\min }\right)$ is an equilibrium.

