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Maxminimization and strictly competitive games

A two-player strategic game h{1 2} () (&)i is strictly competitive if
preferences are diametrically opposes. That is, for any  0 ∈ ,

 &1 0 if and only if 0 &2 

When &is represented by a utility function  then for any  ∈  we have

1() = −2()

Thus, a strictly competitive game is sometimes called zero-sum.

An interesting character of a zero-sum game is that a strategy profile is a

 if and only if the action of each player is a maxmin strategy.

This is an important result and it helps us understand the decision-making

basis for .
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Maxminimization (O 11.1-11.2, OR 2.5)

Consider a strategic game h () ()i ( preference).

A maxmin mixed strategy of player  is a mixed strategy that solves the

problem

max
∈∆

min
−∈∆−

( −)

where () is player ’s expected payoff to the profile of mixed strategies

.

Equivalently, ∗ is a maxmin for player  if and only if

min
−∈∆−

(
∗
  −) = max

∈∆
min

−∈∆−
( −)

In words, player  chooses a mixed strategy that is best for him under

the assumption that whatever he does, all other players will choose their

actions to hurt him as much as possible.

For example, in the  player 1’s maxmin strategy is (13 23) while

player 2’s is (13 23) (you should verify this).

Note that a player’s payoff in a mixed strategy  is at least her maxmin

payoff.

To see this suppose that ∗ is a mixed strategy . Then, for any player

 and for all 

(
∗) ≥ ( 

∗
−)

≥ min
−∈∆−

( −)

≥ max
∈∆

min
−∈∆−

( −)

and the last step follows since the above holds for all .
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Two minmax propositions (O 11.3-11.4, OR 2.5)

We next prove two minmax propositions.

Proposition 1 In any strategic game  = h () ()i,

max
∈∆

min
−∈∆−

( −) ≤ min
−∈∆−

max
∈∆

( −)

Proof.

For every 0 and 0−

min
−

(
0
 −) ≤ (

0
 

0
−)

and thus

min
−

(
0
 −) ≤ max


( 

0
−)

However, since the above holds for every 0 and 
0
− it must hold for

the “best” and “worst” such choices

max


min
−

( −) ≤ min
−

max


( −)

More precisely, the above result follows from the following Lemma (you

can skip that part).
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Lemma Let1 and2 be arbitrary sets then for any function  : × →
R

inf
2
(sup
1

(1 2)) ≥ sup
1

(inf
2

(1 2))

Proof. Fix   0. For each 1 ∈ 1 define

1(1) ≡ inf
2

(1 2)

and for each 2 ∈ 2 define

2(2) ≡ sup
1

(1 2)

Choose 01 and 02 such that

sup
1

1(1)  1(
0
1) + 

and

inf
2

2(2)  2(
0
2)− 

Then,

sup
1

(inf
2

(1 2)) ≡ sup
1

1(1)  1(
0
1) +  ≤ (01 

0
2) + 

and

inf
2
(sup
1

(1 2)) ≡ inf
2

2(2)  2(
0
2)−  ≥ (01 

0
2)− 

By combining the two inequalities

inf
2
(sup
1

(1 2))  sup
1

(inf
2

(1 2)) + 2

and letting → 0 gives the desired result.
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Interchangeability in zero-sum games

Before proving the second minmax proposition, we prove a result about

the interchangeability of  in zero-sum games.

If (1 2) and (
0
1 

0
2) are  in a zero-sum game, then so are (1 

0
2)

and (01 2).

— Let (1 2) and (
0
1 

0
2) be  in a zero-sum game.

— Since (1 2) is an equilibrium

1(1 2) ≥ 1(
0
1 2)

and since (01 
0
2) is an equilibrium

2(
0
1 

0
2) ≥ 2(

0
1 2)

and because 1 = −2 (zero-sum game)

1(
0
1 

0
2) ≤ 1(

0
1 2)

Therefore,

1(1 2) ≥ 1(
0
1 2) ≥ 1(

0
1 

0
2) (1)

and similar analysis gives that

1(1 2) ≤ 1(1 
0
2) ≤ 1(

0
1 

0
2) (2)

(1) and (2) yield

1(1 2) = 1(
0
1 2) = 1(1 

0
2) = 1(

0
1 

0
2)

— Since (1 2) is an equilibrium

2(1 
00
2) ≤ 2(1 2) = 2(1 

0
2)

for any 002 ∈ ∆2, and since (01 02) is an equilibrium

1(
00
1  

0
2) ≤ 1(

0
1 

0
2) = 1(1 

0
2)

for any 001 ∈ ∆1. Therefore, (1 02) is an equilibrium and similarly
also (1 

0
2).

— Note that equilibrium strategies do not in general have this property

(consider, for example, a coordination game).
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Proposition 2 In a two-player aero-sum game,

max
1∈∆1

min
2∈∆2

1(1 2) = min
2∈∆2

max
1∈∆1

1(1 2) = 1(
∗
1 
∗
2)

where (∗1 
∗
2) is a mixed strategy .

Proof.

⇐ Suppose that (∗1 
∗
2) is a . Then, by definition of an equilibrium

1(
∗
1 
∗
2) = max

1∈∆1

1(1 
∗
2)

≥ min
2∈∆2

max
1∈∆1

1(1 2)

and since 1 = −2 at the same time
1(

∗
1 
∗
2) = min

2∈∆2

1(
∗
1 2)

≤ max
1∈∆1

min
2∈∆2

1(1 2)

Hence,

max
1∈∆1

min
2∈∆2

1(1 2) ≥ min
2∈∆2

max
1∈∆1

1(1 2)

which together with Proposition 1 gives the desired conclusion.

⇒ Suppose that

max
1∈∆1

min
2∈∆2

1(1 2) = min
2∈∆2

max
1∈∆1

1(1 2)

and let max1 be player 1’s maxmin strategy and min2 be player 2’s

minmax strategy. Then,

max
1∈∆1

min
2∈∆2

1(1 2) = min
2∈∆2

1(
max
1  2)

≤ 1(
max
1  2) ∀2 ∈ ∆2

and

min
2∈∆2

max
1∈∆1

1(1 2) = max
1∈∆1

1(1 
min
2 )

≥ 1(1 
min
2 ) ∀1 ∈ ∆1

But

max
1∈∆1

min
2∈∆2

1(1 2) = min
2∈∆2

max
1∈∆1

1(1 2)

= 1(
max
1  min2 )

implies that

1(1 
min
2 ) ≤ 1(

max
1  min2 ) ≤ 1(

max
1  2)

∀2 ∈ ∆2 and ∀1 ∈ ∆1. Hence, (max1  min2 ) is an equilibrium.
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