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“I can tell you of an important new result I got recently. I have what I
suppose to be a completely general treatment of the revealed preference
problem, which will give a fresh setting for the related work of Samuelson-
Houthakker-Uzawa. Calculus methods are unavailable. The methods are
set-theoretic or algebraical.”

–A letter from Sydney Afriat to Oskar Morgenstern, 1964–





In ‘classic’ consumer behavior we have taken % as the primitive concept
and derived the restrictions that the -maximization model imposes on
observed demand.

— These are the Slutsky restrictions – the substitution terms matrix is
symmetric and negative semidefinite.

— These restrictions are (in principle) testable, but require assumptions
on the parametric form/shape of the demand function.

— The standard approach is postulating some (semi)parametric family of
functions and error structure.



The most basic question to ask about choice data (px):

prices p and associated chosen bundles x for  = 1  

is whether it is consistent with utility maximization. Classical revealed
preference theory provides a direct test:

(px) are consistent with maximizing a (well-behaved) -function if
and only if they satisfy the Generalized Axiom of Revealed Preference
(GARP).



We say that -function rationalizes the observed behavior (px) if for
all for  = 1  

(x) ≥ (x) for all x such that px ≥ px

that is, (·) achieves its maximum value on the budget set at the chosen
bundles.

Question Suppose that the data (px) were generated by such a max-
imization process. What observable restrictions must the observed
choices satisfy?



Answer None! Without any assumptions about (·) there are no restric-
tions: (·) can be a constant function (so the consumer was indifferent
to all observed bundles...).

— We rule out this trivial case: what are the observable restrictions imposed
by the maximization of a locally non-satiated -function?

— Now, when x was chosen when x could have been strictly chosen px 
px, the utility of (x) must be strictly larger than the utility of (x).



We will say that x is

— xx: directly revealed preferred to x if px ≥ px.

— xx: strictly directly revealed preferred to x if px  px.

— xx: revealed preferred to x if there exists a sequence {x}=1 with

x1 = x and x = x such that xx+1

for every  = 1  − 1 ( is the transitive closure of ).



It is clear that if the data (px) were generated by a non-satiated -
function then

xx =⇒ (x) ≥ (x)

Consider any two observations x and x: we now have a condition to
determine whether (x) ≥ (x) and an (observable) condition to de-
termine whether (x)  (x).

Obviously, these two conditions should not both be satisfied. This condi-
tion (GARP) can be stated in the notation introduced above.



Generalized Axiom of Revealed Preference (GARP)

xx implies not xx

In words, if x is indirectly revealed preferred to x, then x is not
strictly directly revealed preferred to x.

• GARP requires that if xx then px ≤ px (x must cost at least as
much as x at the prices prevailing when x is chosen).

• As the name implies, GARP is a generalization of various other revealed
preference tests...



Weak Axiom of Revealed Preference (WARP)

xx and x 6= ximplies not xx

Strong Axiom of Revealed Preference (SARP)

xx and x 6= ximplies not xx

! WARP and SARP require that there be a unique demand bundle at each
budget, while GARP allows for multiple demanded bundles (flat spots in
the indifference curves).

!! Afriat’s (1967) Theorem tells us that if a (finite) data set generated by an
individual’s choices satisfies GARP, then the data can be rationalized by a
well-behaved utility function.



Afriat’s Theorem: The following conditions are equivalent:

() The data satisfy GARP.

() There exists a non-satiated -function that rationalizes the data.

() There exists a concave, monotonic, continuous, non-satiated -function
that rationalizes the data.

() trivially implies () and we have already seen that () implies ().
All that is left is the proof that () implies (). Not exactly...



() There exist positive numbers ( ) for  = 1   that satisfy the
so-called Afriat inequalities:

 ≤  + p(x − x) for all  

The Afriat numbers  and  can be interpreted as utility levels ()
and marginal utilities () that are consistent with the observed choices
(more below).



We will show that () implies (). The proof that () implies () is
omitted. See Chambers and Echenique (2016) for the argument, at your
own risk...

Proof: consider the following -function

(x) = min
=1

{ + p(x− x)}

(which is the lower envelope of a finite number of hyperplanes). This
function is continuous, locally non-satiated and monotonic (as long as
p  0), and concave (trust me on this).

We will show that this function rationalizes the data–achieves its con-
strained maximum at x when prices are p.



— Note that (x) = . If this is not the case, we have

(x) =  + p(x− x)  

which violates one of the Afriat inequalities and thus (x) = .

— Now suppose that px ≥ px. It follows that

(x) = min
=1

{ + p(x− x)}

≤  + p(x− x)
≤ 

= (x)

Therefore (x) ≥ (x) for any x such that px ≥ px.¥



A note on concave functions:

— A function  : → R defined over a convex set  ⊂ /R is concave
if for all  0 ∈  and any  ∈ [0 1]

(+ (1− )0) ≥ () + (1− )0

— Letting  = 0 − , this condition can be rewritten as

(+ ) ≤ () +
(+ )− ()




and for continuously differentiable function

(+ ) ≤ () +∇() ·  as → 0



The -function defined in the proof of Afriat’s theorem

(x) = min

{ + p(x− x)}

has a natural interpretation. If (x) is also differentiable then it must
satisfy the  FOCs (the gradient vector):

∇(x) = p (*)

And since it also concave it must satisfy the standard concavity conditions

(x) ≤ (x) +∇(x)(x − x) (**)

Substituting from (∗) into (∗∗), we have

(x) ≤ (x) + p(x − x)



The Afriat numbers can thus be interpreted as utility levels () and mar-
ginal utilities () that are consistent with the observed choices.

1. Using similar methods there are (finite) tests for: homotheticity, weak
and additive separability, expected utility, and more.

2. They involve checking to see whether a solution exists to a particular
set of linear Afriat inequalities.

3. Well known graph theory algorithms can be used to verify whether or
not these conditions are satisfied.



Afriat’s theorem has (at least) two remarkable implications:

— If there is a locally non-satiated  that rationalizes the data then there
must exist a continuous, monotonic, and concave  that rationalizes
the data.

— If the underlying  had the “wrong” curvature at some points, we
would never observe choices being made at such points (do not satisfy
the right 2nd-order conditions).

(1) Market data do not allow us to reject the hypotheses of convexity and
monotonicity of preferences.



— Since GARP is a necessary and sufficient condition for -maximization,
it must imply conditions analogous to comparative statics results of
classic demand theory.

— These include the Slutsky decomposition of a price change into the
income and the substitution effects (for finite changes in a price rather
than just infinitesimal changes).

(2) Since revealed preferences provide a complete set of the restrictions im-
posed by -maximization, they must contain all information available about
preferences.



The critical cost efficiency index (CCEI)

An obvious difficulty: GARP provides an exact test of -maximization–
either the data satisfy GARP or they do not.

— But choices involve at least some errors: compute incorrectly, execute
intended choices incorrectly, err in other less obvious ways...

— Afriat (1972) suggested the following approach: for any number 0 ≤
 ≤ 1, define the direct revealed preference relation () as

x()x if px ≥ px

and define () and () accordingly.



— Let ∗ be the largest value of  such that the data (px) satisfies
GARP. Afriat’s CCEI is the value of ∗ associated with the data.

— ∗ can be interpreted as saying that the consumer is ‘wasting’ as much
as 1− ∗ of his income by making inefficient choices.

— The closer ∗ to one, the smaller the ‘perturbation’ required to remove
all violations and thus the closer the data are to satisfying GARP.



Recovering preferences and forecasting behavior: a brief outline

The tightest possible bounds on indifference curves through an allocation
x0 not observed in the data (px) for  = 1   .

— Consider the set of prices at which x0 could be chosen and be consistent–
does not add violations of GARP–with the previously observed data.

— This set of prices is the solution to the system of linear inequalities
constructed from the data and revealed preference relations. Call this
set (x0).

— Use (x0) to generate set of observations– (x0) and  (x0)–
revealed preferred/worse than x0.



—  (x0) is simply the convex monotonic hull of all allocations revealed
preferred to x0 and  (x0) is constructed as follows:

x0x for all prices p0 ∈ (x0)

⇓
x0x for any x such that xx

—  (x0) and the complement of  (x0) form the tightest inner and
outer bounds on the set of allocations preferred to x0.

—  (x0) and the complement of  (x0) form the tightest inner and
outer bounds on the set of allocations worse than x0.

Forecasting: x0 chosen from budget set p0? Use the same algorithm!!!



Appendix
Who is (more) homo economicus?



2D experimental interface 

 

   



3D experimental interface 

 



Judgment about the quality of decision-making is generally made difficult
by twin problems of identification and measurement:

— The identification problem Distinguishing differences in decision-
making quality from unobserved differences in preferences, information,
beliefs or constraints.

Identification is important because welfare conclusions and thus (con-
strained) optimal policy will depend on the sources of any systematic dif-
ferences in choices.

— The measurement problem Defining (and implementing) a portable,
practical, autonomous, quantifiable, and economically interpretable mea-
sure of decision-making quality.



Mean CCEI scores 

 



Wealth differentials

=⇒ The heterogeneity in wealth is not well-explained either by standard observ-
ables (income, education, family structure) or by standard unobservables
(intertemporal substitution, risk tolerance).

=⇒ If consistency with utility maximization in the experiment were a good
proxy for (financial) decision-making quality then the degree to which con-
sistency differ across subjects should help explain wealth differentials.
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Checking Saving Stocks House
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A comprehensive nonparametric test

Test complete representations of preferences rather than focusing on in-
dividual axiom(s) (comprehensive) and make no auxiliary functional form
assumptions (nonparametric):

— utility maximization (rationalizability)

— stochastically monotone utility maximization (FOSD-rationalizability)

— expected utility maximization (EU-rationalizability)



A not-so-new experimental design

An experimental design that has a couple of innovations:

— A selection of a bundle of contingent commodities from a budget set
(a portfolio choice problem).

— A large menu of decision problems that are representative, in the sta-
tistical sense and in the economic sense.

— A graphical experimental interface that allows for the collection of a
rich individual-level data set.

⇒ Build on Nishimura, Ok and Quah (2017), and Polisson, Quah and Re-
nou (2020) and (1) allow subjects to make choices over three-dimensional
budget sets, and (2) study choice under ambiguity.



Individual behaviors 
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Token Shares for Subject ID 25
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Token Shares for Subject ID 27
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Token Shares for Subject ID 52

TScheapest = 1

TS2nd cheapest = 1 TS3rd cheapest = 1



Rationalizability

Let
n
(px)

o50
=1

be the data generated by some individual’s choices: p is

the -th observation of the price vector and x is the associated allocation.

The Generalized Axiom of Revealed Preference (GARP)

If x is indirectly revealed preferred to x, denoted xx, then x is
not strictly directly revealed preferred to x, denoted xx.

Consistency with GARP thus implies consistent preferences, but any con-
sistent preference ordering over lotteries is admissible.



FOSD-rationalizability

• Choices can be consistent with GARP and yet fail to be reconciled with any
utility function that is normatively appealing given the decision problem at
hand.

• The experiment is symmetric (each state had an equal probability), choice
behavior should respond symmetrically to permutations in prices.

• Compute the CCEI obtained by augmenting the set of revealed preference
comparisons at each observation.



EU-rationalizability
(The GRID method of Polisson, Quah and Renou, 2020)

An example of a preference ordering that is FOSD-rationalizable but not
EU-rationalizable, is rank-dependent utility function (Quiggin, 1993):

 (x) =  (min{x}) +  (med {x}) +  (max {x})

When weights     , the indifference curves have “kinks”
where  = 0

=⇒ Allocations that satisfy  = 0 will be chosen for a non-negligible set of
price vectors, which is not consistent with EU.



A simple violation of EU-rationalizability 

 



EU requires that

( ) = 2() ≥ () + ()

( ) = 2() ≥ () + ()

b/c ( )( ) and ( )( ).

But rearranging yields

() + () ≥ () + ()

which contradicts that ( )( ).



— ∗ — maximizing any utility function (GARP).

— ∗∗ ≤ ∗ — maximizing a monotonic utility function (GARP+FOSD).

— ∗∗∗ ≤ ∗∗ — maximizing an expected utility function (GARP+FOSD+EU).

⇒ For all non-EU theories, which number well into double figures (Starmer,
2000), including stochastic reference dependence (Kőszegi and Rabin, 2006
& 2007):

∗∗∗  ∗∗ = ∗ = 1



 

   



 

   



 

   



 

   



Stationarity, time invariance, and time consistency

• Time discount rates decline as tradeoffs are pushed into the temporal dis-
tance.

— Subjects often choose the larger and later of two rewards when both are
distant in time, but prefer the smaller and earlier one as both rewards
draw nearer to the present.

• Interpreted as non-constant time discounting, these preference reversals
have important implications.

— Under standard assumptions, non-constant time discounting implies
time-inconsistency — self-control problems and a demand for commit-
ment thus emerge.



Stationarity

% is stationary if for every  0 ≥ 0 and ∆1∆2 ≥ 0

( +∆1) ∼ (
0 +∆2)⇐⇒ ( 0 +∆1) ∼ (

0 0 +∆2)

Ranking does not depend on the distance from . Tested in the standard
static experiment.



 
Stationarity 

 

 



 
Exponential vs. quasi-hyperbolic 

 

 




