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Roadmap

We want to “complete” the development of the theory of the consumer
(Rubinstein and Kreps do it in parallel with the theory of the firm):

When is a (parametric) family of demand functions represent the (Mar-
shallian) demand of a utility-maximizing consumer?

This key question is answered (more or less) by the Integrability Theorem
but “the path that takes us to this climax is long and winding...”



The key steps to reach this “climax” are Roy’s identity and the Slutsky
equation, which are two important “identities.”

Trying to isolate the substitution and income effects of a change in a price
to

( ) the level of indirect utility (Roy’s identity)
() the quantities consumed (the Slutsky equation).
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The utility-maximization problem (UMP)

The budget set is given by

 = { :  ·  ≤ }

where  is the DM’s income/wealth and  is the vector of commodity
prices. The UMP can then be written as:

max


()

subject to  ·  ≤ 

The value of  that solves this problem is the demanded bundle ∗ =
( ), which is not necessarily unique (requires strict convexity of %).



By making a few ‘regularity’ assumptions on %, we can say more about
the solution to the UMP ∗.

Budget balancedness (Walras’ Law) allows us to restate the UMP as fol-
lows:

( ) = max


()

subject to  ·  = 
(1)

where ( ) is the indirect utility function, which gives us the maximum
utility achievable at prices  and income .



The standard properties of the indirect utility function ( ):

1. non-increasing in  and non-decreasing in .

2. homogeneous of degree 0 in ( ).

3. quasi-convex in  , that is the set

{ : ( ) ≤ }

is convex for all .

4. continuous at all   0 and   0.



(3) ( ) quasi-convex in :

— Suppose  and 0 6=  are such that ( ) ≤  and (0 ) ≤ ,
let 00 = 0 + (1− )0 for  ∈ [0 1].

— Define , 0, and 00 accordingly. It is sufficient to show that 00 ⊂
 ∪0 (so any  ∈ 00 must be also in either  or 0).

— Assume not:

 ∈  =⇒   

 ∈ 0 =⇒ (1− )0  (1− )

So  + (1 − )0  , which contradicts that  ∈ 00 (more
below).¥



The expenditure-minimization problem (EMP)
(Kreps Ch. 9 for a profit-maximizing firm)

If % satisfy the local non satiation assumption then ( ) is strictly
increasing in  so we can invert it and solve for  as a function of the
level of utility.

The expenditure function ( ) — the inverse of ( ) — indicates the
minimal income  needed to achieve utility level  at prices :

( ) = min


 · 
subject to () ≥ 

(2)



The standard properties of the expenditure function ( ):

1. non-decreasing in .

2. homogeneous of degree 1 in .

3. concave in .

4. continuous in  for all   0.

The expenditure function is (completely) analogous to the cost function in
the theory of the firm.



Let ( ) be the expenditure-minimizing bundle so

( ) =
( )


for  = 1 

(assuming differentiability). The function ( ) is called the Hicksian (or
compensated) demand function.

When we want to emphasize the difference between the Hicksian demand
function ( ) and the ‘usual’ demand function ( ), we refer to the
latter as the Marshallian demand function.



The “dual” problems: the relationships between UMP and EMP

The (simple) observation that the solution ∗ to the UMP (1) is the same
as the solution to the EMP (2) leads to four important identities:

(1A) The maximum utility achievable from income ( ) is 

( ( )) ≡ 

(1B) The minimum expenditure necessary to achieve utility ( ) is 

( ( )) ≡ 



(2A) The Marshallian demand at income  is the same as the Hicksian
demand at utility ( )

( ) ≡ ( ( ))

(2B) The Hicksian demand at utility  is the same as the Marshallian demand
at income ( )

( ) ≡ ( ( ))

! The last identity is (perhaps) the most important (for empirical work) since
it ties together the observable Marshallian demand with the unobservable
Hicksian demand.



The indirect utility function and Roy’s identity
(a Rubinstein’s non-standard discussion)

Consider a consumer who is choosing among budget sets. We will for-
mulate (and study) the “indirect” preferences of the consumer on budget
sets.

More broadly, we can think of a DM choosing between choice sets where
 is the set of alternatives and  the set of choice problems (non-empty
subsets of ).

— The “indirect” preference relation: %∗ is the indirect preference rela-
tion induced by % if

%() % %() =⇒  %∗  for any  ∈ .



() %∗ is a preference relation, and if  represents % and % is well
defined, then

() = (%())

represents %∗ so  is the indirect utility function.

( /) Depending on the set of choice problems , the choice function %
can be reconstructed from the indirect preferences %∗, for example, if
 ∈  and

 Â∗ − {} =⇒ %() = 



Gul and Pesendorfer’s (2001) temptation and self-control:

— A “standard” DM will always prefer a bigger choice set to a smaller
choice set (in the subset sense):

 ⊂  =⇒  %∗ 
Otherwise, Â∗ exhibits a preference for commitment (at ). Â∗ has
a preference for commitment if it has a preference for commitment at
some choice set .

— Gul and Pesendorfer’s (2001): so-called set betweenness

 %∗  =⇒  %∗  ∪ %∗ 
permits a preference for commitment.



Back to a consumer — a DM who is choosing among budget sets charac-
terized by the  + 1 parameters ( ).

If % is well-behaved and the demand ( ) is always well-defined. then
the indirect preferences %∗ is defined by

( ) %∗ (0 0) if ( ) % (0 0)

The properties of indirect preferences %∗: Same as above for the indi-
rect utility function ( ) as they follow directly from the properties
of ( ).



(3) The ‘concavity’ of %∗: For any  ∈ [0 1]

( ) %∗ (0 0) =⇒ ( ) %∗ (00 00)
where 00 = + (1− )0 and 00 =  + (1− )0.

Let  = (00 00) so

00 ≤ 00

⇓
 ≤  or 0 ≤ 0

⇓
( ) %  or (0 0) % 

Because ( ) % (0 0), we conclude that ( ) % .¥



Roy’s identity

A method for recovering ( ) from %∗

— When  = 1, each %∗-indifference curve is a ray. If % are well-
behaved (monotonic), then the slope of the indifference curve through
(1 ) is



1
, which is 1(1 ).

— For any -commodity space, the set (hyperplane)

 = {( ) :  · (∗ ∗) = }

is tangent to the %∗-indifference curve through (∗ ∗), and if the
tangent is unique, then knowing that tangent enables us to recover
(∗ ∗).



If% satisfies monotonicity then (∗ ∗) ∈  and (∗ ∗) ∈ ( )

for any ( ) ∈ . Therefore,

( ) % (∗ ∗) =⇒ ( ) %∗ (∗ ∗)

— Roy’s identity: If %∗are represented by a differentiable indirect utility
function , then

(
∗ ∗) = −∇(∗ ∗)

∇(∗ ∗)

= −(
∗ ∗)

(∗ ∗)
for all  = 1 .



Proof (envelope theorem argument):

Applied to the UMP the envelope theorem tells us:

(
∗ ∗) = −(∗ ∗)

and

(∗ ∗) = −

where  is the Lagrange multiplier, which yield the result.¥



 

Whoa. Dude, Mr. Turtle is my father. Name's Crush. 
 

 



Rubinstein’s “dual” turtle
(a preface to the “dual” consumer)

Consider the following two statements about Crush (the sea turtle in Find-
ing Nemo):

(1) The maximal distance Crush can swim in 1 hour is 20 miles.
(2) The minimal time is takes Crush to swim 20 miles is 1 hour.

— (1)⇒ (2) if Crush swims a positive distance in any period of time.

— (1)⇐ (2) if Crush cannot “jump” a positive distance in zero time.

The maximal distance Crush can swim in time  () must be strictly
increasing and continuous.



Some (relevant) quotes by Crush:

— You, mini-man! Taking on the jellies. You got serious thrill issues,
dude. Awesome!

— I saw the whole thing, dude. First you were all, like, whoa! And then
we were all, like, whoa! Then you were, like, whoa...

— When the little dudes are just eggs we leave them on a beach to hatch,
and coo-coo-cachoo, they find their way back to the big ol’ blue...



Classic demand theory with derivatives
(Kreps Ch. 11)

⇒ interpret Roy’s identity and the Slutsky equation ⇒ provide a duality
analysis of the indirect utility function ⇒ provide sufficient conditions for
Marshallian demand to be differentiable ⇒ discuss integrability ...

— “... I’ve always found this chapter to be a grind to teach. This probably
reflects in part my ”tin ear” when it comes to this subject. And it may
reflect exhaustion (mine and the students’) ...”

— “... if anyone can suggest to me how to make it more interest-
ing/exciting/fun, perhaps I’ll be able to modify these dour notes ...”



The (simplest form of the) envelope theorem

Let ( ) be a function where  is a choice variable and  is a constraint
(determined outside the problem being studied).

— Suppose  is chosen to maximize  and let () be the optimal choice
of  for each value of .

— The (optimal) value function

() ≡ (() )

tells us what the optimized value of  is for each .



— Differentiating both sides of this identity with respect to 




=

(() )



()


+
(() )




Since () is the choice of  that maximizes  , we know that

(() )


= 0

and thus




=

(() )


=

( )



¯̄̄̄
¯
=()





In words, the total derivative of the value function () with respect to
the parameter  is equal to the partial derivative evaluated at the optimal
choice.

Why? When  changes, there are two effects:

direct:  =⇒ 
indirect:  =⇒  =⇒ 

But if  is chosen optimally, then a small change in  has zero effect on
 (so the indirect effect drops).

! The conclusion with any number of variables and parameters is similar, but
the Lagrange multipliers play an important role...



Another look at the standard approach for solving the UMP

() assume that  is differentiable, () form a Lagrangian, () use the
combined 1st-order and complementary slackness conditions.

— no “natural” conditions on % that would guarantee that even well-
behaved % admits a differentiable -representation.

— -representations of standard % are not continuous so there is no hope
that every -representation of a given % will be differentiable.

Even granting differentiability, we can still ask for the status of the 1st-
order and complementary slackness conditions for a non-concave  (more
below).



Letting  ≥ 0 be the multiplier on the budget constraint  ·  ≤  and
 ≥ 0 the multiplier on the constraint  ≥ 0, the Lagrangian is

() + 

⎡⎣ − X
=1



⎤⎦+ X
=1



The 1st-order conditions (FOC) are




=  − 

and the complementary slackness conditions

( −  · ) = 0 and  = 0 for all  = 1 

must also hold.



Since  ≥ 0 these multipliers can be eliminated and the FOC for  and
the complementary slackness condition for  can be combined as follows




≤  and with = if   0

And if prices are all strictly positive (which we assume throughout) we can
rewrite this as

1






≤  and with = if   0

⇒ For goods   0, the ratios of the marginal utility of the goods to their
respective prices must be equal (and greater than the corresponding ratios
for goods  = 0).



If   0, we get the  of good  for good  (along an indifference
curve) equals the ratio of their prices (intermediate micro):




=




But is   0? Because ( ) = max{() :  ·  ≤  and  ≥ 0}
then by constrained optimization,  = .

—  is strictly increasing in , but there are strictly increasing, differen-
tiable functions whose derivatives are zero at isolated points...

— even if  represents % convex preferences, there are strictly increasing
and quasi-concave functions whose derivatives go to zero at points...



— if  is concave then ( ) is concave in  (verify this!), and a strictly
increasing, concave function cannot have zero derivative.

— convexity of % only guarantees that it admits a quasi-concave -
representation so concavity of  is hard to do on first principles.

— Concavity of  is not necessarily preserved by monotonic transforma-
tions, so we cannot guarantee that every representation of% is concave.

⇒ Even strictly increasing and strictly convex % cannot guarantee that   0

because the -representation is ‘only’ quasi-concave.



Two (serious) assumptions

1. % are strictly convex so UMP and EMP have unique solutions for every
( ) and ( ).

2. ( ), ( ), ( ) and ( ) are all continuously differentiable
functions of all their arguments.

Note 1 UMP and EMP have unique solutions + standard techniques ⇒ the
four functions are all continuous.

Note 2 Differentiability requires a lot more:  is twice-continuously differen-
tiable (2) and well-behaved along axes...



Back to the expenditure-minimization problem (EMP)

( ) — the inverse of ( ) — indicates the minimal income  needed
to achieve utility level  at prices :

( ) = min


 · 
subject to () ≥ 

( ) and the Hicksian demand ( ) are related as follows:

( ) =
( )


 (*)



Proof: Differentiate both sides of the accounting identity ( ) =
 · ( ) with respect to :




= ( ) +

X
=1







In words, if  ↑ then the resulting change in expenditure needed to
reach utility level  comes from two terms:

1. The amount  of good  bought is more expensive and expenditure
rises at the rate ( ).

2. The “cost” of changes in the optimal bundle (less  and more or less
 6= ) given by the sum term.



The result we are supposed to be heading for says that the summation
term is zero...

— If  is the Lagrange multiplier on the constraint, the FOC (for ) of
the EMP is given by

 = 



 (**)

evaluated at the optimum ( ).

— Implicitly partially differentiate both sides of the accounting identity
 (( )) =  with respect to 

X
=1








= 0 (***)



— (∗∗) and (∗ ∗ ∗) yield

1



X
=1





= 0

which is just what we want, as long  is not zero (or infinite).¥

Note 1 The ‘technique’ is to substitute into one equation a FOC for something
that is optimal in a constrained optimization problem.

Note 2 This technique is formalized in the envelope theorem because ( )
is the ‘lower envelope’ of linear functions (like the one we will draw next).



A ‘slick’ graphical proof: Fix the utility argument ∗ and all the prices
∗ except for  and graph the function

 −→ (( 
∗
−) 

∗)

which is a concave function in  (and assume it is also differentiable...).

Since the utility from the bundle (∗ ∗) is ∗

(( 
∗
−) 

∗) ≤ (
∗ ∗) +

X
 6=

∗(
∗ ∗)

and with = if  = ∗ . The RHS is a linear function of , and its
slope in the  direction is (∗ ∗).¥



Back to Roy’s identity...

( ) and ( ) are related as follows: ( ) = −





Proof: Suppose ∗ = ( ) and let ∗ = (∗). Using the above
identities (and assuming that UMP and EMP have unique solutions)

∗ = ( ∗) and  = ( ∗)

so ∗ = ( ( ∗)) for a fixed ∗ and for all . Differentiating this
with respect to 

0 =



+










replace



with ( ∗) = ∗ = ( ), and rearrange.¥



To demystify Roy’s identity, rewrite it as

− 


=






If ( )  0 then the FOC for  in the UMP can be written as

1






= 

and since  =  in the UMP, we can substitute and combine

− 


=  =











The consumer uses the “extra” income when  ↓ naively, spending all of
it on  which raises  by








— The consumer can (and probably will) do some further substituting
among all good.

— But Roy’s identity tells us that these substations will not have a 1st-
order effect on utility at the optimum (draw a picture!).



The Slutsky equation — connecting ( ) and ( )

Question (from intermediate micro or even a good principles course) starting
at  and , what happens to ( ) if  ↑?

[1] The general “price index” ↑ so the consumer is a bit poorer (in real terms)
=⇒ change the demand ( ) (roughly) at a rate

−



( )

($0.01 rise in  means ( )× 001 less to spend).

[2] There is also a “cross-substitution” ( ): (probably)  ↓ and depend-
ing on the relationship between  and ,  ↑ or ↓.



There are two (obvious) ways to compensate our poorer consumer:

— Slutsky: ↑  (just) enough =⇒ the consumer could afford the bundle
consumed.

— Hicks: ↑  (just) enough =⇒ the consumer will be as well off (after
re-optimizing).

! The Hicksian compensation is a theoretical construct — depends on un-
observable % — but since we have the Hicksian demand function ( )
defined it is simply .



Slutsky equation: ( ) and ( ) are are related as follows:




=



|{z}
Hicksian

compensation

−



| {z }

income

adjustment

evaluated for given  and  and ( ) and ( ) where  is the utility
level achieved at ( ).

! We·cannot know if the Hicksian compensation is correct, and our income
adjustment is not quite correct because of the substitution out of  (as
discussed above).



Proof: Differentiate both sides of the identity ( ( )) = ( )

with respect to 



+







=





but since



= ( ) = ( ( ), we get




+



( ( ) =




¥



“...you may be wondering where all this is headed. We are certainly taking
lots of derivatives, and it isn’t at all clear to what end we are doing so.
Some results are coming, but we need a bit more setting-up to get them.
Please be patient...” — Kreps —



A mathematical fact of
twice-continuously differentiable (2) concave functions

For a given 2 function  : R → R and any  ∈ R, let () be
 × matrix whose ( )th element is

2



¯̄̄̄
¯


(mixed second partials of  , evaluated at ).

This matrix is called the Hessian matrix of  and it is automatically sym-
metric.



— A 2 function of one variable  : R→ R is concave if its derivative is
non-increasing (2nd-derivative is non-positive).

For concave functions of several variables this generalizes as follows:

— A 2 function  : R → R is concave  its Hessian matrix (evalu-
ated at each point in the domain of ) is negative semi-definite.

— If  is a negative semi-definite  ×  matrix then  ≤ 0 for all
 = 1 .



The main result(s) — connecting all the pieces

The  × matrix of substitution terms whose ( )th element is

( )


+
( )


( )

is symmetric and negative semi-definite.

Proof: By the Slutsky equation, ( )th element is

( )



evaluated at ( (( ))) and by ( /∗)




=
2


¥



Integrability

We concluded that UMP (equivalently, EMP) imposes that the matrix of
substitution terms




=
( )


+
( )


( )

must be symmetric and negative semi-definite.

Question (the integrability problem) suppose there is a system of ( ) that
have a symmetric and negative semi-definite substitution terms matrix, is
there necessarily a -maximizing consumer behind it?!



As we know ( ) should be () homogeneous of degree zero and ()
should obey Walras’ law with equality.

() + () + symmetric and negative semi-definite substitution matrix
⇓

substitution matrix can be “integrated up” to get a representative ( )

We will not even attempt to sketch the proof here – requires to determine
a solution of a system of partial differential equations.



Last word: aggregate consumer demand

It is hard (not impossible!) to obtain individual-level data:

— Aggregate demand will be homogeneous of degree zero in prices and
(total) income.

— Walras’ law will hold for the entire economy, if all consumers are locally-
insatiable,

But results analogous to the Slutsky restrictions (or GA.RP) do not gen-
erally hold for aggregate demand.

=⇒ Make strong assumptions about the distribution of preferences/income,
e.g. the same homothetic preferences.




