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Formulation and representation

We began with % and induce Â and ∼. We will now take Â as primitive
(what the DM expresses) but it makes (almost) no difference... We say
that Â is a preference relation if it is

— asymmetric: there is no pair   ∈  such that  Â  and  ≺ .

— negatively transitive: if  Â  then for any  ∈  either  Â  or
 Â , or both.

Â is a preference relation on a set  if and only if there is a function
 :  → R representing Â in the sense of

 Â  ⇔ ()  ()



If Â is a preference relation (asymmetric and negatively transitive) on a
set  then it is

— irreflexive:  Â  for no  ∈ .

— transitive:  Â  and  Â  ⇒  Â .

— acyclic: 1 Â 2 2 Â 3  −1 Â ⇒ 1 6= .



Uncertain prospects

The goal:  to represent uncertain prospects and to ‘specialize’ the form
of the -function representing Â by imposing further conditions on Â
based on the (mathematical) structure of .

Question How (mathematically) do we model an uncertain prospect and
what corresponding forms of functions  should we seek?

The literature contains (basically) three sets of answers to these questions,
differing in whether uncertainty is objective or subjective.



(1) and (2) are polar cases and (3) is a middle case:

1. Objective uncertainty: von Neumann-Morgenstern (vNM).
2. Subjective uncertainty: Savage.
3. Horse lottery-roulette wheel theory: Anscombe and Aumann (A-A).

In A-A, the DM is assumed to have some objective randomizing devices–
fair coins, color wheels, roulette wheels, etc.–that s/he can employ to
represent her/his subjective uncertainty.

! Understand how these models differ as representations of uncertain prospects
and to think why/when one might be a more appropriate model...



 

Moto Moto learned A-A… 
 

 



vNM expected utility
(with finite prize spaces)

In the vNM model uncertainty is objective–there is given a quantification
of how likely the various outcomes are (given in the form of a probability
distribution).

— A given set  of prizes/consequences.
— A set  of probability measures or probability distributions on .

!  is the choice set–the DM is choosing/expressing preference among
probability distributions.

!! All that matters to the DM are probabilities and prizes–the randomizing
devices and their order are inconsequential.



We take on the easiest case, where the set of possible prizes  is a finite
set and  is the set of functions  :  → [0 1] such thatX

∈
() = 1

The DM is presumed to be making pairwise comparisons between mem-
bers of  , indicating strict preference by the binary relation Â.

! When  is infinite (countable or not)  can be the set of all simple or
discrete (or more complicated) probability measures (mixture-space theo-
rem).



A compound lottery: If   ∈  and  ∈ [0 1] then there is an element

+ (1− ) ∈ 

which is defined by taking the convex combinations of the probabilities of
each prize separately, or

(+ (1− ))() = () + (1− )()

so + (1− ) represents a compound lottery.





Three axioms (about Â on  )

(A1) Â is a preference relation (asymmetric and negatively transitive).

(A2) Independence: For all    ∈  and  ∈ [0 1]

 Â  ⇒ + (1− ) Â  + (1− )

This is the independence (or substitution) axiom–a normatively com-
pelling principle for choice under uncertainty.



(A3) Continuity: For all    ∈  , if  Â  Â  then there exist   ∈ (0 1)
such that

+ (1− ) Â  Â + (1− )

This is also called the Archimedean axiom–‘resemblance’ to the Archimedes’
principle:

for all 0     there is (an integer)  such that   

? What if ,  and  are (respectively) $10,000, $1,000 and death (for sure)?!



Regardless of how you feel about (A1)-(A3), together these axioms yield
the following result:

Theorem (vNM): Â on  satisfies axioms (A1)-(A3) if and only if there
exists a function  :  → R such that

 Â  ⇔
X

()() 

X

()() (∗)

And  is unique up to a positive affine transformation: if  represents Â
in the sense of (∗), then 0 :  → R also represents Â if and only if there
exist real numbers   0 and  such that

0(·) = (·) + 



Two remarks:

(1) -representations are unique up to strictly increasing rescalings: if 
represents Â then so will (·) = ((·)) for any strictly increasing  .

But if  is an arbitrary increasing function, then the  that results
from composing  with  may not have the expected-utility form.

(2) Continuing on this general point, we said that there is no cardinal
significance in utility differences.

But in the context of expected utility where  gives an expected-
utility representation on  , utility differences have cardinal signifi-
cance.



To illustrate point (2), suppose

()− (00) = 2((0)− (00))  0

which does not mean that  is twice better than 00 than is 0–it just
means that  Â 0 Â 00.

But when  gives an expected-utility representation on  , utility dif-
ferences have cardinal significance

 :=

12
%
&
12



00
∼  :=

1−→ 0



Three lemmas
(and another lemma...)

How is the vNM theorem proven? We first use (A1)-(A3) to obtain three
lemmas... If Â on  satisfies (A1)-(A3) then:

(L1)  Â  and 0 ≤    ≤ 1⇒ + (1− ) Â + (1− ).

— If we look at (binary) compounded lotteries, the DM always (strictly)
prefers a higher probability of “winning” the preferred lottery.



(L2)  %  %  and  Â  ⇒ there exists a unique ∗ ∈ [0 1] such that

 ∼ ∗+ (1− ∗)

— This result (sometimes simply assumed) is called the calibration property–
calibrate the DM’s preference for any lottery in terms of a lottery that
involves only the best and worst prizes.

— By (L1), we know there is exactly one value ∗ that will do in (L2). This
is what causes (A3) to be called a continuity axiom–the preference
ordering is continuous in probability.



(L3)  ∼  and  ∈ [0 1] ⇒ for all  ∈ 

+ (1− ) ∼  + (1− )

— This is just like the independence axiom (A2), except thatÂ is replaced
by ∼. This is sometimes assumed as an axiom (called the substitution
axiom).



A sketch of the (L1)-(L3) proofs

(L1)  Â  and 0 ≤    ≤ 1⇒ + (1− ) Â + (1− ).

Proof: Let  = + (1− ). If  = 0 then  Â  and 0   ≤ 1
with (A2) imply

 = + (1− )

Â  + (1− )

= 

= + (1− )



Suppose   0 so 0 



 1, and  Â  and (A2) imply

 = (1− 


) +






Â (1− 


) +






= (1− 


) +




(+ (1− ))

= + (1− )¥



(L2)  %  %  and  Â  ⇒ there exists a unique ∗ ∈ [0 1] such that

 ∼ ∗+ (1− ∗)

Proof: Since  Â , (L1) ensures that if ∗ exists it is unique. If  ∼ 

(resp.  ∼ ) then ∗ = 1 (resp. ∗ = 0) works.

Hence, we only need to consider the case  Â  Â . Define

∗ = sup{ ∈ [0 1] :  % + (1− )}



(since  = 0 is in the set, we are not tacking a sup over an empty
set...) Assuming,

∗+ (1− ∗)
Â
≺


leads to a contradiction by (A3) (verify this!), which leaves us with the
third possibility

 ∼ ∗+ (1− ∗)

(which is what we want).¥



(L3)  ∼  and  ∈ [0 1] ⇒ for all  ∈ 

+ (1− ) ∼  + (1− )

Proof: Suppose that there is some  ∈  with  Â  ∼  (otherwise,
trivial) and that

+ (1− ) Â  + (1− )

toward contradiction.



(A2) implies that for all  ∈ (0 1)

+ (1− ) Â  + (1− )

= 

∼ 

and (A2) also implies that for all  ∈ (0 1)

(+ (1− )) + (1− ) Â + (1− )



Since by assumption

+ (1− ) Â  + (1− ) 

(A3) implies that for each  there exists some ∗() ∈ (0 1) such
that

+ (1− )

Â
∗()((+ (1− )) + (1− ))

+

(1− ∗())( + (1− ))



Fix, for example,  = 12 and let ∗(12) written as ∗ then the
term on the RHS is

[
∗
2
]+ [

∗
2
+ (1− ∗)] + [1− ]

=

[
∗

2
+ (1− ∗

2
)] + (1− )

But since
∗

2
 0 , the last term must be Â  + (1 − ), a

contradiction.¥



Before stating another (final) lemma, we need some notation: For any
 ∈ , let  denote the probability distribution degenerate at , that is

(
0) =

(
1 if 0 = 
0 if 0 6= 

(L4) If Â on  satisfies (A1)-(A3) then for all  ∈  there exist ◦ ◦ ∈ 

such that ◦ %  % ◦.

The proof (omitted) builds on (A2) and (L3) and uses induction on the
size of the support of .



Proof of the vNM theorem: Showing that if a -function as in (∗) exists
then (A1)-(A3) all hold is omitted (straightforward...).

— Suppose that Â satisfies (A1)-(A3) and use (L4) to produce ◦ and
◦. If ◦ ∼ ◦ then  ≡  (constant) satisfies (∗) as neither

 Â  nor
P
()() 

P
()()

is possible.

( constant is the only possible representation in this case, so 0 is any
other representation if and only if it is a positive affine transformation
of .)



— From now on, assume ◦ Â ◦ and for any  ∈  define

() =  where ◦ + (1− )◦ ∼ 

By the lemmas, such an  exists and is unique, so  is well defined.

By (L1) and standard properties of preference relations

 Â 

m
()◦ + (1− ())◦ Â ()◦ + (1− ())◦

m
()  ()



— Hence (·) is a representation of Â in the standard sense but we are
not done quite yet!

We will have the expected-utility representation (∗) as soon as we show
that for all  ∈ 

() =
P
()() (†)

The method is to use (††) below and induction on the size of the
support of 

{ ∈  : ()  0}



— Note that for all   ∈  and  ∈ [0 1], by repeated application of
(L3)

+ (1− )

∼
[()◦ + (1− ())◦] + (1− )[()◦ + (1− ())◦]

So by the definition of 

(+ (1− )) = () + (1− )() (††)



— If the support of  has one element, say 0, then  = 0 and (†)
follows trivial. Suppose inductively that (†) is true for  with support
of size − 1 ≥ 1.

Take any  with support of size   1 , let 0 be in the support of ,
and defined  as follows:

() =

(
0 if  = 0

()(1− (0)) if  6= 0

so  has support of size − 1 and  = (0)0 + (1− (0)).



By (††) and the induction hypothesis applied to 

() = (0)(0) + (1− (0))()
q

(0)(0) + (1− (0))
X
6=0

()

1− (0)
()

qX
∀

()()

This establishes (†) by induction, since  is finite.

! We also need to establish the uniqueness result: if  and 0 represent
Â in the sense of (∗) then then each is a positive affine transformation
of the other.¥



Concluding remarks

• vNM EUT lies at the very heart of economics–a normative guide for choice
and also as a descriptive model of how individuals choose.

• But much of the evidence of “anomalies” in choice behavior suggests that
EUT may not the right model of choice under risk.

• non-EUT theories of choice under risk that relax the independence axiom
but adhere to the fundamental/conventional axioms.



A simple violation of EU-rationalizability 

 



EU requires that

( ) = 2() ≥ () + ()

( ) = 2() ≥ () + ()

b/c ( )( ) and ( )( ).

But rearranging yields

() + () ≥ () + ()

which contradicts that ( )( ).



— ∗ — maximizing any utility function (GARP).

— ∗∗ ≤ ∗ — maximizing a monotonic utility function (GARP+FOSD).

— ∗∗∗ ≤ ∗∗ — maximizing an expected utility function (GARP+FOSD+EU).

⇒ For all non-EU theories, which number well into double figures (Starmer,
2000), including stochastic reference dependence (Kőszegi and Rabin, 2006
& 2007):

∗∗∗  ∗∗ = ∗ = 1



 

   



 

   



 

   



 

   




