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Bargaining problem

Nash’s (1950) work is the starting point for formal bargaining theory.

The bargaining problem consists of

— a set of utility pairs that can be derived from possible agreements, and

— a pair of utilities which is designated to be a disagreement point.



Bargaining solution

The bargaining solution is a function that assigns a unique outcome to
every bargaining problem.

Nash’s bargaining solution is the first solution that

— satisfies four plausible conditions, and

— has a simple functional form, which make it convenient to apply.



A bargaining situation

A bargaining situation is a tuple h (%)i where

—  is a set of players or bargainers ( = {1 2}),

—  is a set of agreements/outcomes,

—  is a disagreement outcome, and

— % is a preference ordering over the set of lotteries over  ∪ {}.



The objects  , ,  and % for  = {1 2} define a bargaining situation.

%1 and %2 satisfy the assumption of  so for each  there is a utility
function  :  ∪ {}→ R.

h i is the primitive of Nash’s bargaining problem where

—  = (1() 2()) for  ∈  the set of all utility pairs, and

—  = (1() 2()).



A bargaining problem is a pair h i where  ⊂ R2 is compact and
convex,  ∈  and there exists  ∈  such that    for  = 1 2. The
set of all bargaining problems h i is denoted by .

A bargaining solution is a function  :  → R2 such that  assigns to
each bargaining problem h i ∈  a unique element in .



The definitions of the bargaining problem and solution have few restrictions
(the convexity assumption on  is more technical):

— bargaining situations that induce the same pair h i are treated iden-
tically,

— the utilities obtainable in the outcome of bargaining are limited since
 is bounded,

— players can agree to disagree since  ∈  and there is an agreement
preferred by both players to the disagreement outcome.



Nash’s axioms

One states as axioms several properties that it would seem natural for the
solution to have and then one discovers that the axioms actually determine
the solution uniquely - Nash 1953 -

Does not capture the details of a specific bargaining problem (e.g. alter-
nating or simultaneous offers).

Rather, the approach consists of the following four axioms: invariance
to equivalent utility representations, symmetry, independence of irrelevant
alternatives, and (weak) Pareto efficiency.



Invariance to equivalent utility representations ( )

­
0 0

®
is obtained from h i by the transformations

 7→  + 

for  = 1 2 if

0 =  + 

and

0 = {(11 + 1 22 + 2) ∈ R2 : (1 2) ∈ }

Note that if   0 for  = 1 2 then
­
0 0

®
is itself a bargaining problem.



If
­
0 0

®
is obtained from h i by the transformations

 7→  + 

for  = 1 2 where   0 for each , then

(
0 0) = ( ) + 

for  = 1 2. Hence,
­
0 0

®
and h i represent the same situation.



 requires that the utility outcome of the bargaining problem co-vary
with representation of preferences.

The physical outcome predicted by the bargaining solution is the same for­
0 0

®
and h i.

A corollary of  is that we can restrict attention to h i such that

 ⊂ R2+,

 ∩ R2++ 6= ∅, and

 = (0 0) ∈  (reservation utilities).



Symmetry ()

A bargaining problem h i is symmetric if 1 = 2 and (1 2) ∈  if
and only if (2 1) ∈ . If the bargaining problem h i is symmetric
then

1( ) = 2( )

Nash does not describe differences between the players. All asymmetries
(in the bargaining abilities) must be captured by h i.

Hence, if players are the same the bargaining solution must assign the same
utility to each player.



Independence of irrelevant alternatives ()

If h i and h i are bargaining problems with  ⊂  and ( ) ∈ 

then

( ) = ( )

If  is available and players agree on  ∈  ⊂  then they agree on the
same  if only  is available.

 excludes situations in which the fact that a certain agreement is
available influences the outcome.



Weak Pareto efficiency ()

If h i is a bargaining problem where  ∈  and  ∈ , and    for
 = 1 2 then ( ) 6= .

In words, players never agree on an outcome  when there is an outcome
 in which both are better off.

Hence, players never disagree since by assumption there is an outcome 
such that    for each .



 and 

restrict the solution on single bargaining problems.

 and 

requires the solution to exhibit some consistency across bargaining
problems.

Nash 1953: there is precisely one bargaining solution, denoted by ( ),
satisfying  , ,  and .



Nash’s solution

The unique bargaining solution  :  → R2 satisfying  , ,
 and  is given by

( ) = argmax
(12)≤(12)∈

(1 − 1)(2 − 2)

and since we normalize (1 2) = (0 0)

( 0) = argmax
(12)∈

12

The solution is the utility pair that maximizes the product of the players’
utilities.



Proof

Pick a compact and convex set  ⊂ R2+ where  ∩ R2++ 6= ∅.

Step 1:  is well defined.

— Existence: the set  is compact and the function  = 12 is contin-
uous.

— Uniqueness:  is strictly quasi-conacave on  and the set  is convex.



Step 2:  is the only solution that satisfies  , ,  and
.

Suppose there is another solution  that satisfies  , , 

and .

Let

0 = {( 1

1 ()


2

2 ()
) : (1 2) ∈ }

and note that 01
0
2 ≤ 1 for any 0 ∈ 0, and thus (0 0) = (1 1).



Since 0 is bounded we can construct a set  that is symmetric about the
45◦ line and contains 0

 = {( ) : +  ≤ 2}

By  and  we have ( 0) = (1 1), and by  we have
(0 0) = ( 0) = (1 1).

By  we have that (0 0) = (0 0) if and only if ( 0) =
( 0) which completes the proof.



Is any axiom superfluous?



The bargaining solution given by the maximizer of

(1 2) =
√
1 +

√
2

over h 0i where  := {(0 0) (1 0) (0 2)}.

This solution satisfies,  and  (maximizer of an increasing
function). The maximizer of  for this problem is (13 43) while  =

(12 1).





The family of solutions {}∈(01) over h 0i where

( ) = argmax
(12)≤(12)∈

(1 − 1)
(2 − 2)

1−

is called the asymmetric Nash solution.

Any  satisfies  ,  and  by the same arguments used for
 .

For h 0i where  := {(0 0) (1 0) (0 1)} we have ( 0) =
( 1− ) which is different from  for any  6= 12.





Consider the solution  given by ( ) =  which is different from
 .  satisfies  ,  and .

 in the Nash solution can be replaced with strict individual rationality ()
( )  



An application - risk aversion

Dividing a dollar: the role of risk aversion: Suppose that

 = {(1 2) ∈ R2+ : 1 + 2 ≤ 1}

(all possible divisions),  = (0 0) and for all   ∈   %  if and only
if  ≥ .

Player ’s preferences over  ∪ can be represented by  : [0 1] → R
where each  is concave and (WLOG) (0) = 0.



Then,

 = {(1 2) ∈ R2+ : (1 2) = (1(1) 2(2))}

for some (1 2) ∈  is compact and convex and

 = (1(0) 2(0)) = (0 0) ∈ 

First, note that when 1() = 2() for all  ∈ (0 1] then h i is
symmetric so by  and the Nash solution is ((12) (12)).



Now, suppose that 1 = 1 and 2 =  ◦ 2 where  : R+ → R+ is
increasing and concave and (0) = 0 (player 2 is more risk averse).

Let
­
0 0

®
be bargaining problem when the preferences of the players are

represented by 1 and 2.

Let  be the solution of

max
0≤≤1

1()2(1− )

and  the corresponding solution when  =  for  = 1 2.



Then,

( ) = (1() 2(1−)) and (0 0) = (1() 2(1−))

If  for  = 1 2 and  are differentiable then  and  are, in respect,
the solutions of

01()
1()

=
02(1− )

2(1− )
 (1)

and
01()
1()

=
0(2(1− ))02(1− )

(2(1− ))
 (2)



Since  is increasing and concave and (0) = 0 we have

0() ≤ ()



for all , so the RHS of (1) is at least as the RHS of (2) and thus  ≤ .
Thus, if player 2 becomes more risk-averse, then 1 increases and 2
decreases.

If player 2’s marginal utility declines more rapidly than that of player 1,
then player 1’s share exceeds 12.



Monotonicity

Individual monotonicity ()

Let ̄ be the maximum utility player  gets in { ∈  :  ≥ }.

() For any h i and h i with  ⊂  and ̄ = ̄ for  = 1 2, we
have

( ) ≤ ( )

for  = 1 2.



() For any h i and h i with  ⊂  and ̄ = ̄ for , we have

( ) ≤ ( )

for  6= 

Strong monotonicity (): For any h i and h i with  ⊂  , we
have

( ) ≤ ( )



Kalai-Smorodinsky

The unique bargaining solution

 :  → R2

satisfying  , ,  and  is given by

( ) = {1
̄1
=

2
̄2
:  ∈ } ∩()



Proof

Normalize (1 2) = (0 0) and define

0 = {(1
̄1

2
̄2
) : (1 2) ∈ }

and note that ̄0 = 1 for each  = 1 2.

By  we have that


1 ()

̄1
= 

1 (0) = 
2 (0) =


2 ()

̄2




Next, we show that  is the only solution that satisfies  , ,
 and  .

Let

 := {(0 0) (1 0) (0 1) (0)}

and note that

( ) = (0)

and that for any ( ) that satisfies  and  we have

( ) = ( )



By  we have that

(
0) ≥ ( ) = 

 (0)

for  = 1 2.

By  of  we know that (0) ≤ (0) and thus

(0) = (0)

And, by  we have that

() = ()

which completes the proof.



Kalai

The unique bargaining solution

 :  → R2

satisfying  ,  and  is given by

( ) = max{(1 2) ∈  : 1 = 2}



Proof

Normalize (1 2) = (0 0) and define the symmetric set

 = { ∈  : (1 2) ∈ 

⇔ (2 1) ∈   ≤ ()}

For example, the set  can be given by

 = { ∈  : 1 = 2}



For any solution  that satisfies  and 

( ) = ()

Since  ⊂ , by  , ( ) ≤ () and thus () ≤ ().

By  of () ≥ () so we have that

() = ()

which concludes the proof.



The relation between the axiomatic and strategic approaches

To establish a common underlying model, we first introduce uncertainty
into a bargaining game of alternating offers Γ().

To this end, consider a game Γ() with

— an exogenous possibility 0    1 of breakdown 

— indifference about the period in which an agreement is reached.



A pair of strategies ( ) that generates the outcome ( ) in Γ() leads
to the outcome hh ii defined as(

 w/ prob. (1− )

 o/w

in the game Γ().

The key element in the analysis is the exact correspondence between Γ()

and Γ()so we can apply the Rubinstein’s result to Γ().



Assumptions on %

[B1] Pie is desirable: for any   ∈ ,  Â  if and only if    for
 = 1 2.

[B2]  is the worse outcome: (0 1) ∼1  and (1 0) ∼2 .

[B3] Risk aversion: for any   ∈ , and (+ (1− )) ∈  for

(+ (1− )) % + (1− ) for any  ∈ [0 1]



Under B1-B3, % for  = 1 2 over hh ii is complete, transitive, and

hh ii Â hh ii⇔ (1− )()  (1− )()

Under B1 and B3, () is increasing and concave, and under B2 we set
(WLOG) () = 0. Thus, h i defined by

 = {(1 2) ∈ R2++ : (1 2) = (1(1) 2(2)) for some  ∈ }

and

 = (1() 2()) = (0 0)

is a bargaining problem.



Next, we show that B1-B3 ensure that % over hh ii (lotteries) satisfy
assumptions A1-A6 when we replace the symbol ( ) with hh ii.

[A1] hh ii %  for all outcomes hh ii and  = 1 2.

[A2] hh ii Â hh ii for    and  = 1 2

[A3] hh ii % hh ii for    and  = 1 2, and the preferences are
strict if   0.

[A4] trivial (by the continuity of each ).

[A5] trivial (by the continuity of each ).



[A6] The concavity of  implies that if    then

()− (( 1))

 − ( 1)
≥ ()− (( 1))

 − ( 1)

and since (( 1)) = (1− )(), we get

()

 − ( 1)
≥ ()

 − ( 1)


Since ()  () then  − ( 1)   − ( 1).



Subgame perfect equilibrium of Γ()

For each  ∈ (0 1), the pair of agreements (∗() ∗()) satisfying

hh∗() 0ii ∼1 hh∗() 1ii and hh∗() 0ii ∼2 hh∗() 1ii

or, equivalently

1(
∗()) = (1− )1(

∗()) and 2(
∗()) = (1− )2(

∗())

is the unique  of Γ() (by the Rubinstein’s result above).

In the unique , player 1proposes the agreement ∗() in period 0 and
player 2 accepts.



As  approaches 0 the agreement ∗() reached in the unique  of Γ()
approaches the agreement given by ( ) = argmax1(1)2(2)

where

 = {(1 2) ∈ R2++ : (1 2) = (1(1) 2(2)) for some  ∈ }

and

 = (1() 2()) = (0 0)



From the equilibrium condition

1(
∗())2(

∗()) = 1(
∗())2(

∗())

and that

lim
→0

[(
∗())− (

∗()] = 0

for  = 1 2.



Nash’s (1953) demand game

Nash (1953) proposed a strategic game of bargaining that “supports” his
axiomatic solution.

Nash’s demand game is the two-player strategic game  where for  = 1 2

—  = [0∞)

—  : R+ × R+→ R defined by

(1 2) =

(
0 if (1 2) ∈ 
 if (1 2) ∈ 

where  is the “demand” of player .



Any strategy pair (1 2) which is  is a Nash equilibrium of the
game.

In a perturbed demand game, there is some uncertainty in the neighbor-
hood of the boundary of .

The main idea is to requires that an equilibrium will be robust to pertur-
bations in the structure of the game (Selten, 1975).



Specifically, any demand-pair (1 2) results an agreement (1 2) with
probability  (1 2) where

 (1 2) =

(
0 if (1 2) ∈ 
[0 1] if (1 2) ∈ 

and 0   (1 2) if (1 2) is in the interior of .

Further, suppose  : R2+ → [0 1] is differentiable and quasi-concave, so
for each  ∈ [0 1] the set

̄ () = {(1 2) ∈ R2+ :  (1 2) ≥ }

is convex.



Let  be the perturbed demand game defined by h i and  and
assume that the (Hausdorff) distance between  and (1) associated
with  converges to 0 as →∞.

Nash 1953: [1] Every game  has a Nash equilibrium in which an
agreement is reached with positive probability. [2] The limit as  → ∞
for every sequence {∗}∞=1 in which ∗ is such a Nash equilibrium is
the Nash solution ( ).



Proof : Let

(̂1 ̂2) ∈ argmax
(12)∈R2+

12
(1 2)

Since  is continuous and (1 2) = 0 if (1 2) ∈  then (̂1 ̂2)
exists; and since ̂  0 for both  = 1 2 then (̂1 ̂2)  0.

Further, since

̂1 ∈ argmax
1∈R+

1
(1 ̂2) and ̂2 ∈ argmax

2∈R+
2

(̂1 2)

then (̂1 ̂2) is a Nash equilibrium.



Let (∗1 
∗
2) ∈  be an equilibrium of  where ∗  0 for all  = 1 2.

Since  is differentiable and ∗ = (∗) then

∗
(∗) + (∗) = 0 for  = 1 2

(where  is the partial derivative of  with respect to its th argument)
and thus

1
(∗)

2(∗)
=

∗1
∗2

 ()



Let ∗ = (∗1 
∗
2), so that

(∗1 
∗
2) ∈ (∗) ∩

(since it is an equilibrium).

Since  is quasi-concave, () implies that ∗1 
∗
2 is the maximizer of

12 subject to (1 2) ≥ ∗, in particular

∗1
∗
2 ≥ max

(12)
{12 : (1 2) ∈ (1)}

which completes the proof.


